
The two-dimensional mlf-bondinjj of single-strandsd nuc~lelc acidri kg, RNA) 

gives rise 90 what bSologistR call %econdacy structure”, Secondary structure 
largely determines the three-dimensional ehape of the molecule and hence its 

function. Enumeration of the disticlct fiecondary structures which can occur under 

various reasonable restrictions suggests a new class of recurrence rules whose 
solutions may be considered natural generalizations of the Catalan and Motzkin 
numbers. These new sequences are “elementary”; in fact, the general term can be 
given explicitly 8s a sum of products of Catalan numbers with suitably generalized 
Fibonacci numbers. In addition, the recurrences have the pleasant property of 
allowing a simple first-order analysis. 

2 

Let m > 1 be an integer, and consider the recurrence rule 
n1+i -2 

SW + j =S,,,+,- 1 +Sn+j-2+ ’ l ’ +Si. I+ C SiStn+i 2 -i, j3 1, (1) 
i 0 

with the boundary values 

S,) = s, = ’ l l = & _ 1 = 0, St,, = 1. (2) 

Since m plays the role of a parameter, it is appropriate to write S,,(m) for the nth 
term of the sequence. In the biological application, S,,(m) is the number of 
disinct secondary structures for a molecule of y1 “elements” (e.g. bases), where a 
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bonding loop must contain at least m internal elements. The case m = 1 is that of 

greatest general interest, while m = 3 or m = 4 is the most realistic biologically; 

for an extensive discussion with examples, see [I] and [2]. As remarked in [l], an 
abstract model of secondary structure can be given in terms of points and lines. 
Let a ser of n points be thought of as lying on the x-axis, and let these be labelled 

1,2,...,n - 1, n from left to right. Consider a subset of these points of cardinal- 

ity 2j, 0 =S 2j c n. Let these 2j points be completely paired by connecting them 
with i iarcs, each point of the subset being connected to exactly one other point of 
the subset, with no point incident on more than one arc. The following restrictions 
are imposed on this pairing: 

(a) no two adjacent points (i.e. with labels i, i + 3) can be connected by an arc, 
and 

(bi no two arcs may intersect. This is the abstract model for m = 1; for general 
m, any two points connected by an arc must be separated by at least rtz unpaired 
points. 

It is clear that each allowed configuration can be specified by listing the pairs 
(ii) of connected points. Thus for n = 6, m = 1, the following 17 configurations 
occur: 

i = 0 (no pairs) 
j = 1 ( “1 ps,dr) 

i = 2 (2 pairs) 

1 configuration 

(13), (14), (1% (16), 
(24), (25), (26), 10 configurations 

(3% (36), 
(46). 

(13) (46), (15)(24), (16) (24), 6 configurations 
; 16) !2S), (16j (39, (26) (35). 

01 the other hand, with m = 2 (and y1= 6) only 8 of the above configurations are 
allowed: the unpaired configuration, 6 of the single pairs (omit the leftmost 
pairing in each row), and the one double pairing (16) (25). If we take m = 3, only 
,a of th.se configurations survive, and so forth. Note that this enumeration 

d ltinr,uish ‘s between mirror images, for example, the configurations (15) (24) and 
I-J . \ ’ ‘5; &ove. The “symmetry reduced” problem, in which mirror ima.ges are 
id<.rltiEed, 14~ not yet been considered, owing to lack of biological interest. 

1%~~ far as the above combinatorial model is concerned, the parameter value 
~1 - - 0 makes perfect sense; it merely does away with the adjacency restrictions on 
the pairs of points which may be connected (OF course the stricture that arcs may 
not cross remains). Formally, the recurrence rule and the boundary conditions 
become 

n -2 

s,,m=s, = sn_-, + c si§“_2_i 

S,,= 1. 
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This recurrence rule generates the sequence 1, 1, 2, 4, 9, 21, 
51, 127, 323, 835,. . . , which is #456 is Sloane [3]. A recent compre- 
hensive article [4] calls &ese integers-with some justification-the Motzkin 
numbers, and gives several combinatorial settings in which the numbers occur; 

superficially at least, the present setting is new. As remarked in [4], the Motzkin 
numbers YZ, are given explicitly by 

mn zsn(o)= C Cj+l PJ 9 

j=O 0 (5) 

the familiar Catalan numbers. We shall give our own derivation of Eq. (5) in 
Secltion 3 below . 

Finally, we note that the derivation of Eq. (1) from the combinatorial model is 
immediate. Add a new point-n the right, say-to the previous set of n points. If 
the new point (with label y1+ 1) is not paired with any other point, the contribu- 
tion to S,,+,(m), the new total number of configurations, is S,(m). If the new 

point is paired with the leftmost point j = 1, the contribution is S,_,(m), and so on 
until it is paired with a point whose label j satisfies m +3< j< n -3; then the 
point set is divided into two parts, on each of which nontrivial pairings can occur, 
giving rise to the nonvanishing quadratic terms in Eq. (1). Introducing the 
boundary conditions (2), we may write the recurrence in precisely the form \ 1). 

‘Tile same derivation holds for the special case m = 0, yielding Eqs. (3) and (4). 
For the convenience of the reader we give in Table 1 a short list of values of 

S,(m) for the range O~m<6,m~n<20. 

3. The explicit solution 

For given m 2 1 we write Sn = S,(m) and introduce the generating function 

Y = ,,I) Snx” = xm + c s,n+jXn’+i, 
j=l 

(7) 

the second expression following from the boundary condition (2). Then, using the 
recurrence rule, we may write 

yZ=(S,+,-s,,-s,_,- l ’ l -!Qxm- 

+(sm+f--Sn,t,-Sm- l l l -S,)xP’ 

+(Sm+~-s,~+~-Smt~- l l * -s*jxm+‘+ l l *. 
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Table 1. S,,(m) 
-- 

0 1 2 3 4 5 6 

3 
L, 

3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

1 
1 
2 
4 
9 

21 
51 

127 
323 
835 

2188 
5798 

15511 
41835 

1 1:‘1634 
3 10572 
85:1467 

2350779 
6536,382 

18199284 
sow!019 

1 
1 
2 
4 
8 

17 
37 
82 

185 
423 
978 

2283 
5373 

12735 
30372 
72832 

175502 
424748 

1032004 
25 16347 

1 
1 
2 
4 
8 

16 
33 
69 

146 
312 
673 

1463 
3202 
7050 

15605 
34705 
77511 

173779 
390966 

1 
1 
2 
4 
8 

16 
32 
65 

133 
274 
568 

1184 
2481 
5223 

11042 
23434 
49906 

106633 

1 
1 
2 
L) 
8 

16 
32 
64 

129 
261 
53c 

1080 
2208 
4528 
9313 

19207 
39714 

1 
1 
2 
4 
8 

16 
32 
64 

128 
257 
517 

1042 
2104 
4256 
8624 

17504 

1 
1 
q 

; 
8 

16 
32 
64 

128 
256 
513 

1029 
2066 
4152 
8352 

RlzarranginC, we obtain 

y’= (s,,l+Ix”’ ‘+s,,,*~x”‘+* ‘ 0) 

-(s,*~Xn’-‘+S,n+,X”‘+ ’ -. ) 

-(S,>,._,Xn’ -‘+S,,,x”‘+ l . l ) 

-~SoXm-‘+S,Xn’+ l l * ) 

1 1 
:- ,(y-x’“)-- y-y-J:y_. . . _x-l),* 

X” X 

T(r)= 
1 

1 __x__xL.. . __Xr’ 

we write this functional equation in the form 

F(x,y)=x’y’-y/T(m+l)+x’“=O. 

This a!so holds for m = 0. The formal solution of Eq. (9) is 

w 

(9) 

(10) 
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Now for arbitrary p and T, 

$(l -A - 2*xpT*)= 

1 
=s l- 

( [ 
1 &-9 _$ pxPp+_ %-2)(--Z) 2”x3Pp+ . . . 

. 
2, 24x2P7+- 

. 3! I) 
1 4 =z 

( 
$($) F 2*xPTL+F 24x2”P+ 

~(~)@ 
. . 

F26x3pT6+ l l 0) 
. I 

=x”P+ c - m C2.ie2)! xpjT*j 

j=* i!(i- 1): 
al 

= c c_x Pi 7-2’ 
I 9 (11) 

j=l 

with cj the Catalan numbers (6). Eq. (10) then becomes 

Y =,zo Cj+lX 
(m+2)i+mT2i+l(m + 1). (12) 

We now introduce the “convolved generalized Fibonacci numbers” f,, (r, k) by 

means of the definition 

1 
Tk(‘)=(l-X _x*-. . . _Xr)k = c f (r, Wx”; n=O n (13) 

note that for r = 2, k = 1 these are the usual Fibonacci numbers. 
On comparing Eqs. (12) and (7) we see that, in terms of the f,,(r, k), the 

solution of the recurrence (1) is 

S,(m) = c cj+,fJm + 193 + n q=n--m-mj-2j. (14) 
j=O 

From the definition (13) it is clear that 

fnU9 k) =(k+;-‘), (13 

whence 

&j(l, 2j+ 1) = * 
0 2j ’ 

so that for m = 0 Eq. (14) reduces to Eq. (5), the explicit expression for the 
Motzkin numbers given in [4]. 

The numbers fn(r, k) are not extensively tabuated. There are short tables in [3] 
for r = 2, k s 6, but these contain some errors; one may also find there values of 
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fJr, l), 2 s r G 5, for a small range of ~1. For r = 1, of course, the f, (r, k) reduce to 

binomial coefficients, as given in Eq. (15) above. 
To get an explicit formula for fn (Y, k), we start from the definition (13) and use 

the binomial theorem, obtaining 

P(r)= c (k+j-l)Xj(l+X+ l l l +x’-‘)j. 

j =0 #’ 

To simplify the notation, we introduce the three-index constants Cr,j,i by means 
of 

(r-l)i 

(1 +X + l ’ l + AT’-‘)j z C Cr,j,iX', (j, r 3 1). 
i =0 

It can be shown that 

cr,j*i =‘f’(-l)f)(i+;;:-“), (O~iqr--l)j). 
s=o 

Setting 8’ = n -i, we have 

.f tr9 i) = I(” +; - ')C..i..,-je 
j=O 

(16) 

(17) 

(18) 

This formGa IS rueful for obtaining selected values of fn(r, k); to prepare a table, 
however, it is better to use the following recurrence rules. 

‘“,,(r, 1) = 1 ‘) 

f,(c l)= 1 
Mr, 1)=2 
. 

b . k=l 

f,(r, 1) = 2’-’ 
and for j>r 

fi(r, 1) = fi-,(c l)+fi-*(r, 1)+ l l l + fi_,(r, 1). / 

(19) 

i (r, k) = fo( r, k - 1) = 1 

f& k) = f,(r, k - l)+f,,(r, k) 
W, ki=f&, k- l)+f,(r, k)+f,,(r, k) 
. 

. b k>l (20) 

f,(r. k) =fi(r, k - l)+fr& k)+ l l l +fi,tr, Ic) 

and for i>r 

fj(r, k)=,‘,(r, k- l)+&-,(r, k)+ l l l +fi_,(~, k)., 

These rules follow trivially from Eq. (13) on setting Tk (r) = T(P)T~ *(r). In Table 
2 tve list values of f,(2,2j + 1) over a range just sufficient to check the values of 
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Table 2. f,, (2,2j + 1) 

n f-,(2,1) f-,(2,3) f&t 5) ftJZ 7) f” (299) fJ2,W f,(2,13) 

0 1 
1 1 
2 2 
3 3 
4 5 
5 8 
6 13 
7 21 
8 34 
9 55 

10 89 
11 144 
12 233 
13 377 
14 610 
15 987 
16 1597 
17 2584 
18 4181 
19 6?65 

1 
3 
9 

22 
51 

111 
233 
474 
942 

1836 
3522 
6666 

12473 
23109 
42447 
77378 

140109 

1 
5 

20 
65 

190 
511 

1295 
3130 
7285 

16435 
36122 
77645 

163730 
339535 

1 
7 

35 
140 
490 

1554 
4578 

12720 
33705 
85855 

211519 

a 1 1 
9 11 13 

54 77 
255 418 

1035 1925 
3762 

12573 
39303 

Sn (1) given in Table I, using Eq. (14). Note that the f,(2, k) that occur here are 
the “ordinary” convolved Fibonacci numbers studied by Riordan [5]. 

5. Asymptotics 

We now give a first-order asympotic formula for S,(m). The only tool required 
is a theorem given by Bender in his review paper [6] (his Theorem 5). Bender 
apparently considers this theorem part of the mathematical folklore; for this 
reason we refer to it in the sequel as the “folklore theorem”. Under cxtain 
analyticity conditions, which we omit (see [6]), this theorem asserts the following. 
Let y(x) =xnzO u,,x” be the ordinary generating function of the sequence a, 
which is known to have the property a, > 0 from some point on. Let y satisfy the 
functional equation F(x, y) = 0. Finally, let r > 0, s > a, be the unique real solu- 
tions of the system 

F(r, s) = 0, F,(r, s) = 0. (21) 
Then 

J WC s) 
a, - 

-1 -_n 

2?rF,,(r, s) * ” l 

(22) 

In the present case the functional equation is (9), and the system (21) becomes 

&*_(l_r_+. . . _rr”+‘)S+rm =o, 

2r2s --(l-r-r*- l l l -rm+‘)=O (r#O). 
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Multiplying the second equation by s and subtracting the first equation from it, we 
obtain 

s* = p-2, 2#m+*)/*+ r+. . . + p+l = 1. (23) 

We now consider some special cases. 
(a) m = 0. As remarked in Section 2, these are the Motzkin numbers, given 

explicitly by formula (5). The solution of (23) is r = 3, and the folklore theorem 
gives 

(24) 

At n = 149, formula (24) yields S&O)- 9.9395 X 106’; the correct value, to this 
accuracy, is 9.7792 X 10”‘. 

(b) m = 1. This is the case of greatest general interest (cf. [l, 21). From formula 
(14) we obtain 

To get the asymptotic formula, we first observe that the system (23) reduces to 

s2 = l/r, 2r;+r+r*= 1, 

whence s4 -s* -2s-1=0=(s2-~-1)(~*+~+1). The appropriate root is s= 

i( 1 +A), so that l/r = 5(3+&). Further, 

F,(r.s)=2rs2f(1+2r)s+1 =3+s+2rs= 
5+3J5 

2 ’ 

&Jr, s) = 2r2 = 7 - 36. 

Substitutiord of these values into (22) gives 

it seems yLite laborious to derive (26) directly from (25), that is, without using the 
folklore theorem. At n = 150 this expression gives S,,(l) - 2.9872 X 10s9; the 
correct value, to this accuracy, is 2.9397 x 10s9. 

(c) m = 2. From Eq. ( 14), 

The sy:*tem (23) becomes 

s = 1, r3+3v2+r-1 =O=(r+l)(r2+2r-111, 
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SO that r=&-1, l/r=l+& and 

Fx(r,s)=1+6r+3r2=4, Fy,(r, s) = k-4&. 

This leads to 

a+& 
SI (2) - II- 

- G(l +fi)n. (28) 
7c 

Evaluating at y1 = 1X!, S,,(2) w 1.2446 x 10s4; the correct value, to this accuracy is 
1.2233 x 10S4. 

For m > 3, the system (23) must be solved numerically. More, however, can be 
said about the behaviour of the root r = r(m) as m increases. The following three 
theorems, which we state without proof, are due to C.J. Everett (private com- 
munication). 

Theorem 1. For finite m, r(m) < $. 

Theorem 2. r(m) is monotone increasing with m. 

Theorem 3. r(m) 3; from below as m -00. 

The behavior implied by these theorems is illustrated in Table 3. 

Table 3 

m r(m) 
- 

0 0.333333333 
1 0.381966011 
2 0.414213562 
3 0.436911127 
4 0.453397652 
5 0.465571232 
6 0.474626618 
7 0.48!373188 
8 0.4863 89036 
9 0.490102038 

10 0.492835560 
11 0.&?4836198 

12 0.49629207 1 

6. Generalizations 

m r(m) 

13 0.497345948 
14 0.498 105305 
15 0.498650302 
16 0.499040180 
17 0.49?318358 
18 0.4993 16421 
19 0.499657210 
20 0.499757161 
21 0.499828048 
22 0.499878286 
23 0.4999 13869 
24 0.49993906 1 
2s 0.499956892 

The Catalan numbers themselves satisfy the recurrence rule 

Sn =nf SjSn-I-j, S()= 1; 
1=0 

(29) 
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explieitly ) 

1 2n 
st,=c,+1== n l 

( ) 
(30) 

The enumerative interpretations of c, (bracketing, trees, etc.) are too well known 
to require restatement here. With y = Cj =o Six’, the functional equation resulting 
from (29) is xy2- y + 1 = 0, so that 

and formula (30) follows on expanding the radical (cf eq. (11)). The folklore 
theorem gives 

and this agrees with the result of applying Stirling’s approximation to (30). 
The sequences (14) considered in this paper can clearly be thought of as 

generalizations of the Catalan numbers despite the fact that there is no value of 
the parameter m for which the recurrence rule (1) takes the form (29). These 
“generalized Catalan numbers” preserve the “elementary” character of the 
(Jriginal c,. Other, quite natural, generalizations need not have this property, for 
example 

S,, + Ah) = (n + b) i Sj(b)S”+,j(b)9 S,(b) = 1. (b 30). 

ix 1 

(See [7J for a discussion of these nonelementary sequences). 
Further elementary generalizations of c, are obtained by introducing a second 

paramcier t into the recurrence (1): 

t+j-1 

S 
(m.t), 
mtj -sm+j =Sm+j-_1+. l l + Sj-1 + C SiSt+j-l-i, 

i=O 

\i.rth :ne same boundary conditions (2). The sequences 
) ‘(y, w.- c- - L ,,ld to taking t = m - 1. Proceeding as in Section 3, 
c quation 

1 F(& y)=p+' ty*--- 
T(m .;l)y+x”= 0. 

OW-?l, (31) 

S,(m) studied above 
we find the functional 

(32) 

It is evident from both (31) and (72) that this generalization includes all the cases 
studied earlier except the Motzkin numbers and, of course, the Catalan numbers 
t hemqelves. 

Solving Eq. (32) we obtain 
. . 

1 
Y =--. 

X T p-m $1 -J-iX-T2), T=T(m+l), p=2m+l-t. (33) 
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Eq. (11) gives the general solution 

S,(m, t) = 1 Cj+lfqim + 1,&i + 1)~ q=n-m-(2m+1-t)j, nam. 
j=O 

iw 

The parameters r, s of the folklore theorem are determined by 

s2 = tt-l; 2r m+l-tS _ (I_ r- . . . _ p+l) = 0. (3% 

Examples. (a) m = 0, t = 0. The recurrence rule is 

j-l 

Sj = Sj-1 + C SiSj__l_i, SO' 1, 
i=O 

and the functional equation is 

xy2 T(1) 
-Y+l=O. 

From (34) we get the explicit solution 

S,(O, 0) = 1 Cj+l n2i’ l 

j-0 ( ) 

(36) 

(37) 

This sequence 1,2,6,22,90,394, . . . is probably new; at least it cannot be found 

in [3] or its supplement. The appropriate solutions of the system (35) for this case 
are s=l+JZ,l/r=s*= 3+ 2fi, and these lead to 

4+3& 
S,iO, 0) - lr 41rr n-$(3 -I- 2J+. (38) 

ib) m = 2, t = 0 (N.B. m = 1, t = 0 is S,(l), previously studied). The recurrence 
is 

n-l 

Sn+2(2,0) s Sn+2 = Sri+++ + Se + Sn-* + C SiSn_l-i, 
i=O (39) 

so=sl=o, s2=1. 

From (32) and (34) we have 

Fix, y) = x3y2 _Y+x2,(), T(3) W) 

Sfi(2,O) = C Cj+*~~L~‘i’-‘,‘m (41) 
j==O 

After simplification, the system determining the folklore theorem parameters 
reduces to 

r= 1/s*, s5-s4-s-1=0. (42) 
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Numerical solution yields s = 1.49709405, so that l/r = 2.2412906; this is, of 
course, the limit of the ratio Sn+,/S,, for this case. 

We do not take space for further examples. It is worth remarking, however, 
that the sequences (34) appear to be new (i.e. not in [3]). Unfortunately, we do 
not at present have a combinatorial interpretation for any of these numbers, with 
the exception of khe subset given by Eq. (14). 
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