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Abstract 

The problem of proving a particular binomial identity is taken as an opportunity to discuss 
various aspects of this field and to discuss various proof techniques in an exemplary way. In 
particular, the unifying role of the hypergeometric nature of binomial identities is underlined. 
This aspect is also basic for combinatorial models and techniques, developed during the last 
decade, and for the recent algorithmic proof procedures. 

"Much of mathematics comes from looking at very simple examples from a more general 
perspective. Hypergeometric functions are a good example of this." 

R. Askey 

1. Introduction 

In this article I want to highlight some aspects of 'binomial identities' or 
'combinatorial sums' in an exemplary way. Writing such an article was motivated 

by a question that I was asked in spring 1992, and by my subsequent investigations 
on it: 

Can you show that the binomial identity 

\kJ \ kk/= 
n 

holds for all nonnegative integers n? 

I had not seen this identity before, and was attracted by the amazing way in 

which it relates the famous Apbry numbers a,=Y~k(~,)2("~k) ~ with the sums of cubes 

of the binomial coefficients f =~,(~,)3. Recall that Ap&y's original proof of the 

irrationality of ((3) made crucial use of the fact that the numbers (a.).~>o satisfy 

*E-mail: strehl(~ informatik.uni-erlangen.de 

0012-365X/94/$07.00 © 1994--Elsevier Science B.V. All rights reserved 
SSDI 0012-365X(94)001 18-3 



310 V. Strehl/ Discrete Mathematics 136 (1994) 309-346 

a linear second-order  recurrence with polynomial  coefficients: 

(n+  1 ) 3 a , + l - ( ( n +  1 ) 3 + n 3 + 4 ( 2 n +  1 ) 3 ) a . + n 3 a , - i  = 0  (n~>0). (2) 

I refer the reader to van der Poor ten 's  [55] entertaining and highly instructive 

presentat ion of Ap&y's  proofs and the history(ies) a round  it. In particular, note that 

even for a clever mathematician it may  be a hard task to verify (2), as can be seen from 

the following quota t ion  [55, p. 200]: 

" . . . T o  convince ourselves of the validity of  Ap&y's  p roof  we need only 

complete the following exercise: 
ln~2gn+k'~ 2 Let a,=Lk~kJ  ~ k ~, then a 0 = l ,  al 5 and the sequence {a.} satisfies the 

recurrence (2). (3) 

... Neither  Cohen nor  I had been able to prove this in the intervening two 

months  ... " 

So that  the task of finding 1 such a recurrence may  be considered even harder  (but see 

Section 2.3 below). 
As to the numbers  f.=Y~k(~,) 3, recall that  Franel has found a second-order  recur- 

rence long ago [26,40, 10]: 

(n+ 1 ) 2 f . + l - ( 7 n 2 + 7 n + 2 ) f . - 8 n 2 f , _ l  = 0  (n>~0). (4) 

For  this reason, I will call these numbers  Franel numbers in this article. 
Only  after while I learned that problem (1) originated from a question that the 

number- theoris t  Schmidt from Copenhagen  had asked: 

"Define rational numbers  (Ck)k>~O, independent of n, by 

Is it then true that all these numbers  Ck are integers?" 

Note  that the sequence (c~)k~o is uniquely determined by (5), but  all one can see 

directly from their definition is the fact that  the numbers  (~k)ck(k>~O) are integers. 
Quest ion (5) had been investigated by Deuber, Thumser,  and Voigt from Bielefeld, 

who extracted (1) as a conjecture from numerical calculations. Thus (1) is much more 
than an arbi t rary binomial identity, it is a statement of number-theoret ical  interest, 

claiming not  only that the inverse of the sequence of Ap~ry numbers  under Legendre 
transform (in the sense of Schmidt, see [45-47]  is an integer sequence, but that  this is 

precisely the sequence of  Franel numbers. (The naming is due to the fact that  the 

t For cleverly guessing a recurrence on the basis of the first few values of the sequence and similar tasks, 
there is a package called gfun of procedures available in the Maple share library, accessible via anonymous 
ftp at daisy.uwaterloo.ca or neptune.inf.ethz.ch. It is due to Salvy and Zimmerman [44] and contains a nice 
set of tools for the combinatorialist working with sequences of numbers and their recurrences, the 
corresponding generating functions and the differential equations they satisfy. 
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numbers (~,)(,~k) are the coefficients of the Legendre polynomials, see Section 3.1 
below.) The fact that both sequences, satisfying linear second-order recurrences of the 
same type, are related via this transform is an interesting result by itself, and this 
aspect is pursued in more detail in Sections 3.6, 4.3, and [52]. 

The present article gives a report on some of my investigations concerning identity 
(1) and the original question (5). Indeed, in Section 3 I offer six different proofs of (1), 
thus illustrating the many facets that such a simple (?) binomial identity can have. 
Even ifI  think that the beauty of( l )meri ts  an investigation per se, I will take it here as 
an exemplary case. Each of the proofs and proof techniques of Section 3 bears its own 
potential for variation and generalization - -  some of the possibilities are outlined in 
Section 4. 

The reader will notice that three aspects are of main interest: the hypergeometric 
nature of binomial identities, the combinatorial models involved, and the recent 
availability of algorithmic tools for verifying automatically such identities. In the next 
section I will comment on each of these, first in a completely informal way, then by 
discussing specific examples. In particular, the very classic Pfaff-Saalsschfitz identity, 
which is used in one of the proofs of(l), will be considered under these various aspects. 
It is clear that in this article I cannot give a detailed treatment of any of these aspects 
in general, as they deserve. But I hope that the reader will get an idea of what is going 
on, and there are enough references given for further study. 

2. Binomial identities 

2.1. Generalities 

Binomial summations, or 'combinatorial sums', their evaluations and identities 
involving them, 'binomial identities', for short, occur in many parts of mathematics, 
e.g. combinatorics, probability, number theory, analysis of algorithms, etc. Con- 
ceptually they are of a very simple nature, yet, if they occur 'in practice' they 
can pose considerable technical problems - -  quotation (3) is but one witness of 
that. The ubiquity of binomial coefficients has resulted in a vast body of literature 
devoted to those identities. Apart from the many ad-hoc approaches and straight- 
forward, but often tedious, direct manipulations there are established techniques 
for dealing with them: generating functions, inverse relations, integral representa- 
tions, etc., see 1"42, 36, 11, 33] as 'classics' in the field, and [-31] for a comprehensive 
collection. 

One particular feature of binomial identities is the fact that they are very often 
rediscovered in equivalent form. The reason for this is nicely described by Greene and 
Knuth [34, p. 6]: 

"One particularly confusing aspect of binomial identities is the ease with which 
a familiar formula can be rendered unrecognizable by a few transformations. 
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Because of their chameleon character there is no substitute for practice of 
manipulations with binomial coefficients. . ." 

and Riordan pessimistically states in [42, p. vii] that 

" . . . identi t ies  are both inexhaustible and unpredictale; the age-old dream of 
putting order in this chaos is doomed to failure." 

It is also instructive to re-read the introduction of [31], in particular in the light of the 
recent development of algorithmic methods, as mentioned below. 

To give an informal definition, a binomial sum is an expression Y, kF(n, k), where 
F(n,k) is a product of (positive and negative) powers of binomial coefficients, with 
numerator  and denominator  terms of these binomials involving n and k, and possibly 
other parameters. 2 Occasionally F(n, k) will also contain a (simple) rational function 
of n and k and an argument z k as factors. The summation usually runs over a 'natural '  
domain, i.e. a finite interval of the integers, depending on the parameter n, such that 
F(n,k) vanishes outside this interval. This means that most often the range of 
summation need not be specified explicitly. Usually one considers LF(n ,k )  as 
a function of n, where n is supposed to vary over the nonnegative integers. 

Given such an F(n, k),  one may ask 

• whetherf(n)=~.k F(n, k) has an evaluation in 'closed form', which roughly means 
that it can be written as a product of powers of binomials involving only n (and 
possibly the other parameters), together with a rational (in n) function as factor; or 

• (if a closed form evaluation does not exist), what else can be said about  f(n) as 
a function of n - -  exactly or asymptotically; 

• whether there are similar G(n,k), with specified properties perhaps, such that 
~kF(n,k)=~kG(n,k ) for all n~>O. 

Or, similar to the problem (1), we may have F(n, k) and G(n, k) given, and ask 
• whether ~,kF(n, k)= ~k G(n, k)(n >/0), and how this can be proved if equality has 

been checked for some initial values, even if we know that both sides are not evaluable 
in closed form. 

Similar questions can be asked, for multiple sums, of course. 

2.1.1. Hypergeometric aspects 
It is a fundamental observation that binomial sums can, as a rule, be written as 

terminating hypergeometric series. Hence, 'closed form' evaluations of binomial sums 
will most likely correspond to the classical evaluations known for hypergeometric 
series, and identities Y~k F(n, k) = Y~k G(n, k) involving binomials will most likely corres- 
pond to terminating cases of the classical transformation formulas known for these 
series see e.g. [3, 17, 41, 33]. 

2 It s h o u l d  be r e m a r k e d  t ha t  in the  cases  of  interest  for  us these t e rms  a re  a l w a y s  o f  the fo rm a .  n + b .  k + c, 

where  a a n d  b are  fixed integers, a n d  c is a (complex)  p a r a m e t e r  - -  this res t r ic t ion  leads  to the concep t  of  

a proper hypergeometric term m e n t i o n e d  in Sect ion  2.2.3 below.  
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Although one can occasionally find references to the hypergeometric literature in 
older papers, the combinatorial literature in general does barely reflect this system- 
atical point of view, which was perhaps first clearly spelled out by Andrews in [1], and 
vividly propagated by Askey in his talks. For example, hypergeometrics is almost 
nonexistent in [42, 31, etc.]. A nice, pedagogical article on the hypergeometric aspect 
of binomial identities was published by Roy in [43], and it is interesting to observe the 
transition from Knuth's [36] (where hypergeometrics is nonexistent) over 
Greene-Knuth 's  [34] (where it plays a marginal role) to the recent book [33] by 
Graham-Knuth -Pa tashn ik  (where it now occupies a prominent position). 

Apart from the fact that many results from the literature on special functions 
contain binomial identities as special cases, the main virtue of the hypergeometric 
approach lies in its normalizing character--rewriting binomial sums as hypergeomet- 
ric series establishes indeed a kind of normal form - -  up to standard transformations. 
Many results from the literature, proved by various ad-hoc methods, turn out to be 
equivalent when looked at from the hypergeometric point of view, even if they look 
very dissimilar at the surface - -  this is especially true for the many binomial 
incarnations of the Chu-Vandermonde identity, which all turn out to be conse- 
quences of Gauss evaluation of a 2Fl-series with unit argument in the terminating 
case. 3 But this applies also to the cryptomorphic versions of the Pfaff-Saaisch/itz 
identity, which for the hypergeometer is just the evaluation of a terminating 1- 
balanced 3F/-series with unit argument - -  a case which will be used for illustrative 
purposes in Section 2.2. 

There are many more instances of equivalent evaluations and binomial identities 
reflecting standard hypergeometric transforms, and a hypergeometer might be 
tempted to recompile and rewrite Gould's otherwise admirable and useful collection 
under this more systematic point of view. As to the classical, Riordan-style inversion 
techniques and their relation to hypergeometrics, I would like to draw attention to the 
forthcoming work of Chu [8]. 

2.1.2. Combinatorial models 

Economic and efficient as the hypergeometric approach is, there is surely more to 
binomial identities than just scholarly application of these 'formal' techniques and tools. 
In many cases binomial sums arise in a 'natural' situation of counting, and binomial 
sums should reflect, on a numerical level, two ways of counting the same set of objects, 
possibly with the help of clever encodings of objects and bijections. So, even if 
a binomial identity is 'known' by being a special case of some hypergeometric identity or 
transformation, it is legitimate to ask for combinatorial proofs and interpretations. The 
result might not only illuminate the situation, but also lead to variations and generaliz- 
ations (e.g. q-analogs) which are not easily 'seen' from hypergeometric work. 

3 For example, in [36] there are five versions, Eqs. (21)-(26) in Section 1.2.6, of Chu-Vandermonde without 
comment, in [33] (almost) the same table is reproduced with explicit reference to Chu and Vandermonde's 
convolution. 
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The usual combinatorial interpretation of binomial coefficients by counting sub- 
sets, or equivalently lattice path in a rectangular grid, or words over an alphabet with 
specified frequencies of letters, is at the basis of many of the interpretations from 
binomial sums and identities, especially the easier ones. To illustrate the benefit of 
combinatorics at this point, the more sophisticated model of the free partially 
commutative monoid, introduced by Cartier and Foata in [7] in order to provide 
a combinatorial approach to MacMahon's 'master theorem', hence to many of the 
known and not so known binomial identities, has not only led to new combinatorial 
results, but also helped to create a concept which was taken up much later by 
computer scientists in order to study models of concurrency (under the name of traces 
and trace languages). In combinatorics, the same concept is used in a very suggestive, 
pictorial way by Viennot [58] and his school under the naming empilements or heaps 
of pieces - -  for counting purposes which are, at times, very far from binomial 
identities - -  see [58] for the basics. 

From recent studies of combinatorial interpretations and properties of classical (i.e. 
hypergeometrical) orthogonal polynomials, it has become clear that an interpretation 
a bit more general than the 'number-of-subsets' model is more flexible: counting of 
injective functions, where additional parameters can often be interpreted by cycle 
counting, see Section 2.2.2 below. Besides flexibility, there is another advantage: the 
combinatorial models thus obtained can be integrated into a general class of models, 
namely (multisorted) functions with a specified local structure. Confronting the local 
and the global description of such structures, and counting them accordingly in two 
different ways, leads to insight into and extension of many of the identities and 
generating functions existing as 'formal' results in the literature on special functions - -  
beyond the class of identities considered here. As a (partial) explanation, a combina- 
torial view of multivariate Lagrange inversion (in the style of Gessel [27]) is the 
basic, unifying concept, but enriched with the feature of cycle counting. See Section 
2.2.2 for a brief illustration, [51] for a compact survey, and [50] for a comprehensive 
treatment. 

2.1.3. Automatic verification 
Recent theoretical and algorithmical progress in hypergeometric summation leads 

to a totally new aspect of the field of binomial identities. Recall that there is an 
algorithm, a decision procedure, due to Gosper Jr. [30, 33, Section 5.7], which - -  in 
a sense - -  settles the problem of indefinite hypergeometric summation. Its direct 
application to definite hypergeometric sums, including binomial sums, has limited 
success, however. Most definite sums which have evaluations in 'closed form' do not 
correspond to indefinitely summable hypergeometric terms. So it comes as a surprise 
that Gosper's method can be used systematically and efficiently for problems of 
definite hypergeometric summation in a less direct way. 

It follows from the theory of holonomic systems, as put into action for our purposes 
by Zeilberger in the fundamental article [63], that (under certain restrictions, which 
are satisfied for the binomial sums we consider) a hypergeometric summation 
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f ( n ) = L F ( n , k  ) is P-recursive or holonomic as a function of n, i.e. it satisfies a linear 
recurrence with polynomial  coefficients - -  (2) and (4) are typical examples with 

recurrences of second order. If the recurrence is first-order, then an evaluation in 
'closed form'  is possible. 

Fortunately,  in the case of interest to us, i.e. when the terms F(n,k) are proper- 
hypergeometric in the sense of [60, 59], as mentioned above, then a constructive proof  

of  the existence of such a recurrence f o r f ( n ) =  Y.k F(n, k)i.e, a difference opera tor  with 
polynomial  coefficients in n, annhilat ing the sum as a function of  n, can be given. It 

provides bounds  on the order of  the recurrence and the degrees of the polynomial  
coefficients of F(n,k), so that the recurrence can be obtained by the method of  

undetermined coefficients. Such a proof  is possible even for multiple binomial sums, as 

elaborated by Wilf and Zeilberger, see [60] for a short  presentation of  the concepts 
and the result, [59] for a comprehensive treatment,  and we shall make use of the 
corresponding algori thm in Section 3.6 below. In the case of  a single summat ion  such 

a p roof  has (apparently) first been given by Verbaeten in this work on 'Sister Celine's 
technique',  which unfortunately seems to have been over looked until recently ([56], 

[57], see [35] for a revival). 

Note the way in which holonomicity is crucial for an algorithmic approach:  the 

sequence (f(n)),~>o of values of a binomial sum is specified by the (minimal) polynomial 
recursion it satisfies together with an appropriate number  of initial values. Thus closed 

form evaluations Y'kF(n,k)=9(n) (n>~O) and binomial identities of the type 

Y.k F(n, k)=~k G(n, k) (n ~>0) can be proved by determining the (minimal) polynomial 
recurrences (or annihilating difference operators) which both sides satisfy - -  which must 

be of first order in the former case. An essential aspect of this approach is the existence of 

certificates, i.e. a rational function in n, k, associated to F(n, k), which permits an easy 
(possibly tedious, if done by hand) verification by rational arithmetic of  the fact that 

Zk F(n, k) indeed satisfies the recurrence found - -  remember the quotat ion (3), this is not 
trivial! What  this means and how it works will be indicated in Section 2.2.3. 

To come back to the beginning of this section, it was a brilliant observat ion by 

Zeilberger that in the case of single hypergeometric  sums Gosper ' s  method can be 

employed in a way which he calls creative telescoping, a term which goes back to van 
der Poor ten ' s  article [55, pp. 200, 201], where he mentions that Zagier confirmed (2) 

with irritating speed by virtue of the method of creative telescopin9. Holonomic i ty  and 

Gosper ' s  a lgori thm together give a quite efficient proof  and verification method for 
single hypergeometric/binornial  sums, see e.g. [62,65]. Various implementations,  4 
also for the q-analogue, are available. 

4 Zeilberger provides Maple implementations for single sums, see [64], as well as for multiple sums (and 
integrals) with the general method described in [59], call zeilberg(a euclid.math.temple.edu; Koornwinder 
has a Maple implementation of the ordinary and q-case for single summations, carefully described in [37], 
call thkCa fwi.uva.nl; Hornegger has a very flexible implementation for single sums for the Axiom-system, 
together with related algorithms for hypergeometric sums, all documented in [35], call hornegge(a infor- 
matik.uni-erlangen.de; Paule provides a Mathematica implementation, call ppaule(a risc.uni-linz.ac.at, and 
there may be less well documented programs around. 
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It may seem, especially when looking at the numerous stunningly short articles 
published by Zeilberger's electronic servant ([12-16] and many more), that the 
availability of these powerful algorithmic methods in a sense trivializes the subject. 
This is expressed in the following quotation of Cartier, concluding his very instructive 
survey [6] of Zeilberger's work: 

" . . .  Toutes les relations mentionn6s ci-dessus, y compris l'extra-ordinaire r6cur- 
rence d'Ap6ry, sont retrouv6es de mani6re syst6matique et automatique, et ron  
dispose d'un outil qui permet de d6couvrir et de d6montrer des identit6s d'un 
certain type. Le jour est sans doute proche off les formulaires classiques sur les 
fonctions sp6ciales seront remplac6es par un logiciel d'interrogation perform- 
ant, une extension de Maple par exemple." 

But even if, from this point of view, a collection like [31] has become obsolete, there 
is room and need for other proofs, especially of combinatorial nature, because the 
computer-made verifications, for all but very small cases, seem to be highly nonin- 
structive, they apparently contain information indigestible for humans - -  as can be 
seen from the example Section A.2, and they 'only' confirm the truth of a certain 
statement. 

2.2. Examples 

2.2.1. Hypergeometric aspects 
By definition, a series y, ,c,  is hypergeometric if the ratio Ck+I/C, is a rational 

function of k (over a suitable field). This abstract definition can be made concrete if we 
imagine a complete factorization of the numerator and denominator polynomials, so 
that up to a suitable normalization one can write 

ck+l (al+k)...(ap+k)'z 
C k (bl+k)...(bq+k)'(k+l) 

for specific field elements al . . . . .  ap, the numerator parameters, bl . . . . .  bq, the denomin- 
ator parameters, and the factor z. Apart from a constant factor, ~k>~oCk can thus be 
written as 

pF~[~,  ' .... ap. 1 E (a')k'''(a~)k zk -7 ' ~  " - -  

,b~' ]" k~o(bl)k ..(bq)k k!' 

where the (~)k are the shifted factorials, defined by 

(~)0= 1, (~)k+l=(ct+k)'(~)k (k>~O). 

Another way of writing this is 

r(~ + k) 
( ~ ) k  - - -  

r(~) 

(6) 
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or, to point  out  the connect ion with binomial  coefficients right away, 

Eq. (6) is the classical generalized hypergeometr ic  series from the theory of  special 

functions. The appearance of  the F-funct ion indicates that some care has to be taken if 

we want  to consider (6) as an analytical object. These problems are well unders tood 
and are treated in the s tandard literature, e.g. in [41]. Here we are only interested in 

the formal properties of  these series, and usually we will be concerned with the case 

where (6) terminates after a finite number  of  terms because one of  the numera tor  

parameters  is a nonposit ive integer, al  = - n ,  say. 
As a first illustration, note that  the Franel number s f ,  and Ap6ry numbers  a, from 

the introduct ion can be written as 

f"=~(~)3----'z(--n)k(--n)'(--n'k',=o , ~ (-- 1)' 

----" 3F2 1, 1 ' ' 

'~ fn'~2(n k)2=~'~(--n)k(--n)k(n+l)k(n+l)k 
an-~k~=O ~k) +k ~, k'k'k,k! 

[-n,-n,n+ l,n+ l. lJ 
= 4F3 1, 1, 1 ' " 

F r o m  the classical repertoire of hypergeometric  evaluations and transformations,  
see e.g. [3, 17,41,33"1, I will ment ion only a few of the simplest ones. As already 

indicated, many  binomial identities of  varying appearance,  such as s 

k n - k /  \ n } (7) 

and 

=t r+,/' 
are in fact instances of the C h u - V a n d e r m o n d e  convolut ion 

~ (a)k(b),,-k (a+b),, 
k = o k ! ( n - k ) !  n! " 

which, written as a hypergeometr ic  sum, is 

[-n,a .1 ] (a+b),, E-:,a ] (c-a,,, 
2F1 1 - b - n '  - (b). or  2F1 ; 1 -- (c). 

(8) 

(9) 

(10) 

s Assume n a nonnegative integer in (7) and n, r nonnegative integers in (8). 
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Note that (9) simply follows from the binomial theorem, applied to both sides of 
(1--Z)-~a+b)=(1--Z)-"(1--Z) -b, and that (10) is an instance of Gauss' celebrated 

2vi[a'cb; 1]_ F(c)F(c-a-b) 
J F(c-a)F(c--b)" 

In Section 3.4 below we will use the specializations 

, , , ,  

and 

, ,2, 

of (7) and (8), respectively. 
Typical examples of hypergeometric transformations are Pfaff's 

which includes (10) for z =  1, and Pfaff's 

z t  / c  z_ll 
which, when applied twice, gives Euler's 

Writing this as 

and comparing coefficients after expanding gives 

-n,a,b • 1]- (c-a)"(c-b)", (17) 
3F2 c,l+a+b-c-n' J (c).(c-a-b). 

which is the Pfaff-Saalschfitz identity. Again, this result appears in the literature on 
binomial identities in many disguises. 

As an illustration, let us take a look at a short note published by Sz~kely [53] not 
too long ago. He gives a combinatorial proof, by establishing a bijection between two 
sets of words with specific properties, of the following binomial identity: 

(a+c+d+e~(b+c+d+e~ v(a+b+c+d+e-k~ +d~fb+c~, 
a+c )k  c+e j=z.~ \ a+b+c+d  i(~ +c I +dJ\k (18) 
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which, by specialization of the five parameters, contains various identities to be found 
in the literature. They are attributed to Le Jen Shoo [31, Eq. (6.32)], Surfiny 
[31, Eq. (6.19)], Bizley [-31, Eq. (6.42)], Nanjudiah [31, Eq. (6.17)], Stanley [31, 
Eq. (6.52)], Gould [31, Eq. (6.51)], and Takfics [54]. 

But, not only are all these specializations instances of the Pfaff-Saalschfitz identity, 
the same is true for (18) itself(see [66] for similar remarks and a q-analogue). To check 
this, replace k by e -k  in the summation on the r.h.s, of (18), then 

k J \ e - k+dJ \e - k+cJ  

(a+d)!(b+c)! ~',(a+b+c+d+ 1)d-e-d)a(-e-c)a 
(a-e)!(b-e)!(e+d)!(e+c)! ~ k!(a-e+ 1)k(b--e+ 1)a 

k 

(a+d),(b+c), [a+b+c+d+ l, - e -d ,  - e - c .  1 ] 
=(a-e)!(b-e)!(e+d)!(e+c)[ 3F2 a - e + l , b - e + l  ' 

(a+d)!(b+c)[ (b+c+l)~+a(a+c+l)~+ a 
(a-e)!(b-e)!(e + d)!(e + c)! (a-e+ 1)~+a(b-e+ 1)~+a 

a+c } c+ 

One of the variants, obtained by simultaneously substituting 

a*--a-m, b*-b-n, c*--n, d*-m, e*-O, 

is "Stanley's identity" 

~ ( m a k ) ( n  b-kj\~(a+b+k~-(a+n~(b+m)k / - \  m / \  n (19) 

for nonnegative integers m, n. This equivalent of the Pfaff-Saalschfitz identity can be 
obtained from comparing coefficients in 

(I +x)a(I +Y)b __Y,(a+n~(b+m)xmY"" (20) 
(1--xy)a+"+b=m.,\ m / \  n 

This generating function was obtained by Gessel and Stanton [28] in an elegant way 
as a constant-term identity for two-variable Laurent series - -  an approach inspired by 
multivariate Lagrange inversion technique. In the next section I will give a short 
combinatorial proof of (20), hence of (19) and (17). 

2.2.2. Combinatorial models 
The following observation is the basis of one way of combinatorially interpreting 

hypergeometric series: 

Let a, b be nonnegative integers, ~ a variable. Then the shifted factorial (~, + b)a is the 
generating polynomial with respect to cycle counting for the family of injective 
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mappings f:A--*AwB, where A,B are disjoint sets with cardinalities ~A=a,  
#B=b, i.e. 

(7 + b), = ~ {TeYc(f); f: A--*AwB, f injective}, 

where cyc(f) denotes the number of cycles (within A) o f f  

This concept, which gives a combinatorial meaning to the building blocks of hyper- 
geometric series, generalizes simultaneously the usual counting of subsets by binomial 
coefficients (7= 1) and the cycle enumeration for permutations (b=0, which leads to 
the Stirling numbers of the first kind). It was introduced as a tool by Foata and myself 
in [25] in a combinatorial study of Laguerre polynomials, where it was used to obtain 
a combinatorial proof of the 'bilinear' generating function for these polynomials, the 
Hille-Hardy identity, and it opened the way to multivariate extensions from a combi- 
natorial perspective. Just for illustration, note that the classical Laguerre polynomial 
L~)(x) can be defined as 

[ - - n  1=-(1 v"  ( - - n ) k x k l q - ~ ; - - - ~ , k - .  n!' L?i(x)= (1 + ~z),, iF1 x + ~)" 2-~ ( ]m ~__ ~7 
k~O 

= k (1 +~+k)~_k(--x) k= {(1 +~)~Y~fl(--x)*"; (A, B,f)}, 

where the latter sum runs over all triples (A,B,f), called Laguerre configurations, 
where (A, B) is an ordered bipartition of {1, 2 . . . . .  n} and f :  A ~ A u B  is an injective 
mapping, as above. Note that the classical generating function 

L~ ~ (x) t" = (1 - t)- 1 - • e - xtf~l + x) 
n~>0 

is an immediate consequence of the combinatorial picture, seen with the concepts of 
[18] or any other equivalent, by counting cyclic and linear components of these 
injective functions separately. 

By the same approach, the Jacobi polynomials 

k=O 

can be understood as generating polynomials for quadruples (A, B; f, 9), where A, B 
are disjoint finite sets and f :A~AwB,  9:B--*AwB are injective functions, with 
appropriate weights put on the cycles of f and 9, and the points of A and B, 
respectively. These structures, called Jacobi configurations, can be seen as endofunc- 
tions of two-sorted (two-colored) sets, with the (local) restriction that the preimage of 
each point contains at most one point of each color. Hence Jacobi configurations are, 
in a sense, permutations of (ordered) binary trees, and if this idea is made precise, it 
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leads to a short and most elegant proof  for Jacobi's classical generating function for 
his polynomials. This approach - -  a gem in combinatorial enumeration - -  is due to 
Foata  and Leroux [24], and it provides more insight than the traditional 'formal'  or 
'analytical'  proofs. 6 

Observe that the success of the Foa ta -Le roux  approach comes from the fact that 
one simultaneously has a local and a global view of the same class of structures, and 
does counting accordingly. This technique and the underlying ideas have been used 
and expanded in many studies on combinatorial properties of classical orthogonal 
polynomials and related functions of hypergeometric type, see [22] for an early survey 
and [50] for a systematic treatment. 

Even though the model of Jacobi configurations is an elegant and most efficient 
one, it is not the best one in all situations where Jacobi polynomials are involved. 
There is a second classical presentation of the Jacobi polynomials, namely 

[ - n , l  +ct+fl+n. l - x  1 n!'P~."P)(x)=(1 +ct),, 2El 1 + ~  ' 2 

n X--1 k 
= k (l+~t+fl+n)k(l+ct+k),-k . (22) 

AS a side remark, both presentations (21) and (22) are related via a reversal of 
summation and an application of Pfaff's transformation (13). The reader may imagine 
a combinatorial interpretation of (22), similar to the one described for (21), and this is 
in fact the starting point for a combinatorial approach to the initial problem (1) and 
a generalization, see Sections 3.1, 3.2, and 4.1. The combinatorial meaning of this 
relation between the two different views of the Jacobi polynomials is fully described 
in [50]. 

As to the Pfaff-Saalschfitz identity and its variations (including q-analogues) and 
specializations, there are several combinatorial proofs in the literature, see e.g. 
[7,2,32]. In particular, a proof  by Foata  [21], which was later q-generalized by 
Zeilberger in [61], uses precisely this cycle-counting approach for injective functions, 
as described above. I will not reproduce it here, instead I will outline a short proof  of 
(20), hence of (19), also by means of enumerating injective functions. This proof  is not 
an ad hoc construction. Even if this may not be evident at first sight, it represents, in 
a very simple situation, the general local vs. global counting technique for endo- 
functions as presented systematically in [50]. 

We start with the following situation: let A, B, M, N be mutually disjoint finite sets 
with respective cardinalities ~ A = a, 4~ B = b, ~ M = m, ~ N = n. We consider pairs 
(f, g) of injective functions 

f : M ~ A w N ,  g : N ~ B w M .  

6 It is not the shortest proof, however - -  that proof comes from an application of Zeilberger's algorithm, see 
[39], but is void of any specific 'insight'. 
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The number of injections f of that kind is precisely 

( a + n ) ( a + n - 1 ) . . . ( a + n - m +  l ) = ( a + n - m +  1)m=(a~n)'m! 

and similarly for the 9's, so that 

m,n>~O ~ m 

is the exponential generating functions for pairs (f, 9) of injections as defined. A and 
B are fixed, M and N vary, and we associate the variable x (resp. y) with the points of 
M (resp. N). 

Now look at the situation in terms of connected components. There are three types: 
• f-9-cycles, i.e. (oriented) cycles of even length, with M-points and N-points 

alternating; 
• f-9-chains, with M-points and N-points alternating, ending with a point of 

M (resp. N) which is mapped by f (resp. 9) into A (resp. B) let us call them 
~-structures (resp. q-structures) and denote by ¢(x, y) (resp. r/(x, y)) the corresponding 
exponential generating functions. 

The exponential generating function for the cyclic components is clearly given by 

1 

1 - x y  

because M- and N-points come in pairs, and it is also clear from the combinatorial 
picture that ~(x, y) and r/(x, y) are related by the system 

~(x, y) =x ' (1  + q(x, y)), 

which shows that 7 

q(x,y)=y'(l+~(x,y)) 

l + x  l + y  
1 + ~(x,y) = 1 --xy' 1 + r/(x, y) = 1 --xy 

Putting these informations together, we find the exponential generating function for 
pairs of injections to be 

1 (1 + x)a(1 +y)b 
x---~ (1 + {(x, y))*A(1 + q(X, y))~-n _ 

1 (1 ~ x y ~  1 + a + b  ' 

as desired. 
A similar combinatorial proof (working with ordinary instead of exponential 

generating functions) and a multivariate extension of the result (i.e. identity (20)) was 

7 This result can be obtained directly from the combinatorics, without using the implicit system, but in 
more complicated situations one does not have an explicit solution at hand and thus has to work with the 
system. 
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given by Gessel and Sturtevant [29], and independently by Constantineau [9]. In 
[-50] the proof of this multivariate analogue comes out as a specialization of a very 
general approach, which includes all the series expansions given 'formally' by Carlitz 
in [-5] - -  of which (20) is the simplest case. 

2.2.3. Automatic verification 
In this section I will give a short look at Zeilberger's method of proving and 

verifying hypergeometric identities. In order to outline the basic ideas, let us consider 
once again the Pfaff-Saalschiitz identity in its original hypergeometric version (17). 
Put 

( - n)k (a)k (b)k 
F(n'k):=(c)k(1 + a + b - c - n ) k k ! '  G(n,k):= - (a+k)(b+k)F(n ,k) .  (23) 

N o t e  that the following identity, after dividing both sides by F(n, k), 

(c +n)(c- -a- -b+n)F(n+ 1, k ) - - (c -a+n)(c- -b+n)F(n ,k)  

= G ( n , k ) - G ( n , k - 1 ) ,  (24) 

is in fact an identity between rational functions, since F(n+l,k) /F(n,k)  and 
F(n, k -  1)/F(n, k) are rational functions of n and k. Hence (24) can be easily verified by 
any computer algebra system. 

Using operator notation, with N denoting the shift in n, i.e. Nf(n)  =f(n + 1), writing 
S(n, N) = (c + n)(c-- a -  b + n) N -  (c - a + n)(c - b + n) for the linear difference operator 
with polynomial coefficients (in n) on the l.h.s of (24), we get by summation over k, 
telescoping and taking care of the boundary conditions: 

S(n, N) ~ F(n, k) = ~, S(n, N)F(n, k)= ~ G(n, k ) -  G(n, k -  1)) =- O, 
k k k 

i.e. S(n, N) is an annihilating difference operator for the l.h.s, of the Pfaff-Saalschiitz 
identity. A proof of the Pfaff-Saalschfitz identity now follows from the simple 
observation that 

S, . , ( c -  a).(c- b). 
[n, l~ ) 7 - ~ - - - 7 2 C = U ,  

tO,~c--a--o)n 
(2s) 

i.e. both sides of the Pfaff-Saalschiitz identity satisfy the same first-order recurrence, 
with the same initial values - -  hence (17) holds. 

To summarize, once the difference operator S(n,N) and the certifying function 
z(n, k)= - ( a  + k)(b + k) are presented, the verification of (24) and (25), hence the proof 
of (17), can be routinely performed by any computer algebra system (or by tedious 
hand calculation). The essential point is, thus, finding or constructing the data S(n, N) 
and z(n, k), which encode all the relevant information in finite form. 
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As indicated in Section 2.1.3, the following holds: for 'proper' hypergeometric input, 
i.e. if F(n, k) can be written in factorial notation as 

F(n,k)= 1-Ii(ainkbikbci)!  p(n,k)x  k, 
[I t(ujn + vtk + w~)! 

where the ai, bi, u t, vj are integers, the c~, wj are parameters, and p(n, k) is a polynomial 
in n and k, it can be shown that there exists a linear difference operator 

S(n,N)=sr(n)Nr + s , - l ( n ) N ' - l  + ... +sl(n)N+so(n) 

with polynomial coefficients st(n), and a rational function z(n, k), such that 

S(n, N)F(n, k)=z(n, k)F(n, k ) - z (n ,  k -  1)F(n, k-- 1) 

and hence S(n, N) (Y,k F(n, k))= 0, as above. A similar assertion holds in the multisum 
case. Bounds for the order r o$ S(n, N) and the degrees of the polynomial coefficients 
st(n ), in terms of the data entering into F(n, k), can be effectively obtained. This allows 
for a determination of S(n,N) and the certificate z(n,k) by the method of undeter- 
mined coefficients. 

In the case of single sums, one can apply Gosper's algorithms to 

[s,N" + s~_ 1N' -  1 + ... + sl N + So] F(n, k) 

with indeterminates sj, but fixed order r, and a hypergeometric term F(n,k), the 
whole taken as a hypergeometric term in k, and decide whether there exists an 
indefinite hypergeometric sum w.r.t, k, a function G(n,k), say. If such a solution 
exists, it is a rational multiple of F(n,k), i.e. G(n,k)=z(n,k)'F(n,k).  The Gosper 
procedure provides us with the rational function z(n,k), the certificate, and will 
even solve for the st's, i.e. find polynomials sj(n) if the proposed order r is sufficiently 
high. 

As a specimen, I include the output from the Zeilberger algorithm verifying the 
Pfaff-Saalschfitz identity, taken directly from a program (written by Zeilberger 
himself) running under the Maple system (with input written in factorial form): 

Theorem:  

Proof:  

the  sum of  t he  fo l lowing wi th  respec t  to k 

n ! ( - c - k ) ! ( a + b - c - n ) !  

( n - k ) ! k ! ( - a  - k ) ! ( - b - k ) ! ( a  + b - c -  n + k)! 

sat isf ies  t he  r e c u r r e n c e  

- ( n + c - b ( - a + n +  c)+(c  + n ) ( - a - b  + c + n ) N  

- ( b  + k)(a + k) 

r p ( c - b ,  n ) r p ( c -  a, n) . . . . .  
r ~ i '  - (b + k~a + kl 

The 'theorem' part shows F(n, k) from (23) (up to a constant factor) and the recurrence 
in the form of an operator S(n,N). The 'proof '  gives the certificate z(n,k) and the 
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closed form right-hand side of (17) (since the recurrence is of order l), where rp(a, n) 
stands for the shifted factorial (a).. 

A few more examples are given in Section A.1. See also the publications by 
Zeilberger, Wiif-Zeilberger, and Ekhad for many more examples. 

3. S i x  proof s  o f  one  ident i ty  

3.1. Using Bailey's bilinear generating function 

In this section I will present a proof of identity (1) based on a classical, nontrivial 
result of hypergeometric function theory - -  Bailey's bilinear generating function for 
the Jacobi polynomials. Recall from Section 2.2.2 that this family (P~#'a)(x)).~o of 
orthogonal polynomials of hypergeometric type can be defined by 

_ ( l + ~ + f l + n ) k  X 1 k - -n , l+ct+f l+n.  1 x 
(1 +~). k (1 +~)k 1+~ 

Now Bailey's result from [4] reads as follows: 

, • > • o  n!( l+~+fl )"  P~")(1 2x)P~"t~)(1 2y)t" 
( 1 + ~ ) . ( 1 + / ~ ) .  " " + + 

1 • ° [ - l + 0 c +  2 +  l+ot, l+fl;u,v ~ 
' 2 ' J 

where the F4 is one of Appell's generalized hypergeometric functions 
Section 139, 48, 17], viz. 

~', (a)k+m(b)k+m xky m 
F4[a,b,c,d; x,y]:= 

k.,,>~oZ'a (c)k(d),, k!m! ' 

and where the parameters u and v are related to the variables x, y and t via 

(26) 

[41, 

u =  4y(1 +x)t and v= 4x(1 +Y~)t. 
(1 - 02 (1 - t) 2 

For a more recent, elegant proof of (26), exploiting orthogonality, see [49]. A proof by 
computer is mentioned as Theorem 6.3.2 in [59]. Identity (26), related results and 
extensions can also be looked up in [48]. 

For the proof of (1) we will need Bailey's identity only in the special case ~---fl=0. 
This is the case where the Jacobi polynomials P~.~'P)(x) reduce to the Legendre 
polynomials P,(x)= P~,°'°)(x). For the sake of clarity, let us rewrite (26) in this case: 

P.(1 + 2x)P.(1 +2y)t"=(1 --t)-1F4[1/2, 1, 1, 1; u, v]. 
n>~0 

(27) 
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Now, since 

P~(1 + 2 x ) =  n+k'~ k 
k = 0 x  / \  k ) x  , 

we see that the Ap~ry number a. may be written as the constant term (=  coefficient 
of x °) in the product P.(1 +2x)-P~(1 +(2/x)). 

In view of this, what should be done now is the following: expanding the right-hand 
side of (27), taking the coefficient of P in this expansion, replacing y by 1/x in this 
coefficient, and finally determining the constant term (with respect to the remaining 
variable x) in this expression. 

/7411/2,1,1,1; u,v]=E(½)"+k(m+k)!F-4y(l+ x)(lk F4x(1 +Y)tlm 
k.,. k!m!k!m! L . - t )  J L J 

(2m + 2k)! [y(1 + x)]k Ix(1 tk + " kVmVk!m! + Y)]" (1 - t )  2k+ z" 
k , m  ' ' 

= Z ( 1 - - t ) 2 " \  n ) k [Y(I+x)]k[X(I+Y)]"-k' 
n 

hence 

(1 - t ) -  1F4[1/2, 1, 1, 1; u, v] 

= Z .  (1--0  2"+1 \ n / k = o  

=Et".Et~(2n~.vl)j.(2n~£(~)Z[y(l+x,]k[x(l+y)]"-k 
. j " \ n , / k =  0 

=~t"'k~o(2k'+l)"-k (2k)i~=o(k f = (n-k)! k i ry(1.+x)]i[x(1.+y)]k-i  

" + k  k 

=~P'u~=o(~)(nk )iZ=o(~) z[y(l"+x)]iFx(l'+y)]k-i" 

Now perform the substitution, replacing y by 1/x, and observe that the constant 
term in 

i 1 k ( 1  \ i  .+X)k =kx+l)(x+l)k-i=(lxi 
L J L \  / J  

is (~). The proof of identity (1) is now complete. 
In Section 4.1 the same procedure will be applied to the general version of 

Bailey's identity, an the corresponding result will be given, together with some 
consequences. 
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3.2. A combinatorial approach to the Bailey identity 

In the previous section we have seen a proof of (1) distilled out of Bailey's identity. 
The question about a possible combinatorial  proof  of (1) may thus be extended into 
a question about  a combinatorial proof of (26). Such a proof  has been given by me in 
[50]. 8 To put this into the right perspective, recall from Section 2.2.2 that the 
combinatorial models described there were originally created in order to understand 
and extend the Hi l le -Hardy  identity for the Laguerre polynomials from a combina- 
torial point of view. This approach itself was stimulated by the surprisingly simple and 
transparent combinatorial proof of the corresponding result for the Hermite poly- 
nomials, the well-known 'Mehler formula', by Foata, which led to multivariate 
extensions, see [19,23, 20]. For Hermite polynomials, the underlying combinatorial 
structures are matchings of complete graphs, and the superposition of matchings 
- -  which is what has to be done combinatorially in a 'bilinear' situation - -  is very easy 
to understand. For Laguerre polynomials and Hil le-Hardy,  the superposition of 
injective functions is more difficult, but still manageable, see [25]. In [-50] I revised the 
superposition technique so that many of the bilinear generating functions from the 
literature on special functions (see e.g. [48]) could be handled that way - -  but this 
approach is not able to deal with the more complicated case of Bailey's identity 
directly - -  which remained a challenge. 

Without going too much into the details, let me mention that the combinatorial  
proof of (26), as given in [50], is based on the following 'binomial '  statement, which 
can be proved by clever manipulation of pairs of injective functions and cycle 
counting, related to the view (22) of the Jacobi polynomials. 

For nonnegative integers n, i,j and a parameter  ~, we have 

j ( 7 + n ) ~ = Z  a,b,c,d (7+n),+b+e(~+a+b+d)e, 

where the summation is over all quadruples (a,b,c,d) of nonnegative integers 
such that a+d=i,  b+d=j,  and a +b+c+d=n .  

From this one can deduce, by summing over the diagonal (0 ~< i = j  ~< n) and simplifying 
the r.h.s, using an appropriate order of summation into 

\ j J  \ 2 j - k / "  

Thus we get, for 7=0 ,  a proof  of( l) ,  provided we know that 

g k 3 k k 2 

s Or, Zeilberger states in 1-59], where he raises the same question: "... although Strehl came close ... ", 
which seems to indicate that the proof is not 100% combinatorial. Indeed, there are parts of the proof which 
are not really 'bijective', for legibility, but they could be turned into with some additional effort. 
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A simple proof of this identity is contained in the next section, and if one wishes it 
could be wired into the derivation given above. 

In Section 4.1 I mention the binomial identity generalizing (1) which corresponds to 
the full Bailey identity with parametric ~ and ft. This result can also be proved 
combinatorially by a slight extension of the approach outlined above. 

3.3. Using a Legendre inverse pair - -  and the computer 

In this section we start from the original problem (1), write it as 

, ,, k j t°- i : ÷ t  

which means that the two sequences (ak)k>~O and ((2kk)Ck)k>~O form an inverse Legendre 
pair (cf. [42]). Thus by inversion we get 

/ n,k k~ 
k 

where the coefficients dn, k a r e  given by 

d.,k= n - k  - n - - k - - l J = ~ - - k  \ n - - k - -1  n + k + l  n--k " 

It should be noted in passing that the numbers d.,k have an interesting combinatorial 
significance: d.,k is the number initial segments of Dyck paths of length 2n ending on 
level 2k (0 ~< k ~< n). 

An alternative way of writing the inverted relation is 

(2n)  n / 2  . ` 2 "  
c . = ( - - 1 ) " 2 ( 7 ' }  2(--1)kd.k(~+J'] 2. 

n s = o \ / /  k = j  " \~--J/ 

Let us put 

n 

k=j \ k - j ]  " 

Fortunately, these numbers t.4 satisfy a first-order recurrence in n, as e.g. an applica- 
tion of Zeilberger's algorithm reveals: 

[ ( n - j +  1)2 N--4(n--  2j)(n + ½) ]t.d=O. 

This allows us to obtain a closed form for these numbers: 

. Is  ~nJ.__ ~ n /  t 
t . 4 = ( -  1)" (]i): , - 1 ) "  n - j , n - j , 2 j - n J / \ j )  
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and from this we get 

j=okJ]  \ n / "  

Thus, what remains to be shown is the following identity, which we met already as (28) 
in the previous section. 

Another application of Zeilberger's method - -  see Section A.1 - -  shows that the 
annihilating difference operator for the left-hand side is 

(n +2)2N 2 - (7n  2 + 2 1 n +  16)N-- 8(n + 1) 2, 

i.e. it is the same as the operator of the Franel recurrence (4). Since the initial values 
match, (29) is valid and hence (1) is proved again. 

3.4. Using the Pfaff-Saalschi~tz identity 

Writing (1) as a hypergeometric identity does not immediately suggest a way of 
proving it by using hypergeometric transformations or manipulations of binomial 
coefficients. But the result (29) obtained at the end of the last section suggests 
a way of proving (1) in two steps: first establishing (29), then obtaining (1) through 
a proof of 

n {k~Z(2j~ (30) ~k (~)2(nkkO2=~k (k)(nkk)~\ jJ  \k J" 

As to (29), I first had a proof using standard transformations, which I will only 
indicate, because after a while I found a simple way of getting this result by application 
of two instances of the Chu-Vandermonde formula. 

Note that the hypergeometric version of (29) reads 

where the r.h.s, by use of Whipples identity (cf. e.g. [41, Section 52]) 

[ -n,b,c . ] [-n/2,(1-n)/2,1-b-c-n; -4x 1 
3F2 1-b-n,l-c-n'X =(1-x)"3F2  1-b-n,l-c-n (l~x) 2 

transforms into 

[-n/2,(1--n)/2, n+ l 1 
2"aF2 1, 1 ; 1 . 

The remaining task can be completed by suitable applications of Pfaft's identity (14) 
and related tools. 
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The interest of such a proof, when elaborated, lies in the question whether it 
q-generalizes routinely or not. As has been pointed out to me be Krattenthaler, 
Andrews and Paule, a q-analogization of such a hypergeometric proof of (29), as 
indicated, is not so obvious. 

But here is a very simple proof of (29): 

Z 

E n n i j 

= ~ ( n ~ 2 ( 2 k ~  
\ k ]  \ n / "  

Note the applications of the Chu-Vandermonde identity (11) and (12) at the begin- 
ning and at the end of this transformation. 

To put this into the right context, observe that the same kind of derivation shows 

(where ( t " )  ... means 'coefficient of t" in ... '), which in the case ~= - 1, fl = 1 reduces 
to the well-known 'Dixon's formula' ([31, Eq. (6.6)] see [41, Section 53] for the 
hypergeometric result): 

z ,  = { 5  . i f .  is 
1) (m)(m) if n=2m. 

k 

For the general case, note that consideration of (t") (1 + (~ + fl) t + aflt 2)k and another 
application of Chu-Vandermonde leads to MacMahon's  identity [38, Vol. 1, p. 122-] 

Let us now show that (1) follows from (29) by an application of the Pfaff-Saalschiitz 
identity. We take (17) with n=j, c= 1, a= -n+j ,  b=n+j+ 1, i.e. 

3F2 1, 1 + j  - j ! ( -  2j)j k n - j /  
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Thus 

n 2 n+j n 

• \ j / \  j /" 3 F2  1 , 1 + j  ; 1 

• \ J J \  J / \JJk>~o (1)k(l+j)kk! 

= ~ ,  (1 +n--j)j(1 + n)j(1 +j)j ~ (1 +j-k) ,(1 +n--k--j)k(1 +n+j),  
Z.,./ j!3 k~>0 ~ (1)k(1 +j)kk! 

=~-~ (n+j)! (1 +j)j ~'~ (1 + 2j--k)k-j(1 +n--k)k-j(1 +n+j)k-j 
/--., (n--j)! j!3 ~ (1)k_j(1 +j)k_j(1)k_j j k>~j 

Writing now 

(n+j)! (n+k)! 1 
a s  

(n--j)! (n-k)!  ( l+n+j)k- j ( l+n--k)k- j  

and splitting (1 + 2j--k)k into (1 + 2j--k)k-j(1 + j ) j  the last expression for our summa- 
tion turns into 

V 
(n-k)!  A''(1 fi2(k-j)!2k! --~k k \ j J  \ k J '  

j<~k 

as desired. 

3.5. Applying Zeiberger's algorithm 

The general algorithm of Wilf-Zeilberger [60, 59] for finding recurrence operators for 
hypergeometric multisums can be directly applied to the right-hand side of(l). Since an 
implementation of this algorithm was not yet available to me when I first encountered 
the problem, I asked Zeilberger (in June 1992) to put the double sum on his machine 
- -  and here is the result: 9 the algorithm gives back the difference operator 

S(n, N) = (n + 1)3 _ (2n + 3) (17n 2 + 51 n + 39) N + (n + 2) 3 N 2, 

which is precisely what we want, namely the same difference operator as the one 
belonging to the Ap6ry numbers, cf. (2), and it further claims that if you put 

(n+k)!k! 
F(j, k, n):= (n--k)!(k-j)!3j! 3 

9 It must  be admitted that things look even a bit nastier than necessary, due to a simplification bug for 
powers of factorials in Maple V, which had to be circumvented. 
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S(n,N)~ F(j,k,n)=O, 
j,k 

and as a justification for this claim one is asked to 'routinely verify' 

S(n, N)F(j, k, n) 

( j(2n+3)p(j,k,n) ) 
= ( J -  1) iJ+ 1)(n-k+2)(n-k+ 1)(k-j+3)(k-j+2)2(k-j+ 1) 3 F(j, k, n) 

(2n + 3)q(j, k, n) xi F" ", 
- - - - -  2 " 1  U k,n), + ( K - -  1) (n-k+2)(n-k+ 1)(j+ 1)2(j+2)(k-j+ 1) (k-j+2)] 

where p(j,k,n) and q(j,k,n) are monstrously looking polynomials reproduced in 
Section A.2. Note that J and K are shift operators for the variables j and k, 
respectively. 

3.6. Recurrences and simplification 

In contrast to the proofs presented up to here, the last proof of (1) I present will 
work directly with the known recurrences (4) (resp. (2)) for the Franel (resp. Apery) 
numbers. Although it deals with difference operators, it is convenient to present it in 
matrix form. 

To begin with, let us define a doubly infinite tridiagonal matrix F=(f~j)i , j~o 
representing the difference operator of the Franel recurrence (4): 

( (z+l)  2 if k = - l ,  

fi,j=f~_j(i) where fk(Z):=l if k=O, 
[ o 8 Z  2 if k = l ,  

if I k l > l ,  

so that 

t 0 ;8 ) F = / f , ( 1 )  fo(1) f_,(1)  ; 8  4 0 
= 2 - 4 4  . 

f2.(2) f,!2) fo.(2) 0 --72 6 

If we denote by f = ( f . ) , ~ o  the infinite column vector with the Franel numbers 
- -  n 3 f.--Y~k(k) as entries, then Franel's result (4) is equivalent to 

F.f=O, 

where 0 denotes the zero column vector. 
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Similarly, the difference operator occurring in the Ap6ry recurrence (2) has matrix 
form 

where 

ao(0) 

A =  a1(1) 
a2(2) 

a l0 a20 ) (i5 1117 08 00 ) 
ao(1) a -  1(1) = 8 --535 27 , 

a1(2) ao(2) 0 27 -- 1463 
• . • . . 

ai , j=ai- j ( i )  where 

((z + 1) 3 

. . ) - - ( z + l ) a - - z 3 - - 4 ( 2 z + l )  3 

aktz':=lOa 

Then Ap6ry's recurrence (2) can be written as 

/ ~  " a ~ - - - 0 ,  

if k = - l ,  
if k=0 ,  
if k = l ,  
if I k l > l .  

V" [ n ~ Z [ n + k ~  2 where a=(a.).~>o is the vector of the Ap6ry numbers, a.=Z.k~kJ ~ k J • 

Finally we introduce the doubly inifinite, lower triangluar matrix P=(P~,jh,~>~o of 
the Leoendre transform: 

0 0 0 . . . \  

2 0 0 

6 6 0 . 

12 30 20 \ J / / i , j~o  

As mentioned in the introduction, Schmidt's question (5) asks for the inverse image of 
the sequence of Ap6ry's numbers under the Legendre transform, and the identity (2) 
claims that Ap6ry's sequence a is the image of Franel's sequencefunder  the Legendre 
transform, i.e. a = P ' f  Put into matrix terms, what we would like to show is that 

.4 "P . f=O.  

Obviously, we would be done if we could exhibit a matrix X such that 

A ' P = X ' F  

Computing initial segments of this unknown (infinite) matrix X led me to the 
following (surprising?) guess: 

X =  D" P and hence A = D- P '  F. P -  1, (31) 

where D=(di,~)i,j>~o is a diagonal matrix given by d~,i=4i+2 (i~>0). 
It remains to prove this claim. Note that it not only says that the Franel and the 

Ap6ry sequences are related via the Legendre transform, but also that the associated 



334 V. Strehl  /' Discrete Mathemat ics  136 (1994) 309-346 

difference operators are related in the sense of conjugation via Legendre transform (up 
to multiplication with a diagonal matrix). Interestingly, even though we have to deal 
with infinite matrices containing binomial coefficients, i.e. nonrational terms, the 
proof can be established by rational arithmetic alone. For this to see, let us write the 
assertion (31) to be proved in the form: 

A ' P = D . P ' F .  

Consider the (i,j)-entry on both sides of this equation. Since both A and F 
are tridiagonal matrices, every such term involves three summands only. Write 
this as 

lhs=al(i)pl- 1,j+ ao(i)pl, j+ a_ l(i)pi+ ,,j, 

rhs =(4i+ 2)[p,.j_ l f -  l (J -  1)+p,,jfo(j)+Pi, j+ if1 (J+ 1)], 

where now i and j are treated as variables. Now ask for simplification of lhs-rhs. The 
Maple command expand ( lh s - rh s )  gives back an expression of considerable size. 
Of course, simplification could be done by hand, but this tedious task is better 
accomplished by your computer algebra system. On the command simplify (ex- 
pa nd ( l h s - rh s ) )  Maple responds with 0, thus proving that the Franel recurrence 
operator F and the Ap6ry recurrence operator A are Legendre conjugates in the 
following sense: 

A = D . P . F . p  -1, 

with A, F, D, P as above. 
The binomial identity (1) we started with is just one of the consequences of this 

general fact - -  perhaps the most interesting one. Some further comments will be made 
in Section 4.3. 

4. Variants and extensions 

4.1. Using the Bailey identity in generality 

Bailey's bilinear generating function (26) provides us with the family of identities 
(for n >~ 0) 

n I n 1 
+#"--").P~e'=~(1 +2x) '" P~='~)¢I +2y) 

(1 ( 1 + ~ ) .  " ' 

( . 
= E \k ,m,r /  (l+~)k(l+fl),,, 

k,ra, r>~O 
k+ra+r=n 

[y(1 +x)]k[x(1 +y)]m 
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or, if we use (22) as a way to write the Jacobi  polynomials  

n 5(l+~+fl+n)k+,.r 
= ~ k,m,r) ~ i + ~ ~  LY~'I + x ) l k t x ( 1  + y ) ] "  

k,m,r>~O 
k W m W r = n  

(l+et+fl+n)kj=o\J/ (1 + ct) j  (l+fl)k-j 
k=O 

k=O _ ~ l_y(l +X)]J[X(1 + y ) ] k - j  

Replacing now y by 1/x and looking for the constant  coefficient on bo th  sides, as we 
did before, gives us 

-t-~ + fl-}-n)k ~-~ 
(32) 

Wri t ten as a b inomial  identity this reads 

~ = o  ~ = o  ~ ~ ' j : o  ( ' ~ J )  

= + k'~ ~--, (k) 
k=O k I ~ { a + j ~ k - j ~ "  /j=o ~ j J~ k-j J 

Using s tandard  hypergeometr ic  notat ion,  (32) could be equivalently writ ten as 

4Fa[--n ' -n ' l+~+fl+n' l+~t+f l+n ; 1 

1] 
= ~ 1 ~ - ~  ~ ~ /  1 , 1 + ~  ; - ' 

Indeed, what  we have seen above  is that  Bailey's bilinear generat ing function can be 
stated as 

- n , l + ~ + f l + n  "2F~ l + e  ' 
2F~ 1 + f l  ; - x  • 

k~=o\k/I (~fl)k n)k[x(I+Y)]~Fa _ l+~t  ' X(1 ~ y } f  

To  conclude this section, I will draw some consequences f rom the generalized 
identity (32). First note  that  obviously  the setting c t = f l = 0  brings us back  to (1). 
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N o w  let fl = 2-7,  substitute this into (32) and let ~ oo. C o m p a r i n g  the behavior  of  
both  sides leads to 

k=O 2k --k=0 

If we take now 2 = l, we will find 

k~=O n 2 k n n 2k k 

We may  use Pfaff 's t ransformat ion  (13) to turn the left-hand side of  (34) into 

k n 3 (35) 

and the r ight-hand side of (34) into 

l~o(2n-2k~(2k~9k (36) 
= \ . - k  / \ k /  

(see entries (3.65) and (3.84) in Gould ' s  listing [31]). So all quanti t ies m (34)-(36) are 
numerical ly equivalent. These consequences of  (32) do not  look too complicated,  so 
they should have easier proofs than (32) itself. Indeed, it was pointed out  to the au thor  
by Gessel that  (34) is the special case ~ =  1 in the hypergeometr ic  identity 

- -n ,~ - -½ --8  =2F1 "4  2F1 2ct-- 1 ' ~ ' ' 

which in turn is nothing but a special case (a = - n, b = 1 - a - n, and w = 2) of Gauss '  
quadra t ic  t ransform 

F l [ 2 a _ 2 b + l  ; [ a ' a - b + ½  -4w -] [- a,b ~] 2 w 2 

(see [41, p. 65, Theorem 23]). 

Let us now compare  coefficients of  ~a (a any integer) in (33). This leads to the 
following family of  identities: 

\kJ k+a \ j /  \ j - a /  
which for a = 0 turns into the beautiful 

Again, as Gessel pointed out  to me, (37) and hence (38) could be proved  by clever 
appl icat ion of certain hypergeometr ic  t ransformat ions ,  but  he also states t h a t "  ... I 'm  
not  sure that  this p roof  would do any good, since it's p robab ly  no simpler than the 
p roof  you a l ready have . . . .  " 
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4.2. Higher exponents 

The problem (1) raised in the beginning of this article can be generalized into the 
following: 

For any positive integer e~>l, define a sequence of rational numbers (C~ke~)k~O, 
independent of n, by 

Is it then true that all number c~ e~ are integers? 

Trivially ctkl}= 1 for all k, and Section 3 provided proofs of the less trivial fact that 

c~2) j = o k J /  

According to Schmidt there is number-theoretical interest in this question for 
general e, but it does not seem to be a simple task to find an equally concise 
presentation of c~ e~ for e > 2 - -  if possible at all. [By the way, even though the numbers 
c~ °~ are not integers, c~ °) = ( - 1 ) " +  1(4n-2)  - x, the case e =  0 is not uninteresting from 
a combinatorial  point of view: combinatorics of lattice path and Catalan numbers are 
involved!] 

Proceeding in exactly the same way as in Section 3.3 one has 

" /2"'x ~ " [ k + j y ,  (2nn)C~') = (- 1)" j__~o t ;)k~=(--1)kd,,.'\k_j} 
which su'ggests to consider the numbers 

t_ llke.,k ". 
k=j 

In order to prove the integrality of the numbers c~ ~ it would be sufficient to show that 

But, according to numerical experiments, more seems to be true. I conjecture that even 

(2nn) (2f)'t").,,,, (o<.j<.n,e>~l) 

holds. 
Zeilberger's algorithm shows that in the cases e = 1,2, 3 the annihilating difference 

operator  for the tt~j (w.r.t. n) is of first order, but for e > 3 its order is > 1, as far as 
I checked. The same is true if we alternatively look for a difference operator  w.r.t, the 
variablej. Hence we do not get a closed form expression for the t~,~ in these cases, and 
thus we cannot draw the wanted conclusions about  divisibility. 
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For  e = 3, however,  we are in a similar si tuation as previously for e = 2 in Section 3.3. 
The  opera to r  annihilat ing ~(3) is Ln,j 

(n--j+ 1)aN--4(n-3j)(n+ 1)(n+ 1/2). 

This leads to the closed form 

(n]st 2J'~(2n] ( ) ~" ""-J""'  t 2n ÷(3) = ( _  1)n _ 1)n 
" ' J  ~ = '  n --j ,  n --j ,  n --j,  3j--  n 

and hence 

j = o \ j /  \ j  / \ n - j /  

If  we now put  Zeilberger 's  a lgor i thm into action in order  to obta in  a difference 
ope ra to r  in n which annihilates this sum, then we get a result which is quite a bit more  
vo luminous  than  the result in the case e = 2 :  it is an opera to r  of  degree 6 (!) 

po(n) + pl(n)N + ... + p6(n )N  6, 

the polynomia l  coefficients of  which are given in Section A.3 - -  compare  with the 
c (2) ! innocent- looking recurrence for the Franel  numbers  f . =  . . 

4.3. Recurrences and diophantine approximation 

In this section I would like to ment ion  two aspects of  identity (1) that  have to do 
with the fact that  it relates the recurrences (4) of  Franc1 and (2) of Ap6ry. 

4.3.1. Transforming recurrence operators 
As in Section 3.6, let P denote  the matr ix  of  the Legendre t ransform. Further ,  let 

G=(gi,j)i,j~>o be a matr ix  representing a second-order  linear recurrence with poly- 
nomial  coefficients, i.e. we have polynomials  9-l(z), 9o(Z), 91(z) and 

9i'j(z)= (~ i- j(i) else.if ] i - - j ]~<l ,  

N o w  let H =  P .  G - P -  1 be the matr ix  conjugate  to G w.r.t. Legendre  t ransform.  In 
general, there is no reason for H to be a t r idiagonal  matr ix  representing a second- 

order  linear recurrence, even though it is easy to see that  the entries of  H along 
diagonals  are again values of polynomial  or rat ional  functions. A part ial  answer  to the 
question abou t  condit ions under  which a recurrence ope ra to r  as G is t ransformed into 
a recurrence ope ra to r  of  the same kind, is given by Theo rem 1 in [47], where it is 
shown that  for po lynomia l  gi(z), i~ { -  1, 0, 1}, of  degree ~< 2 the following holds. 

Let a, b, c, d, e be parameters ,  and put  

g - 1(7,) = aT. 2 -k- bz + c, 

9o(Z)=(a + d ) z 2 - ( a - b - d ) z  + e, 

Oa(z)=dz 2. 
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Then H=(hi,.i)i,j>~o = P. G" P-1 is again a t r idiagonal  matr ix  with 

hi'i(z)={~ i'j(i) else,if I i - j l ~ < l ,  

where 

( z +  1) 2 
h_  l (Z)=-~-~(az +bz+c), 

ho(z) = ½ [ ( 2 d -  a)z(z + 1) + 2 e -  c], 

Z 
h l(z) = ~ [az 2 + (2a -- b) z + a - b + c]. 

No te  that  the F rane l -Ap6ry  conjugacy of Section 3.6 cor responds  to the choice 
a = c = 1, b = 2, d = - 8 ,  e = - 2  of  the parameters .  

The  p roof  of  this sufficient condit ion in [47] is given by creative telescoping, 
whereas in [52] this result is p roved  by exactly the same method  - -  simplification of 
rat ionals  expression - -  as applied in Section 3.6 to the F rane l -Ap6ry  case. The 
general p rob lem of (Legendre) conjugacy is t reated to some extent in [52], where it is 
also shown that  the sufficient condi t ion above,  expressed in terms of the five para-  
meters,  is also necessary. 

4.3.2. Back to diophantine approximation 
To conclude, let me come back to a remark  from the beginning and briefly ment ion  

the use which can be made  of the F rane l -Ap6ry  conjugacy in the field of d iophant ine  
approx imat ion .  The mater ial  of this section is due to Schmidt  1-47]. 

Recall that  the two sequences 

( 35162531 114-~48695, ) 
(a.) .~>o=(1,5,73,1445,33001 . . . .  ), (b.).~>o= 0,6, 4 '  36 ' - -  "'" ' 

bo th  satisfying Ap6ry's linear recurrence relation 

n 3u n - (34n 3 _ 51 n 2 + 27n - 5) un- x + (n - 1)3 u . -  2 = 0, (39) 

play a p rominen t  role in Apdry p roof  of the irrat ionali ty of  ((3), due to the fact 
that  

iim bn = ((3) 
n ~  a l l  

and that  the a.=L(~,)2(n~-k) 2 are integers, whereas  the b. are rat ional  numbers  with 
denomina to r  dividing 2 lcm(1,2 . . . . .  n) 3, more  precisely: 

k~=o(n)2( n ) k k ~ 1  ~ 1  ( -  1 , " -  1 
+ k  z " 1 k 

b . =  C.,k where C,,,k= = - ~ +  = 2m3(ra)(n n+mm )" 
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In terms of our matrix notation, writing A for the matrix representing the Ap6ry 
recurrence, a for the (column) vector of the a. (n>~0) and similarly for b, we 
have 

A'a=O and A ' b = [ ~  1, 

where on the right we have a vector with a 0 in all positions, except a 6 in the top 
position. 

As to the Franel recurrence, it has been remarked by Cusick (see a footnote in [55]) 
that both sequences 

(f,).~o=(1,2,10,56,346 .... ), (0.).~o = 0,3,12,- 3 , - . . . .  

satisfying the Franel recurrence, which we may write as 

F'f=O and F.O=[~ 1, 

lead to a diophantine approximation: 

lim ~ - 7~2. 8 (40) 

We have seen above that the equations 

A . a = 0  and F - f=0  

are related via Legendre conjugacy. Now conjugacy provides us with a solution of an 
inhomogeneous Franel recurrence associated to the second solution b of the (homo- 
geneous) Ap6ry recurrence: 

v s  

where h and k are vectors belonging to the sequences 

(h")"~>° = ( 0, 3' 93' 121718' 235-9~629-' ""')' 

( 3 1 4  3 )  
(k,),~>o-- 3 , - ~ ,  - 3  . . . . .  ( - 1 ) " ~ -  . . . . .  n+ 

Similarly, the second solution O of the (homogeneous) Franel recurrence provides us 
with a solution of an inhomogeneous Ap6ry recurrence: 

F .O=[~  ] vs. A.c=d, 
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where  c a n d  d are  vectors  b e l o n g i n g  to the  sequences  

(c.).~>o = (0 ,  6, 90, 5 ~ 8 ,  122130 ) 3 ... , (d.) .~o = (6 ,  18, 30 . . . .  , 3 ( 4 n + 2 )  . . . .  ). 

As a result ,  we get the a p p r o x i m a t i o n s  

h . = ~ ( 3 )  a n d  l imC"  r~ 2 jim 
L n ~  a ~  8 

i.e. one  a p p r o x i m a t i o n  of  ~(3) in  te rms  of  F rane l - r ecu r s ive  sequences ,  a n d  one  of 7rE/8 

in te rms  of Ap4ry- recurs ive  sequences .  F r o m  this, one  m a y  hope  for a p r o o f  of  

i n d e p e n d e n c e  of {1, nz/8,  ~(3)} over  the ra t iona l s .  

A p p e n d i x  A 

A.1. Some operators and certificates 

• The  ver i f ica t ion  of the  Ap6ry  recur rence  - -  a n n i h i l a t i n g  difference o p e r a t o r  for 

Y.k(D~ ("~k) 2 a n d  cert if icate z(n,k): 

(n + 1) 3 - (17n 2 + 51n + 39)N(2n + 3) + (n + 2) a N 2, 

_ 4(2n + 3)(n + k + 1)2(9 + 12n + 4n: - k - 2 k  2) 

(n - k + 1) 2 

• The  ver i f ica t ion  of  the F r a n e l  r ecur rence  - -  a n n i h i l a t i n g  difference o p e r a t o r  for 

y.k(~) 3 a n d  cert if icate z(n, k): 

- 8 ( n  + 1) 2 + ( - 7 n  z - 2 1 n  - 1 6 ) N  + (n  + 2) 2 N 2, 

- ( n + l )  2 

(14n 3 + 47n 2 + 53n + 20 - 30k - 57nk - 27n2k + 18nk 2 + 18k 2 - 4k 3) 
/ 

/ ( n - k +  1) 3 
/ 

• The  ver i f ica t ion  of  iden t i ty  (28) - -  a n n i h i l a t i n g  difference o p e r a t o r  for L(k)" ~(.2k) 
a n d  certif icate z(n, k): 

- 8(n + 1) 2 + ( - 7n 2 - 21n - 16) N + (n + 2) 2 N 2, 

_ 2(n + 1)(2k + 1)(k + 1)(-2k + 3n +4) 

( n - k + 1 )  2 

N o t e  tha t  in this a n d  the p rev ious  example  we have  same  ope ra to r ,  b u t  different  

certificates,  of  course.  
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A.2. Verification o f ( l )  by the Wi l f -Ze i lberger  method 

T h e  cer t i fy ing  p o l y n o m i a l  p(j,  k, n) of  Sec t ion  3.5 is g w e n  by 

108jSk3n - 69kZjn 4 - 1 2 j 6 k n -  2944jZkZn 2 + 130jak'*n 2 - 960j3kn 3 

+ 792j4n 3 + 132j'*n 4 - 1 0 3 6 7 0 k j -  13350kZj + 34043kj  z + 5816j3k 3 

--  5266j4k z + lO122j3k 2 + 6 2 8 j S k -  5040j4k + 8478j3k - 5691j2k 3 

- 11598j2k 2 + 52jk 3 + 102j3k s - 880j4k 4 + 1772j3k 4 + 1270jSk 3 

- 3876j4k 3 - 568j6k z + 2322jSk z -  2 6 j 6 k -  18jZk 5 - 1532jZk 4 

+ 30jk 5 - 4 8 j 3 k  6 _ 30j4k 5 + 150jSk 4 -  166j6k 3 +60jVk 2 

+ 72j2k 6 - 48jk  6 - 3579kn - 14604jn + 13302j2n + 7749k2n 

+ 2679j3n - 1641 k3n - 588j4k3n + 694j'*kn 2 - 12645n - 414kZjn a 

+ 5 4 j 3 k S n -  196j4k3n 2 + 3 0 0 6 j 3 k 2 n -  6 1 8 j 4 k 2 n -  1 2 j 6 k Z n -  8274n 2 

- 1 1 6 0 5 2 j -  2309j  4 + 6 5 5 0 7 k -  20093j  3 - 114j 6 + 1401j 5 

+ 29838k z + 87861j  2 + 4 1 5  lk  3 + 1530k 5 + 12k 6 - 2706n 3 

+ 41338 - 451 n 4 + 8370jakn + 390j3kan + 54j2kSn + 18j3k 5n2 

- -  834kjZn + 696jk3n + 354jSkn + 2 1 0 j S k Z n -  2 7 9 9 k Z j n -  360jSn 3 

- 1515j2k3n - 216j'*k'*n- 6780jZkEn + 12j2k4n + 756j3k3n - 2724j4kn 

- 12837kjn + 210j3k2n 2 + 280j4kZn z -  4j6kZn z + 70jSk2n z - 1554k2jn 2 

+ 1350j3kn z + 18jZkSn 2 -  71kJZn z + 232jkan z + 36jSk3n z -  206jSkn 2 

- 16j2k3n 4"- 649j2k3n 2 - 72j4k'*n 2 + 4j2k4n 2 + 108jakan 2 - 4594kjn z 

- 4j6kn 2 .-t- 54j4kZn 4 + 324jgkZn 3 - 16jakan 4 - 96j3k3n 3 - 84j6n 

+ 9 6 9 j S n -  3573j4n + 324kSn + 12j4k 6 + 6 j 5 k  5 - 6 j 6 k  '* 

- 4 3 0 7 k n  z - 4562jn  2 + 5037jZn z + 3042kZn 2 + 317j3n z - 1033k3n 2 

+ 44j6n z -  217jSn 2 - 3j4n z + 108kSn 2 - 324k3n 3 -  54k3n 4 

+ 5 lk2n 4 + 306kEn 3 - 60jSn 4 + 8j6n 4 + 48j6n 3 -t- 402j2n 3 

+ 67jZn 4 -  64j3n '~_  384j3n 3 + 34 jn  4 + 204 jn  3 - 346kn 4 

- 2076kn 3 -  88jak2n 4 -  528j3k2n 3 -  160j3kn '* + 1068j'*kn 3 + 23j2n 4 

+ 138kjZn 3 + 178j4kn 4 -  76jZkZn 4 - 456jZkZn 3 - 36jSkn 4 -  216jSkn 3 

- 35kin '~ -  2 lOkjn a - 96jEk3n 3 

and  s imi la r ly  the  cer t i fy ing p o l y n o m i a l  q(j,  k, n) is g iven  by 

18jSk3n - 6 6 J 6 k n -  117kajn 2 + 38 j2k2n  2 - 3 0 2 2 8 k j -  16819kZj 

+ 40207kj  2 - 342j4k 2 + 1452j3k 2 + 7 4 0 j S k -  2 7 6 7 j 4 k -  5848jak  

+ 688jZk z - 50j4k 4 + 200jSk 3 - 190j4k 3 - 134j6k 2 + 102jSk z 

- 84j6k + 72jSk 4 - 152j6k 3 + 120jTk 2 + 2268kn - 5928jn 
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+ 216jZn + 2430kEn-  3642j3n - 2 0 4 j 4 k 3 n -  363j4kn z -  351k4jn 

- 68j4k3n 2 + 156j3kZn - 702j4kZn + 3 0 j 6 k Z n -  29180j  + 8348j  4 

+ 10752k - 15682j 3 - 300j  6 + 1092j  5 + 11520k z + 3466j  2 

+ 768k 5 - 1518j3kn + 8217kjZn + 888jSkn + 330 jSkZn-  3537k2jn 

- 18j'*k4n + 114jZkZn - 1 0 8 9 j 4 k n -  6336kjn + 52j3kZn z - 234j4k2n 2 

+ lOj6kZn z + 1 lOjSk2n 2 -  1179k2jn 2 -  506j3kn 2 + 2739kj2n z + 6jSk3n 2 

+ 296flkn 2 -  6jgkgn z -  2112kjn z -  22j6kn z -  3 7 2 j 6 n -  678jSn 

+ 2244j'~n + 162kSn + 6j4k 6 - 6jSk 5 - 12j6k 4 + 756kn z 

- 1976jn 2 + 72jZn z + 810kZn x _ 1214j3n z - 124j6n z + 226jSn z 

+ 748j4n 2 + 54kSn z -  1643k4j. 

A.3. A difference operator for  exponent e =  3 

H e r e  I r e p r o d u c e  the  dif ference o p e r a t o r  ann ih i l a t i ng  y~k(~)2(~k)2(,2_kk) of  Sec t ion  4.2. 

I r e n o u n c e  the  r e p r o d u c t i o n  o f  the  a c c o m p a n y i n g  cer t i f icate ,  wh ich  is a r a t i ona l  

func t ion  tha t  has, a p a r t  f rom a few l inear  factors ,  a n u m e r a t o r  p o l y n o m i a l  of  to ta l  

deg ree  19 in n, k, wi th  176 t e rms  and  coeff ic ients  of  s imi la r  size as the  ones  a p p e a r i n g  in 

the  o p e r a t o r  - -  c o m p a r e  wi th  the  c o r r e s p o n d i n g  opera to r ( s )  for e = 2 ,  g iven  in 

Sec t ion  A. 1 ! 

po(n) = - 8281(6620250n v + 194374905n 6 + 2404907720n 5 + 16182725885n 4 

+ 63538882220n s + 144000168368n x + 171051956992n 

+ 78847954240)(n + 3)2(n + 2) / (n  + 1) 2, 

pl(n) = - (163672440750n 9 + 5624687410065n 8 + 84404024171040 n v 

+ 723615434540555n 6 + 388855469024330n 5 + 13490882373318699n 4 

+ 29878295174795508n 3 + 39883006527213557n 2 

+ 27783753376637444n + 6664869698310180)(n + 3)3(n + 2) z, 

pE(n) = --  (162401352750 n 11 + 6718774773555n 1° + 124711194036660n 9 

+ 1368380628262070n 8 + 9836894865699870n  7 + 48472570983304643n 6 

+ 1661814281338603020n 5 + 393051049322866468n 4 

+ 619419550265900144n3 + 601996733156814672n 2 

+ 303106129360889920n + 46189584994221760)(n + 3) 2, 

p a ( n ) = ( -  53385696000n13-2689035368670nlZ-61906699547820n 11 

- 861476777355560n  1° --  8072186328339580n 9 --  53672105152884912n 8 

- 259786052073295348n 7 --  9230380537000832164n 6 
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--  2392735085813946388n s --  4425366900944064930 n 4 

--  5577505932198043888n a - -4376732891104921364n  2 

-- 1744617790556183136n- -  168635012492565360),  

p4(n) = ( - -  139025250na 3--  6365859255n l z -  130710111720n 11 

--  1580390020385n lo -- 12395319285010n 9 --  65207080885953n 8 

- -227510670047436nT- -486141379391615n6- -447630919087976n  5 

+ 4 4 2 5 2 4 6 9 5 3 1 9 9 1 2 n 4 +  1299863359935856n3--  296727667685808n z 

-- 3271290691708800 n --  2661031246809600),  

ps(n) = --  (297911250n 1 x + 13235400225nXO + 263446626120n 9 

+ 3094268495855n 8 + 23755870990890n 7 + 124635949498195n 6 

+ 453029629903388n 5 + 1128916484999241n 4 

+ 1854976781234016n 3 + 1841060829487412n z + 893652306644064n 

+ 89391519915264)(n + 5) 2, 

p6(n) = (6620250n 7 + 148033155n 6 + 1377683540n 5 + 68421021 lOn 4 

+ 19201266530n 3 + 29207398143n I + 19841994296n 

+ 2222856216)(n + 5) 2 (n + 6) 4. 

P r i n t i n g  o u t  the r ecu r r ence  (of degree  6) a n d  the cer t i f ica te  for ~k(~)3("-~k) 3 w o u l d  

r equ i r e  several  pages ,  and  the  c o r r e s p o n d i n g  d a t a  for e x p o n e n t  e = 4  w o u l d  r equ i re  

a b o u t  as m u c h  space  as this w h o l e  art icle.  
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