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Abstract. In this paper we study
[n

r

]
m

=
∑

k≡r(mod m)

(n
k

)
where m > 0, n > 0

and r are integers. We show that
[n

r

]
m

(m > 2) can be expressed in terms of some

linearly recurrent sequences with orders not exceeding ϕ(m)/2. In particular we
determine

[n
r

]
12

explicitly in terms of first order and second order recurrences. It

follows that for any prime p > 3 we have

2p−1 − 1

p
≡ 2(−1)

p−1
2

∑
16k6 p+1

6

(−1)k

2k − 1
(mod p)

and ∑
0<k<p/2

3k

k
≡

∑
0<k<p/6

(−1)k

k
(mod p).

1. Introduction

Let N = {0, 1, 2, · · · } and Z+ = {1, 2, 3, · · · }. For m ∈ Z+, n ∈ N and r ∈ Z,
we set

(1.1)
[
n

r

]
m

=
n∑

k=0
k≡r (mod m)

(
n

k

)
and

{
n

r

}
m

=
n∑

k=0
k≡r (mod m)

(−1)
k−r

m

(
n

k

)
.

It is interesting to determine these two kinds of sums, which are closely related
to various number-theoretic quotients (see [W], [SS], [S1-3] and [Su1]), values
of Bernoulli and Euler polynomials at rational points (cf. [GS] and [Su3]), S.
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Jakubec’s investigation ([J]) of divisibility of the class number of a real cyclo-
tomic field of prime degree, and C. Helou’s study of Terjanian’s conjecture con-
cerning Hilbert’s norm residue symbol and cyclotomic units (see Proposition 2
and Lemma 3 of [H]). Observe that[

n

r

]
m

+
{

n

r

}
m

= 2
[
n

r

]
2m

.

Also,

(1.2)
[
n

r

]
m

=
[

n

n− r

]
m

and
[
n + 1

r

]
m

=
[
n

r

]
m

+
[

n

r − 1

]
m

.

So, it suffices to determine
[
n
r

]
m

with n odd. If n > 0 then[
n

r

]
m

= |{S ⊆ {1, · · · , n}: |S| ≡ r (mod m)}| and
[
n

r

]
2

=
1
2

[
n

r

]
1

= 2n−1.

For explicit formulas of
[
n
r

]
8

and
[
n
r

]
10

, the reader may consult [S2], [Su1] and
[SS].

Throughout this paper, for a real number x we use bxc and {x} to denote the
integral and fractional parts of x respectively. For a, b ∈ Z, as usual (a, b) stands
for the greatest common divisor of a and b. When a ∈ Z, n ∈ Z+ and (a, n) = 1,
( a

n ) denotes the Jacobi symbol if 2 - n; we write qn(a) for (an−1 − 1)/n, which is
often called a Fermat quotient if n is a prime p. For an assertion A we set

(1.3) [A] =
{

1 if A holds,
0 otherwise.

Our first aim is to express the sum
[
n
r

]
m

(m > 2) in terms of some linearly
recurrent sequences whose orders belong to {1} ∪ {ϕ(d)/2: d | m & d > 2} where
ϕ is Euler’s totient function. Namely, we have

Theorem 1. Let D0(x) = 2 and

(1.4) Dn(x) =
bn/2c∑
i=0

(−1)i n

n− i

(
n− i

i

)
xb

n
2 c−i for n ∈ Z+.

Let k, m ∈ Z and m > 2. Write

(1.5) wn(k,m) =
∑

0<j<m/2
(j,m)=1

D|k|

(
4 cos2

jπ

m

)(
4 cos2

jπ

m

)n

for n ∈ Z,
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and

(1.6)

Am(x) =
∏

0<j<m/2
(j,m)=1

(
x− 4 cos2

jπ

m

)

=xϕ(m)/2 − a1x
ϕ(m)/2−1 − · · · − aϕ(m)/2−1x− aϕ(m)/2.

Then (−1)s−1as ∈ Z+ for s = 1, · · · , ϕ(m)/2, and

(1.7) wn(k,m) = a1wn−1(k, m) + · · ·+ aϕ(m)/2wn−ϕ(m)/2(k,m) for n ∈ Z.

Whenever n ∈ N and r ∈ Z, we have

(1.8)
[
n

r

]
m

=
2n + (−1)r[2 | m & n = 0]

m
+

1
m

∑
d|m
d>2

wbn+1
2 c(n− 2r, d).

Applying Theorem 1 with m = 4 we find that

4
[
n

0

]
4

− 2n = wn+1
2

(n, 4) = (−1)
n2−1

8 2
n+1

2 for n = 1, 3, 5, · · · ,

consequently

(−1)
p2−1

8

(
2
p

)
≡ 2
[
p

0

]
4

− 2p−1 ≡ 1 (mod p) for any odd prime p.

This provides a new way to determine the quadratic character of 2 modulo an
odd prime. (The author’s brother Z.-H. Sun [S1] employed

[
p
1

]
4

and
[
p
2

]
4

to obtain
( 2

p ) = (−1)(p
2−1)/8.)

Let m > 2 be an integer and p > 2 be a prime not dividing m. From Theorem
1 we can deduce the following congruence:

(1.9)
w p+1

2
(p, m)− (ϕ(m) + µ(m))

p
≡ ϕ(m)

p−1∑
k=1

µ(m/(k, m))
ϕ(m/(k, m))

· (−1)k−1

k
(mod p)

where µ denotes the well-known Möbius function.
Our second goal is to obtain an explicit formula for the sum

[
n
r

]
12

. This involves
a special Lucas sequence {Sn}n∈Z and its companion {Tn}n∈Z defined as follows:

(1.10)
S0 = 0, S1 = 1 and Sn+1 + Sn−1 = 4Sn for n = 0,±1,±2, · · · ;
T0 = 2, T1 = 4 and Tn+1 + Tn−1 = 4Tn for n = 0,±1,±2, · · · .

It is easy to check that Tn = 4Sn − 2Sn−1 and 6Sn = 2Tn − Tn−1 for all n ∈ Z.
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Theorem 2. Let n ∈ Z+, 2 - n and r ∈ Z. Then
(1.11)

12
[
n

r

]
12

− 2n − 1

=


3

n+1
2 + (−1)

r(n−r)
2 ( 2

n )(2
n+1

2 + Tn+1
2

) if n− 2r ≡ ±1 (mod 12),

−3 + (−1)
r(n−r)

2 ( 2
n )(2

n+1
2 − Tn+1

2
+ Tn−1

2
) if n− 2r ≡ ±3 (mod 12),

−3
n+1

2 + (−1)
r(n−r)

2 ( 2
n )(2

n+1
2 − Tn−1

2
) if n− 2r ≡ ±5 (mod 12).

The author got Theorem 2 in 1988; it has the following application.

Theorem 3. Let n be a positive integer with (6, n) = 1. Set n̄ = (n − ( 3
n ))/2.

Then

(1.12)
(

2
n

)
Sn̄

n
=

(−1)
n−1

2

3

bn+1
6 c∑

k=1

(−1)k

2k − 1

(
n− 1
6k − 4

)
+

n−1∑
k=1

6|k+n

(−1)
k+n

6

k

(
n− 1
k − 1

)
.

For any prime p > 3, we have the congruences

(1.13)

p−1
2∑

k=1

3k

k
≡

∑
0<k<p/6

(−1)k

k
≡ −6

(
2
p

)
Sp̄

p
− qp(2) (mod p)

and

(1.14) qp(2) ≡ 2(−1)
p−1
2

b p+1
6 c∑

k=1

(−1)k

2k − 1
(mod p).

Let p > 3 be a prime. The first congruence in (1.13) was announced by the
author [Su1] in 1995. (1.14) provides a quick way to compute qp(2) mod p. In
Section 3 we will determine

∑
0<k<p
12|k−r

1
k mod p explicitly where r ∈ Z.

We will show Theorems 1 and 2 in the next section. Section 3 contains a proof
of Theorem 3 and other applications of Theorems 1 and 2.

2. Proofs of Theorems 1 and 2

Let m ∈ Z+, n ∈ N and a, r ∈ Z. Then

∑
06k6n

k≡r (mod m)

(
n

k

)
ak =

n∑
k=0

(
n

k

)
ak

m

∑
γm=1

γk−r =
1
m

∑
γm=1

γ−r(1 + aγ)n.
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This is (1.53) of H. W. Gould [G]. If p is a prime not dividing m, then we have

(2.1)
∑

06k6pn
k≡pr (mod m)

(
pn

k

)
ak ≡

∑
06k6n

k≡r (mod m)

(
n

k

)
ak (mod p)

(and in particular
[
pn
pr

]
m
≡
[
n
r

]
m

(mod p) as observed by A. Granville) because∑
γm=1

γ−pr(1 + aγ)pn ≡
∑

γm=1

γ−pr(1 + apγp)n ≡
∑

γm=1

γ−r(1 + aγ)n (mod p).

Lemma 2.1. Let k ∈ Z, m ∈ Z+ and n ∈ N. Then

(2.2)
1
m

∑
γm=1

γk(2 + γ + γ−1)n =
[

2n

k + n

]
m

and

(2.3)
1
m

∑
γm=−1

γk(2 + γ + γ−1)n =
{

2n

k + n

}
m

Proof. Let ε ∈ {1,−1}. Observe that∑
γm=ε

γk(2 + γ + γ−1)n =
∑

γm=ε

γk+n(1 + 2γ−1 + γ−2)n

=
∑

γm=ε

γk+n(1 + γ−1)2n =
∑

γm=ε

γk+n
2n∑

s=0

(
2n

s

)
γ−s

=
2n∑

s=0

(
2n

s

) ∑
γm=(−1)

1−ε
2

γk+n−s =
2n∑

s=0

(
2n

s

) ∑
γm=1

(
e

πi
m · 1−ε

2 γ
)k+n−s

=
∑

06s62n
m|k+n−s

(
2n

s

)
m(−1)

1−ε
2 · k+n−s

m = m
∑

06s62n
m|s−(k+n)

ε
s−k−n

m

(
2n

s

)
.

So (2.2) and (2.3) hold. �

Remark 2.1. Let k ∈ Z, m ∈ Z+, n ∈ N and ε ∈ {1,−1}. By Lemma 2.1,∑
γm=ε

γk(2− γ − γ−1)n =
∑

γm=(−1)mε

(−γ)k(2 + γ + γ−1)n

=(−1)km×

{ [ 2n
k+n

]
m

if ε = (−1)m,{
2n

k+n

}
m

otherwise.
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For n = 0, 1, 2, 3, · · · the nth Chebyshev polynomial Tn(x) of the first kind is
defined by

cos(nθ) = Tn(cos θ).

It is known that if n ∈ Z+ then

Tn+1(x) = 2xTn(x)− Tn−1(x) and 2Tn(x) =
bn/2c∑
i=0

(−1)i n

n− i

(
n− i

i

)
(2x)n−2i.

Thus 2Tn(x) = Dn(4x2)(2x)[2-n] for any n ∈ N.

Proof of Theorem 1. Let yj = cos jπ
m and xj = 4y2

j for j ∈ Z. As xj − 2 =
2 cos(2π j

m ) = e2πi j
m + e−2πi j

m , the coefficients of Am(x + 2) are symmetric poly-
nomials in those primitive mth roots of unity with integer coefficients. Since

Φm(x) =
∏

16j6m
(j,m)=1

(
x− e2πi j

m

)
∈ Z[x],

we have Am(x + 2) ∈ Z[x] by the Fundamental Theorem on Symmetric Polyno-
mials, therefore Am(x) ∈ Z[x].

Let 1 6 s 6 ϕ(m)/2. By Viéte’s theorem

−as =
∑

0<j1<···<js<m/2
(j1···js,m)=1

s∏
t=1

(−xjt),

therefore

0 < (−1)s−1as <

(
ϕ(m)/2

s

)
4s.

For any integer n we clearly have

ϕ(m)/2∑
i=1

ai

∑
0<j<m/2
(j,m)=1

D|k| (xj) xn−i
j =

∑
0<j<m/2
(j,m)=1

D|k| (xj)
ϕ(m)/2∑

i=1

aix
n−i
j

=
∑

0<j<m/2
(j,m)=1

D|k| (xj) x
n−ϕ(m)/2
j

(
x

ϕ(m)/2
j −Am (xj)

)
=

∑
0<j<m/2
(j,m)=1

D|k| (xj) xn
j .

So (1.7) follows.
For each k ∈ N, if 2 | k then Dk(4x2) = 2Tk(x); if 2 - k then

Dk(4x2) =
2Tk(x)

2x
=

Tk−1(x) + Tk+1(x)
2x2

.



ON THE SUM
∑

k≡r (mod m)

(n
k

)
AND RELATED CONGRUENCES 7

Let n ∈ N and r ∈ Z. Then∑
d|m
d>2

wbn+1
2 c(n− 2r, d) =

∑
d|m

∑
0<c<d/2
(c,d)=1

D|n−2r|

(
4 cos2

cπ

d

)(
4 cos2

cπ

d

)bn+1
2 c

=
∑

0<j<m/2

D|n−2r|(xj)x
bn+1

2 c
j .

If 2 | n, then∑
d|m
d>2

wbn+1
2 c(n− 2r, d) =

∑
0<j<m/2

2T|n−2r|(yj)x
n/2
j

=
∑

0<j<m/2

(
eπi j

m (n−2r) + e−πi j
m (n−2r)

)(
2 + e2πi j

m + e−2πi j
m

)n/2

=
∑

γm=1

γn/2−r(2 + γ + γ−1)n/2 − 4n/2 − (−1)n/2−r[2 | m & n/2 = 0]

=m

[
n

n− r

]
m

− 2n − (−1)r[2 | m & n = 0]

=m

[
n

r

]
m

− 2n − (−1)r[2 | m & n = 0].

When 2 - n, we have∑
d|m
d>2

wbn+1
2 c(n− 2r, d) =

∑
0<j<m/2

T|n−2r|−1(yj) + T|n−2r|+1(yj)
2y2

j

x
n+1

2
j

=
∑

0<j<m/2

(
2 cos(n− 2r − 1)

jπ

m
+ 2 cos(n− 2r + 1)

jπ

m

)
x

n−1
2

j

=
∑

γm=1

(
γ

n−1
2 −r + γ

n+1
2 −r

)
(2 + γ + γ−1)

n−1
2 − (1 + 1)4

n−1
2

=m

[
n− 1

n− 1− r

]
m

+ m

[
n− 1
n− r

]
m

− 2n = m

[
n

n− r

]
m

− 2n = m

[
n

r

]
m

− 2n.

This ends the proof. �

Remark 2.2. For any integer m > 2, clearly

Am

(
(1 + x)(1 + x−1)

)
= Am(2 + x + x−1)

=
∏

0<j<m/2
(j,m)=1

(
x + x−1 − e2πi j

m − e−2πi j
m

)

=
∏

0<j<m/2
(j,m)=1

1
x

(
x− e2πi j

m

)(
x− e−2πi j

m

)
=

Φm(x)
xϕ(m)/2

.
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Now we list Am(x) for 2 < m 6 12:

A3(x) = x− 1, A4(x) = x− 2, A5(x) = x2 − 3x + 1,

A6(x) = x− 3, A7(x) = x3 − 5x2 + 6x− 1, A8(x) = x2 − 4x + 2,

A9(x) = x3 − 6x2 + 9x− 1, A10(x) = x2 − 5x + 5,

A11(x) = x5 − 9x4 + 28x3 − 35x2 + 15x− 1, A12(x) = x2 − 4x + 1.

Let m,n ∈ Z and m > 2. Clearly wn(0,m) = 2wn(1,m) since D0(x) =
2D1(x) = 2. For k, l ∈ Z we have

(2.4) wn(k,m) = wn(l,m) if k ≡ ±l (mod 2m),

and

(2.5) wn(m− k,m) = −wn(k, m) if m ≡ 0 (mod 2).

(Thus wn(m/2,m) = 0 when m is even.) This is because

D|k|

(
4 cos2

jπ

m

)(
2 cos

jπ

m

)[2-k]

= 2T|k|

(
cos

jπ

m

)
= 2 cos

(
jk

m
π

)
.

When m ∈ {5, 8, 10, 12} (i.e. ϕ(m)/2 = 2) we will express wn(k,m) (k, n ∈ Z)
in terms of several second order recurrences of integers, namely the Fibonacci
sequence {Fn}n∈Z and its companion {Ln}n∈Z, the Pell sequence {Pn}n∈Z and
its companion {Qn}n∈Z, and the sequence {Sn}n∈Z and its companion {Tn}n∈Z
given by (1.10). The sequences {Fn}n∈Z, {Ln}n∈Z, {Pn}n∈Z, {Qn}n∈Z are defined
as follows:

(2.6)

F0 = 0, F1 = 1, Fn+1 = Fn + Fn−1 (n = 0,±1,±2, · · · );
L0 = 2, L1 = 1, Ln+1 = Ln + Ln−1 (n = 0,±1,±2, · · · );
P0 = 0, P1 = 1, Pn+1 = 2Pn + Pn−1 (n = 0,±1,±2, · · · );
Q0 = 2, Q1 = 2, Qn+1 = 2Qn + Qn−1 (n = 0,±1,±2, · · · ).

It is easy to check that for each n ∈ Z we have

Fn =
1√
5

((
1 +

√
5

2

)n

−
(

1−
√

5
2

)n)
, Ln =

(
1 +

√
5

2

)n

+
(

1−
√

5
2

)n

;

Pn =
1

2
√

2

(
(1 +

√
2)n − (1−

√
2)n
)

, Qn = (1 +
√

2)n + (1−
√

2)n;

Sn =
1

2
√

3

(
(2 +

√
3)n − (2−

√
3)n
)

, Tn = (2 +
√

3)n + (2−
√

3)n.
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For those m ∈ Z+ with ϕ(m) = 2 or 4, we give below values of wn(k, m) (n ∈ Z)
where 1 6 k 6 m if 2 - m, and 0 < k < m/2 if 2 | m. They can be obtained
through trivial computations.

wn(1, 3) = 1, wn(2, 3) = −1, wn(3, 3) = −2.

wn(1, 4) = 2n; wn(1, 6) = wn(2, 6) = 3n.

wn(1, 5) = L2n, wn(2, 5) = L2n−1, wn(3, 5) = −L2n−2,

wn(4, 5) = −L2n+1, wn(5, 5) = −2L2n−1.

wn(1, 8) wn(2, 8) wn(3, 8) wn(1, 10) wn(2, 10)

2 - n 2(n+3)/2Pn 2(n+1)/2Qn 2(n+3)/2Pn−1 5(n+1)/2Fn 5(n+1)/2Fn+1

2 | n 2n/2Qn 2(n+4)/2Pn 2n/2Qn−1 5n/2Ln 5n/2Ln+1

wn(3, 10) = wn(4, 10) =
{

5(n+1)/2Fn−1 if 2 - n,

5n/2Ln−1 if 2 | n.

wn(1, 12) = wn(4, 12) = Tn, wn(2, 12) = 6Sn,

wn(3, 12) = 6Sn − Tn = 2(Sn + Sn−1) = Tn − Tn−1, wn(5, 12) = Tn−1.

Proof of Theorem 2. Let k = n− 2r. By Theorem 1,

12
[
n

r

]
12

− 2n =
∑
d|12
d>2

wn+1
2

(k, d) = bk + ck

where

bk = wn+1
2

(k, 3) + wn+1
2

(k, 6) and ck = wn+1
2

(k, 4) + wn+1
2

(k, 12).

Observe that

b1 = 1 + 3
n+1

2 , b3 = −2, b5 = wn+1
2

(1, 3)− wn+1
2

(1, 6) = 1− 3
n+1

2 .

Also, c1 = 2
n+1

2 + Tn+1
2

,

c3 = −wn+1
2

(1, 4) + wn+1
2

(3, 12) = −2
n+1

2 + Tn+1
2
− Tn−1

2
,

c5 = −wn+1
2

(1, 4) + wn+1
2

(5, 12) = −2
n+1

2 + Tn−1
2

.

Let l be the unique integer in {1, 3, 5} such that k is congruent to l or −l
modulo 12. Then bk = bl by (2.4). If k ≡ ±l (mod 8), then k ≡ ±l (mod 24) and
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hence ck = cl by (2.4). In the case k 6≡ ±l (mod 24), 12− k ≡ ±l (mod 24) and
hence

−ck = wn+1
2

(4− k, 4) + wn+1
2

(12− k, 12) = wn+1
2

(l, 4) + wn+1
2

(l, 12) = cl.

Thus
ck = (−1)

k2−l2
8 cl = (−1)

n2−l2
8 − r(n−r)

2 cl

and so

12
[
n

r

]
12

− 2n = bl + (−1)
r(n−r)

2

(
2
n

)
(−1)

l2−1
8 cl.

Since we have computed bl and cl, (1.11) follows immediately. �

3. Applications of Theorems 1 and 2

Theorem 1 implies the following result.

Theorem 3.1. Let m,n ∈ N, m > 2 and n > δ where δ ∈ {0, 1}. Then

(3.1) wn(2k + δ,m) = ϕ(m)
2n−δ∑
j=0

µ(m/(m, j − k − n))
ϕ(m/(m, j − k − n))

(
2n− δ

j

)

for all k ∈ Z. If p is a prime not dividing 2m, then (1.9) holds.

Proof. Let k be any integer. By Theorem 1,

l

[
2n− δ

k + n

]
l

− 22n−δ − (−1)k+n[2 | l & 2n = δ]

=
∑
d|l

d>2

wb 2n−δ+1
2 c(2n− δ − 2k − 2n, d) =

∑
d|l

d>2

wn(2k + δ, d)

for all l = 1, 2, 3, · · · . Applying the Möbius theorem we then get that

wn(2k + δ,m) =
∑
d|m

µ
(m

d

)(
d

[
2n− δ

k + n

]
d

− 22n−δ − (−1)k+n[2 | d & 2n = δ]
)

.

As m > 2, we have
∑

d|m µ(m
d ) = 0 and

∑
d|m
2|d

µ
(m

d

)
=

{ ∑
c|m/2 µ(m/2

c ) = 0 if 2 | m,

0 if 2 - m.
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Therefore

wn(2k + δ,m) =
∑
d|m

µ
(m

d

)
d

[
2n− δ

k + n

]
d

=
∑
d|m

µ
(m

d

)
d

2n−δ∑
j=0

d|j−(k+n)

(
2n− δ

j

)

=
2n−δ∑
j=0

(
2n− δ

j

)∑
d|m

µ
(m

d

)
d[d | j − k − n].

For the equality (3.1), it remains to show that for any c ∈ Z we have

∑
d|m

µ
(m

d

)
d[d | c] = ϕ(m)

µ(m/(c,m))
ϕ(m/(c,m))

.

This can be verified directly when m is a prime power, also both sides are mul-
tiplicative with respect to m. So (3.1) holds.

When n is prime to 2m, we have

wn+1
2

(
2× n− 1

2
+ 1,m

)
= ϕ(m)

n∑
k=0

µ(m/(m, k − n−1
2 − n+1

2 ))
ϕ(m/(m, k − n−1

2 − n+1
2 ))

(
n

k

)

=ϕ(m)
n∑

k=0

µ(m/(m,n− k))
ϕ(m/(m,n− k))

(
n

n− k

)
= ϕ(m)

n∑
k=0

µ(m/(k,m))
ϕ(m/(k,m))

(
n

k

)

=ϕ(m)
(

µ(m/(0,m))
ϕ(m/(0,m))

+
µ(m/(n, m))
ϕ(m/(n, m))

)
+ ϕ(m)

n−1∑
k=1

µ(m/(k,m))
ϕ(m/(k, m))

· n

k

(
n− 1
k − 1

)

=ϕ(m) + µ(m) + nϕ(m)
n−1∑
k=1

µ(m/(k, m))
ϕ(m/(k,m))

· 1
k

(
n− 1
k − 1

)
.

If p is a prime with p - 2m, then (1.9) follows from the above since

(−1)l

(
p− 1

l

)
=
∏

0<j6l

(
1− p

j

)
≡ 1− p

∑
0<j6l

1
j

(mod p2)

for any l = 0, 1, 2, · · · , p− 1. We are done. �
As examples we apply Theorem 3.1 and Theorem 1 with m = 4, 5.

Corollary 3.1. Let n be a positive odd integer. Then

(3.2)
(−1)

n2−1
8 2

n−1
2 − 1

n
=

n−1∑
k=1
2|k

(−1)
k
2

k

(
n− 1
k − 1

)
=

n−1∑
k=1
2-k

(−1)
n−k

2

k

(
n− 1
k − 1

)
,
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and

(3.3) 2
n−1∑
k=1

4|k−r

1
k

(
n− 1
k − 1

)
= qn(2) + (−1)

r(n−r)
2

(−1)
n2−1

8 2
n−1

2 − 1
n

for r ∈ Z.

Proof. Observe that

wn+1
2

(n, 4) =

{
wn+1

2
(1, 4) = 2

n+1
2 if n ≡ ±1 (mod 8),

wn+1
2

(3, 4) = −2
n+1

2 if n ≡ ±3 (mod 8).

Thus, by the proof of Theorem 3.1, we have

(−1)
n2−1

8 2
n−1

2 − 1
n

=
wn+1

2
(n, 4)− ϕ(4)− µ(4)

nϕ(4)

=
n−1∑
k=1

1
k

(
n− 1
k − 1

)
µ(4/(k, 4))
ϕ(4/(k, 4))

=
n−1∑
k=1
2|k

(−1)
k
2

k

(
n− 1
k − 1

)

=
n−1∑
k=1

2|n−k

(−1)
n−k

2

n− k

(
n− 1

n− k − 1

)
=

n−1∑
k=1
2-k

(−1)
n−k

2

k

(
n− 1
k − 1

)
.

This proves (3.2). Clearly

qn(2) =
1
2n

n−1∑
k=1

(
n

k

)
=

1
n

n−1∑
k=1

2|k−r

(
n

k

)
=

n−1∑
k=1

2|k−r

1
k

(
n− 1
k − 1

)
for r ∈ Z,

this and (3.2) yield (3.3). �

Corollary 3.2. Let n be a positive integer not divisible by 2 or 5, and

Kn(r) =
n−1∑
k=1

5|k−rn

1
k

(
n− 1
k − 1

)
for r ∈ Z.

Then

(3.4)
Fn−( 5

n )

n
= Kn(4)−Kn(3)

and

(3.5)
( 5

n )Fn − 1
n

=
5
3
Kn(0) +

1
3
Kn(3)− 1

3
Kn(4)− 2

3
qn(2).
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Proof. By Theorem 1, for any r ∈ Z we have

5
[
n

r

]
5

− 2n = wn+1
2

(n− 2r, 5) =


Ln+1 if n− 2r ≡ ±1 (mod 10),
−Ln−1 if n− 2r ≡ ±3 (mod 10),
−2Ln if n− 2r ≡ ±5 (mod 10).

As 5Fj = 2Lj+1 − Lj = Lj + 2Lj−1 for j ∈ Z, 5Fn−( 5
n ) = 2Ln − ( 5

n )Ln−( 5
n ) and

hence

Fn−( 5
n ) =

[
n

4n

]
5

−
[

n

3n

]
5

=
n−1∑
k=1

([5 | k − 4n]− [5 | k − 3n])
n

k

(
n− 1
k − 1

)
.

So (3.4) follows.
Observe that

wn+1
2

(n, 5) =

{
wn+1

2
(1, 5) = Ln+1 = 3Fn + Fn−1 if n ≡ ±1 (mod 10),

wn+1
2

(3, 5) = −Ln−1 = −3Fn + Fn+1 if n ≡ ±3 (mod 10).

Thus, by the proof of Theorem 3.1, we have

1
n

(
3
(

5
n

)
Fn + Fn−( 5

n ) − 3
)

= 4
n−1∑
k=1

1
k

(
n− 1
k − 1

)
µ(5/(k, 5))
ϕ(5/(k, 5))

=4Kn(0)− (Kn(1) + Kn(2) + Kn(3) + Kn(4)) = 5Kn(0)− (1 + 1)n − 2
n

.

This, together with (3.4), yields (3.5). �

Remark 3.1. Let p be an odd prime. Various congruences for Fp−( 5
p )/p mod p

can be found in [W], [SS] and [S3]. In 1995 the author [Su1] showed that

−2
p+1
2

Pp − 2
p−1
2

p
≡

p−1
2∑

k=1

1
k2k

≡
b 3

4 pc∑
k=1

(−1)k−1

k
≡ 2qp(2) +

∑
0<k<p/4

(−1)k

k
(mod p),

which was reproved by Z. Shan and Edward T. H. Wang [SW], and extended by
W. Kohnen [K]. Therefore 2(2

p−1
2 Pp − 1)/p ≡

∑
0<k<p/4(−1)k−1/k (mod p). As(

2
p

)
Qp−( 2

p ) = 4
(

2
p

)
Pp −Qp ≡ 4− (1 +

√
2 + (1−

√
2))p ≡ 2 (mod p),

Q2
p−( 2

p )
− 4 = 8P 2

p−( 2
p )
≡ 0 (mod p2) and hence ( 2

p )Pp−( 2
p ) = Pp − 1

2Qp−( 2
p ) ≡

Pp − ( 2
p ) (mod p2). Thus

(3.6)
Pp−( 2

p )

p
≡

( 2
p )Pp − 1

p
≡

∑
0<k< p

4

(−1)k−1

2k
− qp(2)

2
≡ 1

2

∑
p
4 <k< p

2

(−1)k

k
(mod p).

Theorem 2 has the following consequence.
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Theorem 3.2. Let n be a positive odd integer. Then

(3.7)
[
n

r

]
6

=
2n−1 − 1

3
+

[3 - n + r]
2

(
(−1)b

n−2r+1
6 c3

n−1
2 + 1

)
for r ∈ Z.

Providing n 6≡ 3 (mod 6) we have

(3.8)
( 3

n )3
n−1

2 − 1
n

=
1
2

n−1∑
k=1

(−1)b
k+1
3 c

k

(
n− 1
k − 1

)
=

1
3

bn/3c∑
k=1

(−1)k

k

(
n− 1
3k − 1

)
.

Proof. As
[
n
r

]
6

=
[
n
r

]
12

+
[

n
r+6

]
12

and (r+6)(n−r−6)
2 − r(n−r)

2 ≡ 1 (mod 2), (3.7)
follows from Theorem 2.

Now assume that (6, n) = 1. Clearly
bn/3c∑
k=1

(−1)k

3k

(
n− 1
3k − 1

)
=

n−1∑
k=1
6|k

1
k

(
n− 1
k − 1

)
−

n−1∑
k=1

6|k−3

1
k

(
n− 1
k − 1

)

=

[
n
0

]
6
− 1−

[
n
3

]
6

n
=

(−1)b
n+1

6 c − (−1)b
n−6+1

6 c

2n
3

n−1
2 − 1

n
=

( 3
n )3

n−1
2 − 1
n

and
n−1∑
k=1

(−1)b
k+1
3 c

k

(
n− 1
k − 1

)
=

1∑
r=−1

( n−1∑
k=1

6|k−r

1
n

(
n

k

)
−

n−1∑
k=1

6|k−r−3

1
n

(
n

k

))

=
1∑

r=−1

[
n
r

]
6
−
[

n
r+3

]
6

n
−

1∑
r=−1

[6 | r] + [6 | n− r]
n

=
1∑

r=−1

[3 - n + r](−1)b
n−2r+1

6 c 3
n−1

2

n
− 2

n
=

2
n

((
3
n

)
3

n−1
2 − 1

)
.

This completes the proof. �

Remark 3.2. For n ∈ Z+ and r ∈ Z,
[
n
r

]
m

in the cases m = 4, 5, 6 was also
determined by the author’s brother Z.-H. Sun [S1] but he did not present unified
formulas like (3.3) and (3.7).

From Theorem 2 we can also deduce the following result written in number-
theoretic language.

Theorem 3.3. Let n be a positive integer prime to 6. Set n̄ = (n− ( 3
n ))/2. For

any r ∈ Z we have

(3.9)

n−1∑
k=1

k≡r (mod 6)

(−1)
k(n−k)

2

k

(
n− 1
k − 1

)
−
(

2
n

)
2

n−1
2 − ( 2

n )
3n

=

 1+(−1)b
r+1
3 c

2 ( 2
n )Sn̄

n + 1+3(−1)b
r+1
3 c

2 ( 6
n )Tn̄−2( 6

n )

6n if 3 - n + r,

−( 2
n )Sn̄

n − ( 6
n )Tn̄−2( 6

n )

6n if 3 | n + r.



ON THE SUM
∑

k≡r (mod m)

(n
k

)
AND RELATED CONGRUENCES 15

Proof. Let δr = [6 | r] + [6 | n− r] = [n− 2r ≡ ±n (mod 12)], and

∆r = 6
n−1∑
k=1

k≡r (mod 6)

(−1)
k(n−k)

2
n

k

(
n− 1
k − 1

)
− 2

(
2
n

)(
2

n−1
2 −

(
2
n

))
.

Then

∆r +
(

2
n

)
2

n+1
2 − 2 + 6δr = 6

n∑
k=0

6|k−r

(−1)
k(n−k)

2

(
n

k

)
= 6(−1)

r(n−r)
2

{
n

r

}
6

where in the last step we note that

k(n− k)
2

− r(n− r)
2

=
k − r

2
n− k2 − r2

2
≡ k − r

6
(mod 2)

if k ≡ r (mod 6). In view of the above and Theorem 2,(
2
n

)
∆r + (6δr − 2)

(
2
n

)
=6(−1)

r(n−r)
2

(
2
n

)([
n

r

]
12

−
[

n

r + 6

]
12

)
− 2

n+1
2

=


Tn+1

2
if n− 2r ≡ ±1 (mod 12),

Tn−1
2
− Tn+1

2
if n− 2r ≡ ±3 (mod 12),

−Tn−1
2

if n− 2r ≡ ±5 (mod 12).

Observe that

6Sn+1
2
− Tn+1

2
= Tn+1

2
− Tn−1

2
= 3Tn−1

2
− Tn−3

2
= 6Sn−1

2
+ Tn−1

2
.

If n− 2r ≡ ±1 (mod 12), then δr = [n ≡ ±1 (mod 12)], therefore(
2
n

)
∆r =Tn+1

2
+ (2− 6δr)

(
2
n

)
=

{
6Sn−1

2
+ 2Tn−1

2
− 4( 2

n ) if ( 3
n ) = 1,

Tn+1
2

+ 2( 2
n ) if ( 3

n ) = −1,

=3
(

1 +
(

3
n

))
Sn̄ +

3 + ( 3
n )

2

(
Tn̄ − 2

(
6
n

))
.
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If n − 2r ≡ ±3 (mod 12) (i.e. 3 | n + r), then δr = [n ≡ ±3 (mod 12)] = 0 and
hence (

2
n

)
∆r =Tn−1

2
− Tn+1

2
+ (2− 6δr)

(
2
n

)
=− 6Sn−1

2
− Tn−1

2
+ 2

(
2
n

)
= −6Sn+1

2
+ Tn+1

2
+ 2

(
2
n

)
=− 6Sn̄ −

(
3
n

)(
Tn̄ − 2

(
6
n

))
.

If n− 2r ≡ ±5 (mod 12), then δr = [n ≡ ±5 (mod 12)] and so(
2
n

)
∆r =− Tn−1

2
+ (2− 6δr)

(
2
n

)
=

{
−Tn−1

2
+ 2( 2

n ) if ( 3
n ) = 1,

6Sn+1
2
− 2Tn+1

2
− 4( 2

n ) if ( 3
n ) = −1,

=3
(

1−
(

3
n

))
Sn̄ −

3− ( 3
n )

2

(
Tn̄ − 2

(
6
n

))
.

When 3 - n(n− 2r), we have {n+3
6 } > { r+1

3 } (otherwise 6 | n + 1 and 3 | r− 1,
which implies that 3 | n − 2r), thus bn+1

6 c − b r+1
3 c = bn+3

6 − r+1
3 c = bn−2r+1

6 c
and hence

(−1)b
r+1
3 c
(

3
n

)
= (−1)b

n−2r+1
6 c =

{
1 if n− 2r ≡ ±1 (mod 12),
−1 if n− 2r ≡ ±5 (mod 12).

In view of the above, (3.9) can be easily verified. �

Proof of Theorem 3. Applying (3.9) with r = 3,−n we obtain that

n−1∑
k=1

(−1)
k(n−k)

2

k

(
n− 1
k − 1

)
([6 | k − 3]− [6 | k + n])

=−
(

6
n

)
Tn̄ − 2( 6

n )
6n

+
(

2
n

)
Sn̄

n
+
(

6
n

)
Tn̄ − 2( 6

n )
6n

=
(

2
n

)
Sn̄

n
.

If k ≡ 3 (mod 6) then k(n−k)
2 ≡ n−k

2 ≡ n−1
2 − k+3

6 (mod 2); if k ≡ −n (mod 6)
then k(n−k)

2 ≡ k+n
2 − k ≡ k+n

6 − 1 (mod 2). Thus (1.12) follows.
Now suppose that p is a prime greater than 3. Applying (3.9) with r = 3, we

find that p divides Tp̄ − 2( 6
p ). Observe that

12S2
p̄ =

(
(2 +

√
3)p̄ + (2−

√
3)p̄
)2

− 4(2 +
√

3)p̄(2−
√

3)p̄

=T 2
p̄ − 4 =

(
Tp̄ − 2

(
6
p

))2

+ 4
(

6
p

)(
Tp̄ − 2

(
6
p

))
.
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So p | Sp̄ and p2 | Tp̄ − 2( 6
p ).

Notice that

6S p+1
2
− T p+1

2
= 6S p−1

2
+ T p−1

2
= 6Sp̄ +

(
3
p

)
Tp̄

=
6

2
√

3

(
(2 +

√
3)

p−1
2 − (2−

√
3)

p−1
2

)
+ (2 +

√
3)

p−1
2 + (2−

√
3)

p−1
2

=(1 +
√

3)(2 +
√

3)
p−1
2 + (1−

√
3)(2−

√
3)

p−1
2

=2−
p−1
2

(
(1 +

√
3)1+2· p−1

2 + (1−
√

3)1+2· p−1
2

)
=2−

p−1
2

p∑
k=0
2|k

(
p

k

)(
(
√

3)k + (−
√

3)k
)

=2 · 2−
p−1
2 + 2−

p−1
2 p

p−1
2∑

k=1

2 · 3k

2k

(
p− 1
2k − 1

)
.

Therefore

−

p−1
2∑

k=1

3k

k
≡

p−1
2∑

k=1

3k

k

(
p− 1
2k − 1

)
=

1
p

(
2

p−1
2

(
6Sp̄ +

(
3
p

)
Tp̄

)
− 2
)

≡6 · 2
p−1
2

Sp̄

p
+
(

3
p

)
Tp̄

2
p−1
2 − ( 2

p )

p
+
(

6
p

)
Tp̄ − 2( 6

p )

p

≡6
(

2
p

)
Sp̄

p
+
(

2
p−1
2 +

(
2
p

)) 2
p−1
2 − ( 2

p )

p
= 6

(
2
p

)
Sp̄

p
+ qp(2) (mod p).

Taking r = 0, 3 in (3.9) we then have

∑
0<k<p/6

(−1)k

6k

(
p− 1
6k − 1

)
− 2

(
2
p

) 2
p−1
2 − ( 2

p )

6p
=
(

2
p

)
Sp̄

p
+ 2

(
6
p

)
Tp̄ − 2( 6

p )

6p

and

b p+1
6 c∑

k=1

(−1)
p−1
2 −k

6k − 3

(
p− 1
6k − 4

)
− 2

(
2
p

) 2
p−1
2 − ( 2

p )

6p
= −

(
6
p

)
Tp̄ − 2( 6

p )

6p
.

Consequently,

−1
6

∑
0<k<p/6

(−1)k

k
− 1

6
qp(2) ≡

(
2
p

)
Sp̄

p
(mod p)
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and (1.14) holds. This completes the proof. �

Remark 3.3. Let p > 3 be a prime and p̄ = (p− ( 3
p ))/2. By the proof of Theorem

3, (
6
p

)
Tp̄ − 2( 6

p )

p2
= 3

(
Sp̄

p

)2

−

(
Tp̄ − 2( 6

p )

2p

)2

≡ 3
(

Sp̄

p

)2

(mod p2).

Since 2S p−1
2

= 4S p+1
2
− T p+1

2
and 2S p+1

2
= 8S p−1

2
− 2S p−3

2
= 4S p−1

2
+ T p−1

2
,

S(p+( 3
p ))/2 − ( 2

p )

p
= 2

Sp̄

p
+
(

3
p

)
Tp̄ − 2( 6

p )

2p
≡ 2

Sp̄

p
(mod p).

As Sp−( 3
p ) = S2p̄ = Sp̄Tp̄, we have

Sp−( 3
p )

p
− 2

(
6
p

)
Sp̄

p
=

Sp̄

p
·
Tp̄ − 2( 6

p )

p2
p2 ≡ 3

(
6
p

)(
Sp̄

p

)3

p2 (mod p4).

Note also that
Sp − ( 3

p )

p
≡ 4

(
6
p

)
Sp̄

p
(mod p)

because Sp = S2
p+1
2
− S2

p−1
2

= ( 3
p )(S2

(p+( 3
p ))/2

− S2
p̄) ≡ ( 3

p )(( 2
p ) + 2Sp̄)2 (mod p2).

In [SS] Z.-H. Sun and Z.-W. Sun employed the sum
[
p
r

]
10

to determine when
p | F(p−1)/4 if p is a prime with p ≡ 1 (mod 4).

Let p > 3 be a prime. We assert that

(3.10) p | Sb p+1
4 c ⇐⇒ p ≡ 1, 19 (mod 24); p | Tb p+1

4 c ⇐⇒ p ≡ 7, 13 (mod 24).

Put n = bp+1
4 c. Clearly

T2n =
(
(2 +

√
3)n − (2−

√
3)n
)2

+ 2(2 +
√

3)n(2−
√

3)n = 12S2
n + 2.

If p ≡ 5, 11 (mod 12), then p + ( 3
p ) = 4n, hence p - Sn and p - Tn because

SnTn = S2n ≡ ( 2
p ) (mod p) by Remark 3.3. When p ≡ 1, 7 (mod 12), clearly

4n = p− ( 3
p ) = 2p̄, therefore

p | Sn ⇐⇒ Tp̄ = 12S2
n + 2 ≡ 2 (mod p), i.e. p

∣∣ 2
(

6
p

)
− 2

⇐⇒
(

2
p

)
=
(

3
p

)
, i.e. p ≡ 1, 19 (mod 24),

and
Tn = Sp̄/Sn ≡ 0 (mod p) ⇐⇒ p - Sn ⇐⇒ p ≡ 7, 13 (mod 24)

since Sp̄ ≡ 0 (mod p) and T 2
n − 12S2

n = 4 6≡ 0 (mod p).
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Corollary 3.3. Let p > 3 be a prime. Let r ∈ Z,

(3.11) Kp(r, 12) =
∑

0<k<p
12|k−rp

1
k

and εr =


1 if r ≡ 0, 1 (mod 6),
−1 if 3 | r + 1,

0 otherwise.

Then

(3.12)
(−1)r−1Kp(r, 12) ≡2 + (−1)br/2c

12
qp(2) + [3 - r + 1](−1)br/3c qp(3)

8

+ εr(−1)br/2c
(

2
p

) S(p−( 3
p ))/2

2p
(mod p).

Proof. By Theorem 3.2,

[6 | rp] + [6 | p− rp] + p
∑

0<k<p
6|k−rp

1
k

(
p− 1
k − 1

)

=
[

p

rp

]
6

=
2p−1 − 1

3
+

[3 - p + rp]
2

(
(−1)b

p−2rp+1
6 c3

p−1
2 + 1

)
.

Since
(
p−1

l

)
≡ (−1)l (mod p) for l = 0, 1, · · · , p− 1, and

qp(a) =
(

a
p−1
2 +

(
a

p

))
a

p−1
2 − (a

p )

p
≡ 2

(
a

p

)
a

p−1
2 − (a

p )

p
(mod p)

for any integer a 6≡ 0 (mod p), we have

∑
0<k<p
6|k−rp

(−1)k−1

k
− qp(2)

3

≡ [3 - r + 1]
2p

(
(−1)b

p+1−2rp
6 c3

p−1
2 + 1− 2[r ≡ 0, 1 (mod 6)]

)
≡ [3 - r + 1]

2p
(−1)b

r
3 c
(
(−1)b

p+1
6 c3

p−1
2 − 1

)
≡ [3 - r + 1](−1)b

r
3 c

qp(3)
4

(mod p).

Set p̄ = (p− ( 3
p ))/2. As Tp̄ ≡ 2( 6

p ) (mod p2), Theorem 3.3 implies that

∑
0<k<p
6|k−rp

(−1)
k(p−k)

6

k
(−1)k−1 − qp(2)

6

≡
(

2
p

)
Sp̄

p

(
1 + (−1)b

rp+1
3 c

2
[3 - r + 1]− [3 | r + 1]

)
(mod p).
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Clearly b rp+1
3 c ≡ b r

3c (mod 2) if 3 - r + 1, so

1 + (−1)b
rp+1

3 c

2
[3 - r + 1]− [3 | r + 1] =

[
2 |
⌊r

3

⌋
& 3 - r + 1

]
− [3 | r + 1] = εr.

If k ≡ rp (mod 6), then k(p−k)
2 ≡ k−rp

2 p + rp(p−rp)
2 ≡ k−rp

6 − b r
2c (mod 2). Thus

2(−1)rp−1Kp(r, 12) =
∑

0<k<p
6|k−rp

(−1)k−1

k

(
1 + (−1)b

r
2 c+

k(p−k)
2

)

≡qp(2)
3

+ [3 - r + 1](−1)b
r
3 c

qp(3)
4

+ (−1)b
r
2 c
(

qp(2)
6

+ εr

(
2
p

)
Sp̄

p

)
(mod p),

which is equivalent to (3.12). �

Remark 3.4. Let p > 3 be a prime and r be an integer. Clearly

∑
r
12 p<j< r+1

12 p

1
j

=
∑

rp<l<(r+1)p
12|l

12
l

=
p−1∑
k=1

12|k+rp

12
k + rp

≡ 12Kp(−r, 12) (mod p).

Thus, for a = 1, 5, 7, 11 we can also deduce the congruence

Bp−1

( a

12

)
−Bp−1 ≡

(
3
a

)
3
p
Sp−( 3

p ) + 3qp(2) +
3
2
qp(3) (mod p)

given in [GS] from our Corollary 3.3, where Bp−1 = Bp−1(0), and Bp−1(x) de-
notes the Bernoulli polynomial of degree p − 1. If 0 6 r < 12 then we can
determine

(
p−1
b r

12 pc
)

mod p2 since

(−1)b
r
12 pc

(
p− 1
b r

12pc

)
≡ 1− p

∑
0<j< r

12 p

1
j

(mod p2).

The reader may consult [Su2] for
∏

0<k<n/2

( p−1
b k

n pc

)
mod p2 where n is any positive

integer not divisible by p.

Acknowledgment. The author is indebted to the referee for his helpful com-
ments.
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