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Abstract

In this paper, we derive many new identities on the classical Catalan triangle
C = (Cn,k)n>k>0, where Cn,k = k+1

n+1

(
2n−k
n

)
are the well-known ballot numbers.

The first three types are based on the determinant and the fourth is relied on the
permanent of a square matrix. It not only produces many known and new identities
involving Catalan numbers, but also provides a new viewpoint on combinatorial
triangles.
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1 Introduction

In 1976, by a nice interpretation in terms of pairs of paths on a lattice Z2, Shapiro [44]
first introduced the Catalan triangle B = (Bn,k)n>k>0 with Bn,k = k+1

n+1

(
2n+2
n−k

)
and obtained

n∑
k=0

Bn,k = (2n+ 1)Cn,

min{m,n}∑
k=0

Bn,kBm,k = Cm+n+1, (1)

where Cn = 1
n+1

(
2n
n

)
= 1

2n+1

(
2n+1
n

)
is the nth Catalan number. Table 1.1 illustrates this

triangle for small n and k up to 6. Note that the entries in the first column of the Catalan
triangle B are indeed the Catalan numbers Bn,0 = Cn+1, which is the reason why B is
called the Catalan triangle.
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n/k 0 1 2 3 4 5 6
0 1
1 2 1
2 5 4 1
3 14 14 6 1
4 42 48 27 8 1
5 132 165 110 44 10 1
6 429 572 429 208 65 12 1

Table 1.1. The first values of Bn,k.

Since then, much attentions have been paid to the Catalan triangle and its general-
izations. In 1979, Eplett [20] deduced the alternating sum in the nth row of B, namely,

n∑
k=0

(−1)kBn,k = Cn.

In 1981, Rogers [42] proved that a generalization of Eplett’s identity holds in any renewal
array. In 2008, Gutiérrez et al. [27] established three summation identities and proposed
as one of the open problems to evaluate the moments Ωm =

∑n
k=0(k+1)mB2

n,k. Using the
WZ-theory (see [40, 52]), Miana and Romero computed Ωm for 1 6 m 6 7. Later, based
on the symmetric functions and inverse series relations with combinatorial computations,
Chen and Chu [13] resolved this problem in general. By using the Newton interpolation
formula, Guo and Zeng [26] generalized the recent identities on the Catalan triangle B
obtained by Miana and Romero [37] as well as those of Chen and Chu [13].

Some alternating sum identities on the Catalan triangle B were established by Zhang
and Pang [53], who showed that the Catalan triangle B can be factorized as the product
of the Fibonacci matrix and a lower triangular matrix, which makes them build close
connections among Cn, Bn,k and the Fibonacci numbers. Motivated by a matrix identity
related to the Catalan triangle B [46], Chen et al. [14] derived many nice matrix identities
on weighted partial Motzkin paths.

n/k 0 1 2 3 4 5 6
0 1
1 1 1
2 2 3 1
3 5 9 5 1
4 14 28 20 7 1
5 42 90 75 35 9 1
6 132 297 275 154 54 11 1

Table 1.2. The first values of An,k.
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Aigner [3], in another direction, came up with the admissible matrix, a kind of gen-
eralized Catalan triangle, and discussed its basic properties. The numbers in the first
column of the admissible matrix are called Catalan-like numbers, which are investigated
in [5] from combinatorial views. The admissible matrix A = (An,k)n>k>0 associated to
the Catalan triangle B is defined by An,k = 2k+1

2n+1

(
2n+1
n−k

)
, which is considered by Miana and

Romero [38] by evaluating the moments Φm =
∑n

k=0(2k + 1)mA2
n,k. Table 1.2 illustrates

this triangle for small n and k up to 6.
The interlaced combination of the two triangles A and B forms the third triangle

C = (Cn,k)n>k>0, defined by the ballot numbers

Cn,k =
k + 1

2n− k + 1

(
2n− k + 1

n− k

)
=
k + 1

n+ 1

(
2n− k
n

)
.

The triangle C is also called the “Catalan triangle” in the literature, despite it has the
most-standing form C ′ = (Cn,n−k)n>k>0 first discovered in 1961 by Forder [24], see for
examples [1, 6, 9, 23, 30, 38, 47]. Table 1.3 illustrates this triangle for small n and k up
to 7.

n/k 0 1 2 3 4 5 6 7
0 1
1 1 1
2 2 2 1
3 5 5 3 1
4 14 14 9 4 1
5 42 42 28 14 5 1
6 132 132 90 48 20 6 1
7 429 429 297 165 75 27 7 1

Table 1.3. The first values of Cn,k.

Clearly,
An,k = Cn+k,2k and Bn,k = Cn+k+1,2k+1.

Three relations, Cn,0 = Cn, Cn+1,1 = Cn+1 and
∑n

k=0Cn,k = Cn+1 bring the Catalan
numbers and the ballot numbers in correlation [4, 29, 43]. Many properties of the Cata-
lan numbers can be generalized easily to the ballot numbers, which have been studied
intensively by Gessel [25]. The combinatorial interpretations of the ballot numbers can
be found in [5, 8, 10, 11, 14, 18, 19, 21, 22, 28, 31, 35, 39, 41, 44, 50, 51]. It was shown by
Ma [33] that the Catalan triangle C can be generated by context-free grammars in three
variables.

The Catalan triangles B and C often arise as examples of the infinite matrix associated
to generating trees [7, 12, 34, 36]. In the theory of Riordan arrays [45, 46, 49], much interest
has been taken in the three triangles A,B and C, see [2, 14, 15, 16, 17, 32, 34, 48, 51]. In
fact, A,B and C are Riordan arrays

A = (C(t), tC(t)2), B = (C(t)2, tC(t)2), and C = (C(t), tC(t)),
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where C(t) = 1−
√
1−4t
2t

is the generating function for the Catalan numbers Cn.
Recently, Sun and Ma [51] studied the sums of minors of second order of M =

(Mn,k(x, y))n>k>0, a class of infinite lower triangles related to weighted partial Motzkin
paths, and obtained the following theorem.

Theorem 1. For any integers n, r > 0 and m > ` > 0, set Nr = min{n+r+1,m+r−`}.
Then there holds

Nr∑
k=0

det

(
Mn,k(x, y) Mm,k+`+1(x, y)

Mn+r+1,k(x, y) Mm+r+1,k+`+1(x, y)

)
=

r∑
i=0

Mn+i,0(x, y)Mm+r−i,`(y, y). (2)

Recall that a partial Motzkin path is a lattice path from (0, 0) to (n, k) in the XOY -
plane that does not go below the X-axis and consists of up steps u = (1, 1), down steps
d = (1,−1) and horizontal steps h = (1, 0). A weighted partial Motzkin path (not the
same as stated in [14]) is a partial Motzkin path with the weight assignment that all up
steps and down steps are weighted by 1, the horizontal steps are endowed with a weight x
if they are lying on X-axis, and endowed with a weight y if they are not lying on X-axis.
The weight w(P ) of a path P is the product of the weight of all its steps. The weight of
a set of paths is the sum of the total weights of all the paths. Denote by Mn,k(x, y) the
weight sum of the set Mn,k(x, y) of all weighted partial Motzkin paths ending at (n, k).

n/k 0 1 2 3 4

0 1
1 x 1
2 x2 + 1 x+ y 1
3 x3 + 2x+ y x2 + xy + y2 + 2 x+ 2y 1
4 x4 + 3x2 + 2xy + y2 + 2 x3 + x2y + xy2 + 3x+ y3 + 5y x2 + 2xy + 3y2 + 3 x+ 3y 1

Table 1.4. The first values of Mn,k(x, y).

Table 1.4 illustrates few values of Mn,k(x, y) for small n and k up to 4 [51]. The triangle
M can reduce to A,B and C when the parameters (x, y) are specalized, namely,

An,k = Mn,k(1, 2), Bn,k = Mn,k(2, 2) and Cn,k = M2n−k,k(0, 0).

In this paper, we derive many new identities on the Catalan triangle C. The first three
types are special cases derived from (2) which are presented in Section 2 and 3 respectively.
Section 4 is devoted to the fourth type based on the permanent of a square matrix, and
gives a general result on the triangle M in the x = y case. It not only produces many
known and new identities involving Catalan numbers, but also provides a new viewpoint
on combinatorial triangles.
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2 The first two operations on the Catalan triangle

Let X = (Xn,k)n>k>0 and Y = (Yn,k)n>k>0 be the infinite lower triangles defined on the
Catalan triangle C respectively by

Xn,k = det

(
Cn+k,2k Cn+k,2k+1

Cn+k+1,2k Cn+k+1,2k+1

)
,

Yn,k = det

(
Cn+k+1,2k+1 Cn+k+1,2k+2

Cn+k+2,2k+1 Cn+k+2,2k+2

)
.

Table 2.1 and 2.2 illustrate these two triangles X and Y for small n and k up to 5, together
with the row sums. It indicates that the two operations contact the row sums of X and
Y with the first two columns of C.

n/k 0 1 2 3 4 5 row sums
0 1 1 = 12

1 0 1 1 = 12

2 0 3 1 4 = 22

3 0 14 10 1 25 = 52

4 0 84 90 21 1 196 = 142

5 0 594 825 308 36 1 1764 = 422

Table 2.1. The first values of Xn,k.

n/k 0 1 2 3 4 5 row sums
0 1 1 = 1× 1
1 1 1 2 = 1× 2
2 3 6 1 10 = 2× 5
3 14 40 15 1 70 = 5× 14
4 84 300 175 28 1 588 = 14× 42
5 594 2475 1925 504 45 1 5544 = 42× 132

Table 2.2. The first values of Yn,k.

More generally, we obtain the first result which is a consequence of Theorem 1.1.

Theorem 2. For any integers m > ` > 0 and n > 0, set N = min{n + 1,m− `}. Then
there hold

N∑
k=0

det

(
Cn+k,2k Cm+k,2k+`+1

Cn+k+1,2k Cm+k+1,2k+`+1

)
= CnCm,`, (3)

N∑
k=0

det

(
Cn+k+1,2k+1 Cm+k+1,2k+`+2

Cn+k+2,2k+1 Cm+k+2,2k+`+2

)
= Cn+1Cm,`, (4)
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or equivalently,

Cm,`Cn =
N∑
k=0

(2k + 1)(2k + `+ 2)λn,k(m, `)

(2n+ 1)3(2m− `)3

(
2n+ 3

n− k + 1

)(
2m− `+ 2

m− k − `

)
, (5)

Cm,`Cn+1 =
N∑
k=0

(2k + 2)(2k + `+ 3)µn,k(m, `)

(2n+ 2)3(2m− `+ 1)3

(
2n+ 4

n− k + 1

)(
2m− `+ 3

m− k − `

)
, (6)

where λn,k(m, `) = (2m − `)(2m − ` + 1)(n − k + 1)(n + k + 2) − (2n + 1)(2n + 2)(m −
`− k)(m+ k + 2), µn,k(m, `) = (2m− `+ 1)(2m− `+ 2)(n− k + 1)(n+ k + 3)− (2n+
2)(2n+ 3)(m− `− k)(m+ k + 3) and (a)k = a(a+ 1) · · · (a+ k − 1) for k > 1.

Proof. Setting (x, y) = (0, 0) and r = 1, replacing n,m respectively by 2n, 2m− `− 1 in
(2), together with the relation Cn,k = M2n−k,k(0, 0), where

Mn,k(0, 0) =

{
k+1
n+1

(
n+1
n−k
2

)
, if n− k even,

0, otherwise.
[51, Example (iv)] (7)

we can get (3). After some simple computation, one can easily derive (5) from (3).
Similarly, the case (x, y) = (0, 0) and r = 1, after replacing n,m respectively by

2n + 1, 2m − ` in (2), reduces to (4), which, by some routine simplification, leads to
(6).

Taking m = n in (5) and (6), we have

λn,k(n, `) = (`+ 1)(n+ k + 2)(2k(2n+ 1) + `(n− k + 1)),

µn,k(n, `) = (`+ 1)(n+ k + 3)((2k + 1)(2n+ 2) + `(n− k + 1)),

which yield the following results.

Corollary 3. For any integers n > ` > 0, there hold

1

2n− `+ 1

(
2n− `+ 1

n− `

)
Cn =

n−∑̀
k=0

(2k + 1)(2k + `+ 2)λn,k(`)

(2n+ 1)2(2n− `)3

(
2n+ 2

n− k + 1

)(
2n− `+ 2

n− k − `

)
, (8)

1

2n− `+ 1

(
2n− `+ 1

n− `

)
Cn+1 =

n−∑̀
k=0

(2k + 2)(2k + `+ 3)µn,k(`)

(2n+ 2)2(2n− `+ 1)3

(
2n+ 3

n− k + 1

)(
2n− `+ 3

n− k − `

)
, (9)

where λn,k(`) = 2k(2n+ 1) + `(n− k + 1) and µn,k(`) = (2k + 1)(2n+ 2) + `(n− k + 1).

It should be pointed out that both (8) and (9) are still correct for any integer ` 6 −1
if one notices that they hold trivially for any integer ` > n and both sides of them can be
transferred into polynomials in `. Specially, after shifting n to n− 1, the case ` = −1 in
(8) and (9) generates the following corollary.

the electronic journal of combinatorics 21(1) (2014), #P1.33 6



Corollary 4. For any integer n > 1, there hold(
2n

n

)
Cn−1 =

n∑
k=0

(2k + 1)2(4nk − n− k)

(2n− 1)2(2n)(2n+ 1)

(
2n

n− k

)(
2n+ 1

n− k

)
,(

2n

n

)
Cn =

n∑
k=0

(k + 1)2(4nk + n+ k)

n(n+ 1)(2n+ 1)2

(
2n+ 1

n− k

)(
2n+ 2

n− k

)
.

3 The third operation on the Catalan triangle

Let Z = (Zn,k)n>k>0 be the infinite lower triangle defined on the Catalan triangle C by

Z2n,2k = Cn+k,2kCn+k+1,2k+1, Z2n,2k+1 = Cn+k+1,2k+1Cn+k+1,2k+2, (n > 0),

Z2n−1,2k = Cn+k,2kCn+k,2k+1, Z2n−1,2k+1 = Cn+k,2k+1Cn+k+1,2k+2, (n > 1).

Table 3.1 illustrates the triangle Z for small n and k up to 6, together with the row sums
and the alternating sums of rows. It signifies that the sums and the alternating sums of
rows of Z are in direct contact with the first column of C. Generally, we have the second
result which is another consequence of Theorem 1.1.

n/k 0 1 2 3 4 5 6 row sums alternating sums of rows
0 1 1 1 = 12

1 1 1 2 0
2 2 2 1 5 1 = 12

3 4 6 3 1 14 0
4 10 15 12 4 1 42 4 = 22

5 25 45 36 20 5 1 132 0
6 70 126 126 70 30 6 1 429 25 = 52

Table 3.1. The first values of Zn,k.

Theorem 5. For any integers m,n > 0, let p = m− n+ 1. Then there hold

min{m,n}∑
k=0

Cm+k+1,2k+1(Cn+k,2k + Cn+k+1,2k+2) = Cm+n+1, (10)

min{m,n}∑
k=0

Cm+k+1,2k+1(Cn+k,2k − Cn+k+1,2k+2) =


∑p−1

i=0 Cn+iCm−i, if p > 1,
0, if p = 0,

−
∑|p|

i=1Cn−iCm+i, if p 6 −1,

(11)

Proof. The identity (10) is equivalent to (1), if one notices that

Cm+k+1,2k+1 = Bm,k, Bn,k = Cn+k+1,2k+1 = Cn+k,2k + Cn+k+1,2k+2.
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For the case p = m−n+ 1 > 0 in (11), setting (x, y) = (0, 0) in (2), together with the
relation Cn,k = M2n−k,k(0, 0) and (7), we have

min{m,n}∑
k=0

Cm+k+1,2k+1(Cn+k,2k − Cn+k+1,2k+2)

=
n∑

k=0

{
det

(
Cn+k,2k 0

0 Cn+p+k,2k+1

)
+ det

(
0 Cn+k+1,2k+2

Cn+p+k,2k+1 0

)}

=
2n∑
k=0

det

(
M2n,k(0, 0) M2n,k+1(0, 0)

M2n+2p−1,k(0, 0) M2n+2p−1,k+1(0, 0)

)

=

2p−2∑
i=0

M2n+i,0(0, 0)M2n+2p−i−2,0(0, 0)

=

p−1∑
i=0

M2n+2i,0(0, 0)M2n+2p−2i−2,0(0, 0)

=

p−1∑
i=0

Cn+iCn+p−i−1 =

p−1∑
i=0

Cn+iCm−i,

as desired.
Similarly, the case p 6 −1 can be proved, the details are left to interested readers.

Note that a weighted partial Motzkin path with no horizontal steps is just a partial
Dyck path. Then the relation Cn,k = M2n−k,k(0, 0) signifies that Cn,k counts the set Cn,k
of partial Dyck paths of length 2n − k from (0, 0) to (2n − k, k) [35]. Such partial Dyck
paths have exactly n up steps and n − k down steps. For any step, we say that it is at
level i if the y-coordinate of its end point is i. If P = L1L2 . . . L2n−k−1L2n−k ∈ Cn,k, denote
by P = L2n−kL2n−k−1 . . . L2L1 the reverse path of P , where Li = u if Li = d and Li = d
if Li = u.

For k = 0, a partial Dyck path is an (ordinary) Dyck path. For any Dyck path P
of length 2n + 2m + 2, its (2n + 1)-th step L (along the path) must end at odd level,
say 2k + 1 for some k > 0, then P can be uniquely partitioned into P = P1LP2, where
(P1, P2) ∈ Cn+k,2k×Cm+k+1,2k+1 if L = u and (P1, P2) ∈ Cn+k+1,2k+2×Cm+k+1,2k+1 if L = d.
Hence, the cases p = 0, 1 and 2, i.e., m = n− 1, n and n+ 1 in (11) produce the following
corollary.

Corollary 6. For any integer n > 0, according to the (2n+ 1)-th step u or d, we have
(a) The number of Dyck paths of length 4n is bisected;
(b) The parity of the number of Dyck paths of length 4n+ 2 is C2

n;
(c) The parity of the number of Dyck paths of length 4n+ 4 is 2CnCn+1.
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4 The fourth operation on the Catalan triangle

Let W = (Wn,k)n>k>0 be the infinite lower triangle defined on the Catalan triangle by

W2n,k = per

(
Cn+k,2k Cn+k,2k+1

Cn+k+1,2k Cn+k+1,2k+1

)
,

W2n+1,k = per

(
Cn+k,2k Cn+k,2k+1

Cn+k+2,2k Cn+k+2,2k+1

)
,

where per(A) denotes the permanent of a square matrix A. Table 4.1 illustrates the
triangle W for small n and k up to 8, together with the row sums.

n/k 0 1 2 3 4 5 6 7 8 row sums
0 1 1
1 2 2
2 4 1 5
3 10 4 14
4 20 21 1 42
5 56 70 6 132
6 140 238 50 1 429
7 420 792 210 8 1430
8 1176 2604 990 91 1 4862

Table 4.1. The first values of Wn,k.

This, in general, motivates us to consider the permanent operation on the triangle
M = (Mn,k(x, y))n>k>0. Recall that Mn,k(x, y) is the weight sum of the set Mn,k(x, y) of
all weighted partial Motzkin paths ending at (n, k). For any step of a partial weighted
Motzkin path P , we say that it is at level i if the y-coordinate of its end point is i. For
1 6 i 6 k, an up step u of P at level i is R-visible if it is the rightmost up step at level i
and there are no other steps at the same level to its right. If P = L1L2 . . . Ln ∈Mn,k(x, y),
denote by P = Ln . . . L2L1 the reverse path of P , where Li = u,h or d if Li = d,h or u
respectively.

Theorem 7. For any integers m,n, r with m > n > 0, there holds

m∑
k=0

per

(
Mn,k(y, y) Mn+r,k+1(y, y)

Mm,k(y, y) Mm+r,k+1(y, y)

)
= Mm+n+r,1(y, y) +Hn,m(r), (12)

where

Hn,m(r) =


∑r−1

i=0 Mn+i,0(y, y)Mm+r−i−1,0(y, y), if r > 1,
0, if r = 0,

−
∑|r|

i=1Mn−i,0(y, y)Mm−|r|+i−1,0(y, y), if r 6 −1.
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Proof. We just give the proof of the part when r > 0, the other part can be done similarly
and is left to interested readers. Define

A(r)
n,m,k = {(P,Q)|P ∈Mn,k(y, y), Q ∈Mm+r,k+1(y, y)},

B(r)
n,m,k = {(P,Q)|P ∈Mn+r,k+1(y, y), Q ∈Mm,k(y, y)},

and C(r,i)n,m,k to be the subset of A(r)
n,m,k such that for any (P,Q) ∈ C(r,i)n,m,k, Q = Q1uQ2 with

Q1 ∈Mi,k(y, y) and Q2 ∈Mm+r−i−1,0(y, y) for k 6 i 6 r− 1, where the step u is the last

R-visible up step of Q. Clearly, C(r,i)n,m,k is the empty set if r = 0.

It is easily to see that the weights of the sets A(r)
n,m,k and B(r)

n,m,k are

w(A(r)
n,m,k) = Mn,k(y, y)Mm+r,k+1(y, y),

w(B(r)
n,m,k) = Mn+r,k+1(y, y)Mm,k(y, y).

For 0 6 i < r, the weight of the set
⋃i

k=0 C
(r,i)
n,m,k is Mn+i,0(y, y)Mm+r−i−1,0(y, y). This claim

can be verified by the following argument. For any (P,Q) ∈ C(r,i)n,m,k, we have Q = Q1uQ2

as mentioned above with Q1 ∈ Mi,k(y, y) and Q2 ∈ Mm+r−i−1,0(y, y), then PQ1 ∈
Mn+i,0(y, y) such that the last (i + 1)-th step of PQ1 is at level k. Summing k for
0 6 k 6 i, all PQ1 ∈ Mn+i,0(y, y) contribute the total weight Mn+i,0(y, y) and all Q2 ∈
Mm+r−i−1,0(y, y) contribute the total weight Mm+r−i−1,0(y, y). Hence, w(

⋃i
k=0 C

(r,i)
n,m,k) =

Mn+i,0(y, y)Mm+r−i−1,0(y, y), and then

w(
r−1⋃
i=0

i⋃
k=0

C(r,i)n,m,k) = w(
r−1⋃
k=0

r−1⋃
i=k

C(r,i)n,m,k) =
r−1∑
i=0

Mn+i,0(y, y)Mm+r−i−1,0(y, y) = Hn,m(r).

Let A(r)
n,m =

⋃n+r−1
k=0 A(r)

n,m,k, B(r)
n,m =

⋃m+r−1
k=0 B(r)

n,m,k and C(r)n,m,k =
⋃r−1

i=k C
(r,i)
n,m,k. To

prove (12), it suffices to construct a bijection ϕ between B(r)
n,m

⋃(
A(r)

n,m −
⋃r−1

k=0 C
(r)
n,m,k

)
and Mm+n+r,1(y, y).

For any (P,Q) ∈ B(r)
n,m,k, PQ is exactly an element of Mm+n+r,1(y, y). Note that in

this case, the first R-visible up step of P is still the one of PQ and it is at most the
(n+ r)-th step of PQ.

For any (P,Q) ∈ An,m,k − C(r)n,m,k, find the last R-visible up step u∗ of Q, Q can be
uniquely partitioned into Q = Q1u

∗Q2, where Q1 ∈ Mj,k(y, y) for some j > r, then
PQ1u

∗Q2 forms an element of Mm+n+r,1(y, y). Note that in this case, the last R-visible
up step u∗ of Q is still the one of PQ1u

∗Q2. Moreover, the u∗ step is at least the
(n+ r + 1)-th step of PQ1u

∗Q2.
Conversely, for any path in Mm+n+r,1(y, y), it can be partitioned uniquely into PQ,

where P ∈Mn+r,k(y, y) for some k > 0. If the unique R-visible up step u∗ of PQ is lying in

P , then k > 1 and (P,Q) ∈ B(r)
n,m,k−1; If the u∗ step is lying in Q, PQ can be repartitioned

into P1P2u
∗Q1 with P1 ∈Mn,j(y, y) for some j > 0, then (P1, P2u

∗Q1) ∈ An,m,j − C(r)n,m,j.
Clearly, the above procedure is invertible. Hence, ϕ is indeed a bijection as desired

and (12) is proved.
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Theorem 8. For any integers m,n, p with m > n > 0, there hold

m∑
k=0

per

(
Cn+k,2k Cn+p+k,2k+1

Cm+k,2k Cm+p+k,2k+1

)
= Cm+n+p,1 + Fn,m(p), (13)

m∑
k=0

per

(
Cn+k,2k+1 Cn+p+k+1,2k+2

Cm+k,2k+1 Cm+p+k+1,2k+2

)
= Cm+n+p,1 + Fn,m(p), (14)

where

Fn,m(p) =


∑p−1

i=0 Cn+iCm+p−i−1, if p > 1,
0, if p = 0,

−
∑|p|

i=1Cn−iCm−|p|+i−1, if p 6 −1.

Proof. To prove (13), replacing n,m, r respectively by 2n, 2m, 2p− 1 and setting (y, y) =
(0, 0) in (12), together with the relation Cn,k = M2n−k,k(0, 0) and (7), we have

m∑
k=0

per

(
Cn+k,2k Cn+p+k,2k+1

Cm+k,2k Cm+p+k,2k+1

)

=
m∑
k=0

per

(
M2n,2k(0, 0) M2n+2p−1,2k+1(0, 0)

M2m,2k(0, 0) M2m+2p−1,2k+1(0, 0)

)

=
2m∑
k=0

per

(
M2n,k(0, 0) M2n+2p−1,k+1(0, 0)

M2m,k(0, 0) M2m+2p−1,k+1(0, 0)

)
= M2n+2m+2p−1,1(0, 0) +H2n,2m(2p− 1)

= Cm+n+p,1 + Fn,m(p),

as desired.
Similarly, replacing n,m, r respectively by 2n− 1, 2m− 1, 2p+ 1 and setting (y, y) =

(0, 0) in (12), together with the relation Cn,k = M2n−k,k(0, 0) and (7), one can prove (14),
the details are left to interested readers.

The case p = 0 in (13) and (14), after some routine computation, gives

Corollary 9. For any integers m > n > 1, there hold

Cn+m =
n∑

k=0

(2k + 1)(2k + 2)(4mn− 2(m+ n)k)

(2n)(2n+ 1)(2m)(2m+ 1)

(
2n+ 1

n− k

)(
2m+ 1

m− k

)
,

Cn+m =
n−1∑
k=0

(2k + 2)(2k + 3)(4mn+ 4m+ 4n+ 2(m+ n)k)

(2n)(2n+ 1)(2m)(2m+ 1)

(
2n+ 1

n− k − 1

)(
2m+ 1

m− k − 1

)
.
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Specially, the m = n case produces

C2n =
n−1∑
k=0

(2k + 1)(2k + 2)

n(2n+ 1)

(
2n

n− k − 1

)(
2n+ 1

n− k

)
,

C2n =
n−1∑
k=0

(2k + 2)(2k + 3)

n(2n+ 1)

(
2n

n− k − 1

)(
2n+ 1

n− k − 1

)
.

The cases p = 1 in (13) and p = −1 in (14), replacing n and m in (14) by n + 1 and
m+ 1, after some routine computation, yield

Corollary 10. For any integers m > n > 0, there hold

Cn+m+1 + CnCm =
n∑

k=0

(2k + 1)(2k + 2)ηn,m(k)

(2n+ 1)(2n+ 2)(2m+ 1)(2m+ 2)

(
2n+ 2

n− k

)(
2m+ 2

m− k

)
, (15)

Cn+m+1 − CnCm =
n∑

k=0

(2k + 2)(2k + 3)ρn,m(k)

(2n+ 1)(2n+ 2)(2m+ 1)(2m+ 2)

(
2n+ 2

n− k

)(
2m+ 2

m− k

)
, (16)

where ηn,m(k) = 4mn + 5(m + n) + 2k(m + n + 1) + 4 and ρn,m(k) = 4mn + m + n −
2k(m+ n+ 1). Specially, the m = n case produces

C2n+1 + C2
n =

n∑
k=0

(2k + 1)(2k + 2)

(n+ 1)(2n+ 1)

(
2n+ 1

n− k

)(
2n+ 2

n− k

)
,

C2n+1 − C2
n =

n∑
k=0

(2k + 2)(2k + 3)

(n+ 1)(2n+ 1)

(
2n+ 1

n− k − 1

)(
2n+ 2

n− k

)
.

Subtracting (16) from (15), after some routine simplification, one gets

CnCm =

n∑
k=0

(2k + 2)
(

(2k + 1)(2k + 3)(m+ n+ 1)− (2n+ 1)(2m+ 1)
)

(2n+ 1)(2n+ 2)(2m+ 1)(2m+ 2)

(
2n+ 2

n− k

)(
2m+ 2

m− k

)
,

which, in the case n = m, reduces to Corollary 3.7 in [51].
In the case y = 2 and r = p in (12), together with the relations Bn,k = Mn,k(2, 2) and

Bn,0 = Cn+1, similar to the proof of (13), we obtain a result on Shapiro’s Catalan triangle.

Theorem 11. For any integers m,n, p with m > n > 0, there holds

m∑
k=0

per

(
Bn,k Bn+p,k+1

Bm,k Bm+p,k+1

)
= Bm+n+p,1 + Fn+1,m+1(p). (17)

The case p = 0 in (17), after some routine computation, generates
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Corollary 12. For any integers m > n > 0, there holds

2

n+m+ 1

(
2n+ 2m+ 2

n+m− 1

)
=

n∑
k=0

(2k + 2)(2k + 4)νn,k(m)

(2n+ 2)2(2m+ 2)2

(
2n+ 3

n− k

)(
2m+ 3

m− k

)
,

where νn,k(m) = 2mn+ 3m+ 3n− 6k − 2k2. Specially, the m = n case produces

1

2n+ 1

(
4n+ 2

2n− 1

)
=

n−1∑
k=0

(k + 1)(k + 2)

(n+ 1)2

(
2n+ 2

n− k − 1

)(
2n+ 2

n− k

)
.
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