
Det Kgl . Danske Videnskabernes Selskab .

Mathematisk-fysiske Meddelelser . VIII, 7 .

A GENERAL

SUMMATION FORMUL A
BY

j . F. STEFFENSE N

KØBENHAVN
HOVEDKOMMISSIONÆR : ANDR . FRED . HØST & SØN, KGL . HOF-BOGHANDEL

BIANCO LUNOS BOGTRYKKER I

1928





1. In a recent paper' I have introduced certain poly-

nomials x,,n defined by having to satisfy the equations

v

	

v- 1
lixwn = vxw, n- 1

v v- 1
!/xw rz = vxwn ,
w

besides the initial condition s

x
o

	

l. ,

	

xw 0 = x (x - cw) . . . (x - v + w) .

	

(3)

These polynomials are the natural instrument for dealin g

with some of the most -important problems of the theor y

of interpolation, such as expressing a difference of a cer-

tain order and with a given interval in terms of differen-

ces with another given interval, or expressing a sum of a

certain order and with a given interval in terms of sum s

with another given interval. In the present paper we inten d

to occupy ourselves with the latter problem .

2. Proceeding in a way similar to that followed in

deriving the generalized Euler-Maclaurin summation-for-

mula we begin by defining a function x r , distinguishe d

by a bar above the argument, r being a positive integer ,

which in the semi-closed interval 0<x<r is identical with

xwr , that i s
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x
w,

. = xw,.

	

(0 < x < r),

	

(4 )

while for all x (positive, negative or zero )

r -v
9xwr =0.

As the latter relation is a linear relation between xü,r ,

x + 1„",,,, . . . x+ rwr , it is seen that x 'Wr is completely

determined by (4) and (5) .

It is easy to form an explicit expression for the cal-

culation of x ;,, r • Let k be an integer (positive, negative o r

zero), and let 0 < O < 1 . We may, then, always writ e

x = k+ 0, and it may be proved that, putting (S) = 0

for s > v,
r- 1

k-{-- O w ,. =~ ( S / k(s) B w > r~ s

	

(0 < 0< 1) .

	

(6 )
s

We only have to show that this expression satisfies (4)

and (5). Now, performing Jr on both sides of (6) with

respect to k, all the terms on the right vanish, so that (5 )

is satisfied. As regards (4), we assume for a momen t

0 < k + 0 < r, so that 0 < k < r-1 . As k(s) then vanishes

for s > k, (6) becomes

(5)

k + 0w, .

~ (v)
k

(s) v-s

S

	

B (a, r- s
s= 0

or, as (v)
S

vanishes for s > v, and k(s) for s > k,

k+ B ro r

or, by G. N. P. (5),

(s) v-s
k 0w, r- s

k + 0pwr = (k i - H)wr ,

so that (4) is also satisfied .
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5

It should be noted that if v < r, (4) is valid for all x,

as in that case l/rxwr = 0 for all x, so that (5) is satis-

fied by xa,r itself. The formula (6), though valid in al l

cases, need therefore only be applied if v > r .

3. We are now able to prove tha t

-~

	

-v- 1
/xwr - vxw , r-1 ;

as x,o has not yet been defined, we may pu t

-vxw o = 0 ,

so that (7), owing to (5), also holds for r = 1 .

We need only difference (6) with respect to k, th e

result being

r-(sv)'

	

Sk( s- 1 ) v-s
~l k r Bwr =,

	

B(0,
r-s

s=0

r-I
(w- 1 (s-1) v-s- v

	

s- 1 k

	

e w, r-s
s=

r-2

(s)k Bv- s-1w, r-s-1
s O

p-f

= vk+ fi w, r

l

I e

or (7) .

4. It follows evidently from (4) and (6) that the

function xw r is continuous in the interval 0 < x < r and

also in the interval between any two consecutive integers .

If v < r, Zr is identical with x , . and, therefore, continu-

ous for all x. I . v > r, it can be proved that xvwr is still

continuous for all x ; but in the case of v = r we shal l

arrive at the result that xwr possesses points of discon -

(7)

(8)
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tinuity when x is an integer > r or <0 ; other points

of discontinuity do not exist.

Let us first assume v > r . The relation (5), written i n

full, i s

v

	

r
x +rwr- 1 x+I•-1wr+ (21.) x + r-2 wr . . . + (-1)r xwr = 0 . (9)

This is valid for all x . Putting x = 0, and making use o f

(4), we hav e

or

-v

	

l'

	

v

	

v
I•wr- 1) (r 1)wr+

(1 .
2) ( r 2)w- . . -1) rO wr = 0

r
t/ o',', ,,+

-
l

v
r

	

0 .

But if v > r, dr Ow r = v (r) O w o r vanishes, and we have ,

therefore,
-v

	

v
r wr = rwr

	

(v > r) .

It follows that xw,. is, for v > r, continuous in the close d

interval 0 < x < r, and (9) shows clearly that xw r must

then be continuous for all x, as was to be proved .

It remains to investigate the case v

	

r . We obtain by

(6) for v = r
r

	

r
r _

	

rr} (s) r- s
k+ 9 wr

	

s11 k 9w r - s
s-- 0

r
I

	

(s) r - s

	

(r)
~'s

k w _s- k

s= 0

or, by G. N . P. (5) ,

k+9mr = (k+9)wr-k(r)

	

(0 < H < 1) .

	

(10)

Hence . we have, for 9 = 0,
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r r

	

(r )
kor = kwr- k

and for 0 -- 1

k-I-1-Owr

	

(k+ 1)wr
-k(r)

or, replacing k by k -1 ,

k-Owr = r - oc- 1) (r) .

Subtracting (12) from (11), we hav e

kw r k-0w = (k - 1) (r) - k(r )

_ - 7 (k -1)
(r)

(12)

or finally

k' wr -k -Owr = -r(k- 1)(r -1) . (13)

This expression shows that x,,r has discontinuities at

all the points x = r, r + 1, r + 2, . . . and x = 0, -1,

- 2, . . ; other discontinuities do not exist, as the ex-

pression on the right of (13) vanishes, if k has one of the

values 1, 2, . . . , r -l (r > 1) .

It is worth noting that the amount of the discontinuity ,

or the height of the "jump", is independent of w, as

appears from (13) .

5. The relation G . N. P. (34), or

xwn = (-1)v (n-x)/ w,n

	

(14)

also holds, with an obvious reservation, for the function s

, We begin by noting that instead of (6) we may us e

the following relation for the calculation of xwr

r- 1
	 v

	

( ; )
r-k- l+(I)

	

k (1- 0)_w, r_s (15)

s= o

where k and 8 have the same meanings as before . For,



S
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putting x = r - k -1 + 0, it may be proved that the ex -

pression (15) satisfies (4) and (5), as we proceed to show .

As regards (5), it is seen at once that, differencing r

times on both sides with respect to -k, all the terms on

the right vanish, so that (5) is satisfied .

Next, we assume 0 < x < r, that is 0 < r-k-1 =, Ø < r ,

so that 0<r-k-1 <r-1, or 0<k<r-1 . If k is

comprised between these limits we may, as above, replac e

the upper limit of summation in (15) by v, so tha t

v
p

r-k- 1-{-B w r = (- o
Y-S

-a), r-S
w

or, by G. N. P . (5) ,

r- k-1+ewr = (-1) 1 (k + 1 - B )vcu . r

or finally, by (14) ,

r-k-1 +Bwr = (r- k - 1 -~ 0 )cu r

so that also (4) is satisfied .

Having thus established (15), we may, if we exclud e

the value 0 = 0, replace 0 by 1 -0 in (15) . Changing th e

sign of w, we thus obtain for 0 < 0 < 1

r- 1

~

	

(s) .1;_s-w , r = (-1)

	

S k 0« 7 ._s .

s- o
r -k- (16)

But comparison of this relation and (6) shows tha t

v--v
xcor = (- 1) r x-ø ,

provided that x is not an integer . If x is an integer, (17 )

is still valid for v r, as in that case xw r is continuous

for all x . But the case v = r must be treated by pulling
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B = 0 in (6) and letting O -~ 0 in (16), the result bein g

the relation

kw ,. _ (-1)r,•-k-0-r_w r

6 . We shall now assume that

0<w<1,

	

0<0<1-w,

	

(19)

so that 0 < 0 co < I . It follows that (6) remains valid ,

if 0 is replaced by 0+w, and we therefore obtain

zl k + Bai r
cn

+v- 1
_ Yk

	

8 c,, r

-„

	

( 0 < w < 1
~/xwr = ~~xwr

	

'~ k -1 < x < k-w)

where k has one of the values 0, + 1, + 2, . . .

If, in this formula, we let w - 0, the symbol ô/ may be

replaced by the symbol of Differentiation D at every poin t

where the derivative exists ; at points where it does no t

exists o means the differential coefficient to the right .

For x > k- w we find from (20)

1

	

Y

w ~k-Op,r- k wwr) = vk-w w r

whence
	 v-1

	

1(	 	 v/Ic- wwr = vk - wwr +u kwr- k --0,1 r) .

	

(21 )

(18)

r-1

	

//
v-s)

v-s-1
S

	

Bra, r- s

(s) V-S .- 1
k B w, r- s

or

(20)
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It follows that, if v $ r, (20) is still valid for x = k-w ,

while in the case v = r we obtain, by (13) ,

ak--ww, . = rk- wfwr l -~ (k -1)(r-1~ •

	

(22)w

The supplementary term in (22), representing the dis -

continuity, vanishes for k = 1, 2, . . ., r-1, (r > 1), so

that (20) is still valid for v = r, x = k-w, if k ha s

one of the values 1, 2, . . ., r-1, (r > 1) .

7. After these preliminaries, the problem of summatio n

may be attacked . We assume henceforth that l i s a p o si -

tiv etive integer > 1 whence follows, in particular, that th e

condition 0 < w < 1, implied in (20), is satisfied .

Let h be a parameter, positive, negative or zero, o f

which we may dispose afterwards, and let us consider th e

expression

1 - 1äï

	

v -F s.

Vsv) =
- w

~

7 d~(v+Îs)!sw +t
f(x+ l-w w) . (23)

w

This expression may be transformed in the followin g

way which is equivalent with partial summation . As

z= //"//, we have
w

	

w w

1
vI s

(,,)

	

~FLwh w .s

	

v
T~s = ->

	

-I-

(V I S)//
f(x-I-1-,uw)

ic= 0

w

	

v+ s
/lbw + hw s

(v+ s)!
z/ f (x + 1 - w -,u w)
w

or, if in the first sum we replace Fc by It + 1,
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1 1

v+ s
w-;- w-} h w s

	

v

(?--{-s)-i

4 f (x -{- 1- w- µ w)

1 -1	w

X
w + hws s v

+

	

(v s) ~

	 _ J f (x + 1- co - ~a w}

which may be reduced t o

- 1n

	

Ftiax~ws
s

V~P)

	

A + h_
-w Vw

~i F S)I
wh f(x-{-1 rs,ta w)

o

v+s

	

v -i- s
l + hws

	

v

	

Itws

	

v
~ (v +S)!

Å
f(x) - (y

+ S)
j w f(x + 1) .

Assuming s > 1, we have, by (7) ,

v+s

	

v+s

	

v +s-1
1+ha s = hws +(v +s)hw,s ,

so that V s(") may be written

o

v +s-1

	

v+ s

+
(v+

,s -11) I
wJy f(x) (vt+s)

! -
vw f (x)

We now assume that v > 1 and that h is a multipl e

of co, that is, h = pw where p denotes an integer (positive ,

negative or zero) . In that case we have, according to No . 6 ,

as v+s $ s,

	 +
,uw+hws s = (v+S) uw + h

ws
s

w

u.=- 1

= o

-

1

	

v-;- s
~ ~~Ihaw-_h w s

(v+s}!
(J7 f(x+1 -w - 1uw

(24)
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so that we obtain from (24), by (23) ,

	

Y -rS -

	

Y-~ S

(v s
(v)

	

(v-1)

	

hm, s-1

	

h. .,

	

v
ti's = .s

	

+

	

f(x) -
(v
	 +	

s) !
/ w/ f (x). (25)

.

Performing the operation CJs-1 on both sides of (25)

and summing from s = 1 to s = r, we find, puttin g

r

and taking account of (8),

S -I l,(~~~)
lJ

	

s (26)

-v -F r

Ry = Rv_ 1 -
(v +rr) !

zJ 7 (UJ~ f (x) .

	

(27)

Summing on both sides of this equation from v = 1 t o

v = m, we obtai n

Rin = Ro-

m_

	

y -I- r

	

' (vi-F-r)

	

	 `J
r zf f (x)• (28)

y =

It remains to investigate Ro . According to (24)

s
(~)

	

w	
i ~ww -f- hcu s

Vs

	

f (x -I- 1 - co --,~L
s !

it,= 0

s-1

	

s

	

+ (s
h ., ,

-
s!

	

f(x) .

Now it follows from No . 6 that we have generally

//,tcw+ h s = s uw Itws
,

w

exception being made at the point

(29)
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(30)p,w+h = k- w
where the term

S

	

(s-7 )
- (k-1)

must be added to the right-hand side, producing a term

+(sLf(x+ 1 -k+h)

in V(s0)
We therefore obtain from (29), performing th e

operation as-1
on both sides and summing from s = 1 to

s = r
1

-1	 	 1r w	 	 s-7

' y ,u' w + h cos

	

s-R° =

	

(s-1) !	 d

	

f(x-I-1- w -,uw)
s=1 ;c= o

k-1 s-1 hr

(s-1)
z/

	

f(x +1-k+h)--	 l
~ r ~ r f(x) •

This expression may be simplified, if we assum e

0 < h < r. In that case h~, r may be replaced by hw, ., and

it may be concluded from (30) that r > k > 1, so that

r

k-1 2-1 f(x+1-k + h)s-1 ,
s

k
~ (

k-1/ ~/s 1 xL~ s 1J

	

f( +1-k+h) = f(x +h) ,
s= 1

as follows from the identity

f(x +h) = (1 +J)k-
1 E -k +l f(x+ h)

= (1 +r
/)k-1 f(x-I- 1k+h).

We thus obtain from (31)

(31)
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- 1w

	

s- 1
~ w+12ws

/S-f(x-+---tuco)

	

.

s=~ F~
(s-1) I

	

(32)

/t
r +f(x +h)-

w
r ,

	

f(x)

Finally, we insert this expression in (28) where hwr
r

may now be replaced by hwr r . Noting that ,ww--,'-h,,
s

1
(ttw + h)

s
,,J-S according to No. 2, and writing ,ww = 1- w

- vw, we find

f (x -I- h) =

where
0<h=-pw<r

	

(34)

and, by (26) and (23) ;

nt + s
1t +1-w -vwws s-1 m-, 1

(tn -+-s)!
- - il

	

/I

	

f(x+vw) . (37)

8. The formula (33) is a generalization of Euler-Mac-

laurin's formula which is obtained for r = 1, w -> O .

Our formula may be transformed in several ways .

Thus, by G. N. P. (38), it may be written

r

1-1-w vw)ws t~

	

s-1

(s 1) ~

	

f(x+vw)

(33)
m

	

v + r
Itwr

	

I
"' J. ~"

f(, )
+ R,, ,

(v + r) .

r
1

Co

r
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f(x + h) =

v± r
hcor Clr'w

f(x)+ h' m
(v+ r) !

	

w

m

The formula is in reality an identity between th e

m + r
+ 1 equidistant values of f (t)

f (x), f (x -H w), f (x + 2 w), . . . f (x + m w + r). (37)

If, for f (t), we take a polynomial of degree not exceedin g

rn, we have Rm = 0, and comparison with G . N. P . (59)

shows that we hav e

1
r- a

1

	

r- 1
vw) s

(x
+

vw)
lt wr r v-r(h-

s

	

ii~J w

	

f (.x) . (38)
v=0

	

= 0

This relation has thus been proved for a polynomial . In

order to extend this formula to other functions than poly-

nomials, we note that /J r J r f (x) has a definite meanin g
w

whether f (x) is a polynomial or not, as the variou s

meanings of If(x) only differ by a function which i s

w

s= 0

cancelled by the subsequent application of Jr,
1

being an
w

integer. We have, in fact

r -7 '
J /J

w (11~rJ-r

	

(39)
w

	

w

or, on comparison with G. N. P. (17),

(40)

s=0
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which may also, by G. N. P . (39), be written

~_
7_ r

r--7 l/ O s' ~- r
~l r 9

r

-~

	

ø0
S

	

(41 )
rv

	

(S+ l')1 m

so that the operation zirzr
r

has a well defined meaning

whether it is applied to a polynomial or to any othe r

function.

It is now seen that (38) is an identity between th e

values of f (t)

f(x), f(x + w), f(x+ 2 w), . . . f(x+r -w) ,

both sides being linear functions of these values wit h

coefficients that are independent of f(O . It follows that

although (38) was only proved for polynomials, it is vali d

for any function f (t) .

We may therefore write (33) or (36) in the for m

r+m ,,

f (x+ h) _~ ]v
' , r

w

v-, f (x) + Rm .

	

(42)
= 0

For co -} 0 we obtain from this a formula due to NöR-

LUND (Differenzenrechnung, p . 160) .

9. If we impose certain restrictions on f(O, the re-

mainder R 771 may be put into the convenient form

	

a	 m+ r
h- w -vwmr r m+ 1

	

R,,, - w
~__,

	

(ln + r) t

	

~l U/

	

f (x I vw) . (43)
v= o

The assumption we make about TO) is that the ex -

pression

l'
w
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x

- v[omr r f (z + Y[.) )

v= 0

must be convergent for z > x. This condition is, for in -

stance, satisfied, i f

lim tr+ £ f (t) = 0

	

(s > 0) ;

	

(45)
t->- ~

for it follows from (6) that x[or does not increase more
r-1

rapidly than x

	

. The condition (44) does not imply

any analytical property of f(l) but only concerns the ra-

pidity with which the function must decrease for t-* on .

It is clear that if (44) is satisfied for a given value of r ,

it is also satisfied for any smaller value of r.

We may now prove (43) by induction, writing R (m> in-

stead of Rm in order to indicate that Rm depends on r .

Let us first prove the formula for r = 1 . We have by (35)

1
-I . m+ l-r h -H 1 -co- YUJ ai1

	

in -}- 1

(m 1)
--

	

J

	

f (x -;- v[u) .

If to the right-hand side we add the expressio n

~ l h-~- 1- Ld -- vU)mi 1 - t1-- vUJ m1 F1 m -~- 1
N ~

	

(„1+1)!

	

- ,/

	

f(x+v(o)

v = 0

which is convergent according to hypothesis, and vanishe s
-m+ 1

identically, as

	

is periodical with the period 1, w e

obtain after an obvious reductio n

Vidensk . Selsk . Math .- fys . Medd. VIII, i .

	

2

(44)

(1 )
R m = -a)
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R(1) =

	

h-I-1-w-vw 1 1 m+ 1
m

	

(m 1) !

	

~

	

f(x+vto)w
1

w

or, writing v+
1

instead of v in the first sum and reducing,
co

	

ø	 m-I- 1h-o-vo

	

) = w
~ '

	

- wll/llm+l f(x + vw ) ,
(m 1) !

	

wR(m v o

so that (43) is valid for r = 1 .

It remains to show that if (43) is valid for r = s-1 ,

it is also valid for r = s . Now, by (35) ,

1
-1

w

	

+ s
(s)

	

(s-1)

	

h+1-w -Ywws

	

s-1 m-I 1R,n = Rm -w ~	 	 ~	 d z/ f(x+ vt~) ;

	

(rn -I- s) .

	

0)

hence, if (43) is valid for r = s -1,

= o

v= 0

1
- ].

w	 -m -F sh+1-wvww s

= 0
(rn-I- s ) !

s--1 m+ 1v

	

f(x +vw).
CO

R (s) = wm

m+ s- 1
h- w- Yww, s-1 /s-1 /m+l f(x

Yw)
(m -I-s-1)! w

But, as
-m+s

	

-m+ s
m +s-1 h+1-w- woo) s - h -w -wow s

h - w - vow, s-1 -

we find immediately, on reduction,
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co	 m -i s

(s)

	

h - vws

	

s m} 1

	

Rm = cv ~ . l

	

(M + s) !
	 L/ w

	

f (x -I- vw) ,

and the proof is completed .

10. Before proceeding to establish the desired genera l

summation-formula, we shall make a few remarks about

repeated summation . The symbol w% 1 is generally de-

fined in such a way that

w 1 f (x) = P (x) V. (x) ,

(x) being any particular solution of the difference equa-

tion / cp (x) = f (x), and tp w (x) being an arbitrary periodic

function with the period co . It will now be advantageou s

to fix the meaning of //-I. We put', assuming the conver -
w

Bence,

w
f(x) = - w > f (x -E- v(o) ,

	

(46)
= o

and it is obvious that, with this definition, c/ ~-1 f (x) =
w w

f (x), as it should be . For the applications of the operation

, thus defined, to summation between finite limits, th e

condition that (46) must be convergent is not a re -

striction of real importance ; for, as we do not assum e

that f (x) is an analytical function, the summation-proces s

(46) may be applied to any table of finite extent ,

provided we put f (t) = 0 for values of t outside the range

of the table .

The symbol d 1 , defined in this particular way, i s

commutative with z/ ; for we have
w

1 Compare NÖHLUND : Ditferenzenrechnung, p . 41 .

?*
.
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~

f(x +vw +(0)- f(x-i-vw)
<1~ 1 ~/f(x) = -w G
w w

	

w
v = o

= -

	

f(x+vw +w) +
.,L .
),= 0

= f(x) =

	

f(x).
Û) w

From (46) follows, for w = 1 ,
co

z/-l f(x) = - ~ . f(x +v),

	

(47)

and it is easily proved that any two of the symbols ./ ,
-1

~/ , w are commutative if, in exchanging the orde r

of two symbols of summation, we assume the absolut e

convergence of the double sum .

The operation /i may be repeated, always assumin g

the convergence ; and we find in the case of absolut e

convergence

/ r f(x) = (- w
(v+r-l )

r - 1

	

f (x -F vw) .

	

(48)

For this formula is valid for r = 1 ; but being valid fo r

any particular value of r, it is also valid for the followin g

one, as
~

-1 -r
f(x) _ (- w)

w

r+l

	

)

	

v7

r-1

	

f(x+([-fiJ ~ pm)

0 v= 0

m

= (- w)

	

(s_ar_l) f
(x+Sw)

s=0 tic= 0

oc,

r+l

...-I

	

r '
s=0

f(x +Sw) .
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From (48) we find, putting w = 1 ,

r f(T) =(-1
v + l - 1
r 1

	

f (x + v) .

	

(49)

11. In order to derive the desired summation-formula ,

we will for a moment assume that f (t) is a function tha t

vanishes beyond a certain range, say, for t > N. We may

then, in (42) and (43), perform the operation on both

sides, and thus obtain
r+ln ,,.

-/-r f (x -I- h)

	

tv ~~

U~
-r f(x) + R,

	

(50)

- o

ck,	 m-1- r
h--- w - vw cor

	

+
R = w

	

(1n i 1) 1

	

~

	

f (x + vw) .

	

(51)

v= o

But this formula evidently remains valid for N - co, i f

all the sums are convergent .

A sufficient condition for the validity of (50) and (51 )

is, therefore, that the condition (45) is satisfied in- which

case all the sums are absolutely convergent . In particular,

(50) and (51) may be applied to summation between finit e

limits, if we put f (t) = 0 for values of t outside the range

of the table . The parameter h must satisfy the conditio n

1
(34), and - is a positive integer > 1 .

w

By keeping the first term on the right of (50) apart ,

it is seen that the formula may be used for the approxi-

mate calculation of

	

r
f (x) or zl-r f (x + h) if, besides

w

one of these sums, we know the sums of lower orde r

etl^r f (x), w
2-r f (x), . . .

12. The simplest and most important case of (50) is

obtained for r = 1 . The result may be written
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in -I-1

	

y

f(x - I- vw)

	

f (x+h-♦ - v)-I % ./
Iya}l

~v-1f(x)-~ R

	

(52)

where 0<h=pe < 1, and

--m+ i
h-w - ri(rJw1

	

,+ l
Î~ = w

	

-
(in 1) ?

	

~/

	

f (x ~ vw) .

	

(53)
„ o

The

(46),

explicit expression of x,,, 1 is, according to G. N . P .

_ ~ (V) v --s s
x rnl

	

Uwl xøo ,

and x,,, 1 is a function, periodical with the period 1, whic h

in the interval 0 < x < 1 is identical with x«1 .

From (52) and (53), Euler's summation formula i s

obtained by letting w -> 0 ; we need not go into details .

1.3 . It is not always practical to use (50) for summa-

tion between finite limits, but another formula may b e

derived from (42) as follows .

Let x be an integer (this restriction being of no rea l

consequence), and let y be another integer, supposed to

be constant . We put 1 , for x < y,

S' f(x) =

	

f(x)

	

f(. .x + v)

	

(55)
o

while S ' f(x) = 0 for x % y . Hence, on repeating the opera-

tion S' r times ,

Compare STEFFENSEN : Interpolation (Baltimore 1927), art. 11 . 1

(where tl is written for y - 1) .

(54)
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Y- 1

S(r' f(x)

	

-x r-1) 0))

	

-)f =

as may be proved by induction, or be concluded from (49 )

(putting f (t) = 0 for t > y) .

It is now easy to prove that for s < r

s-1
s (s) ztr.f(x) _

	

1)s dr-S f(x)-

	

(-1)v(y-1 -x+v)l/r--s+v

	

I„

	

f(y) • (57)
L

	

v= 0

For this formula is valid for s = 1, as, by (55) ,

S' //r f(x) = S'er/ ' ldf(x )
S ' zI if (x+ 1)-S' /J r- l

f(x)

= ~ r- l f (Y) -År-l
f (x) ;

and being valid for any particular value of s, (57) is proved

to be valid also for the following one, on performing th e

operation S ' on both sides and noting tha t

S,(y-1-x+v)
-

(y-x+ v
v

	

` v + 1

Similarly, we put

S'f(x ) = ff(x) + f(x+ w)+ . . -1-f (Y- .)] (58)

besides S ' f (x) = 0 for x > y ; whence, by induction or
w

by (48),

7-x
(J

	

I
/

W(I)f(x) = G7r
\

~1 71 r j 1 1)f(x+vQl) .

	

(59)

-1-x

(v+r- 1
r- )f(x + Y), (56)

v=0



R = (- 1)r m
m+ 1

ZI

	

f(x+vw)
w

(63)

-1y' (ï_ t_ X+~t

	

,,m+1f(Y+Yw)
w
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If now, in (42), we interpret J/v rf(x) for v < r a s

(-1)"-r S (r

	

f (x), this formula may be writte n
w

f(x + h)

v
1)v+r "(ors(r'f

(x)v r

	

w

r

1(v+ 1,~~ vrw
r
f (x) + Rm

where Rm has the meaning (43) .

Finally, performing the operation S (r) on both sides of

(60), and taking into account that, according to (57) ,

r- 1

S(r) d f(x) = (-1)r [t(x)_
~~ (-1 )' r1~ x -i-- v)

l/~~f (Y )
v= o

we find, as S(r '') f(r) = O for v <
w

r-- 1

S (r) f(x -I- h) _

Y- 1- x
+ ~~ /l

y

w f(Y) { R

r-7 .
~--r

,CC = 0

(62)

where
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This formula is more cumbrous in appearance tha n

(50), but has the advantage over the latter that the re-

mainder may tend to a limit for w -* 0 which is not th e

case if (50) is applied to summation between finite limit s

by assuming that f (l) vanishes beyond a certain range .

14. In the particular case where r = 1 we obtain fro m

(62) and (63)

h
:7 1

(+1) ~,l f(x)--ff(Y)~+ R (64)

m

S 'f(x) = S' f(x + h ) +
t,

Y =
where

7 h -fi)-- YCJ
m+ l

R = w,

	

(171 }
1)I~1 rwJm+lf(x+2CJ)-Jm f 1f(y+Y[e)] .

	

(65)

S' f (x + h) has the value

S' f(x + h) = f(x+h)+ f(x+h+1)+ . . : +f(y-1+h)
while

S'f(x) = w [f (x) + f (x + w) + . . +f(y-w)1 .
w

The parameter h must satisfy the condition

0<h=pw<1 .

By letting w -* 0 we may, from (64) and (65), deriv e

Euler's summation-formula .

(64) and (65) may also be obtained directly from (50 )

and (51) by writing y for x and deducting .

a

y 0

Frerdig fra Trykkeriet den 12 . Marts 1928.






