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1. The class of polynomials considered in this paper
will be denoted by xzm where x is the variable, » the
degree of the polynomial, while © is called the range,
n the order of the polynomial. The range may be any
number, but the order is assumed to be integral (positive,
negative or zero).

Writing

so that % = /A, we proceed to show that the polynomial

x’  is-completely determined, if we require that it shall
satisfy the equations

v . v—1
Ton — ’/xw,nvl ? (»

v4 __ 7—1
% xmn - wan 4 (2)

and the initial conditions

xr =1, 2 =x(r—w) - (@—rvota). (3)

wn w0

It is 'obvious that a polynomial with such simple pro-
perties must have many applications in the theory of finite
differences.

In order to prove the existence of the polynomial we
will show that it can be effectively formed, and that the
determination of its constants is unambiguous.

If the polynomial «” exists, (x-+y)” will be a poly-
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nomial in y which can be developed in descending fac-

: () — ¥
torials « =x, ,

(s)
(x+y) = § Y ps o
Hon s “wn’

s=0

and this development is unique. But by (1)

;s — ) v—s i
o x:/un ¥ xw, n—s’ (4)
so that
2
y ; v Y »—s
(x + y)w n (S )ll xw, n—s" (5)
s=0

Putting 7 = », we obtain by (2), writing v+ 1 for »,

v

= Sv v (wﬁl)(S) mV—S (6)
wn e ;O\ S S+1 w,n—s—1
s=10
or

. v

vx” —a — } NE ,(,f”_f;l),(:i oS (7)

wn w,n—1 2, \S s+1 w,n—s—1"

=1

On the right-hand side only polynomials of degree <<»
occur. If all these are known, the polynomials of degree
v can he calculated in succession for every positive and
negative order, x beihg known. For » =1, (7) vreduces to

1 _e—1
Xon acm,n——l - 9 : (8)

which serves as starting-point for the calculalion.

2. In practice we shall not use this mode of calcula-
tion which has only served lto prove the existence of the
polynomials. Before proceeding to their actual calculation
we will develop some of their properties, and begin by
showing that they contain as particular cases several im-
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portant polynomials which have already been introduced
into mathematical analysis.

Besides the obvious relations

O v o )
wp,=a",  af=a", ©

obtained directly from (3), we note

=¥ ao

in

which is obtained rom (2), putting @ =1 and comparing

with (1). This comparison shows that r’{;l and fu?jﬁ_l
have the same wvalue which, therefore, is independent of -

n and, according to (9), equal to a7

Let us, next, examine what becomes of (2) as o —0.
From (7) and (8) follows that «! is a polynomial in x
and . If D is the symhol of differentiation, we therefore

have 9

., 4 ® 2
o |G LA R § IO G
( Tw)wn Lon ’—wacon ! 2[D Zon [ ’

the number of terms on the right being finite. Con-

sequently
[5/]
\ i - 7 el 2 -
w an men + 21 D an+
and
lim A x¥ = Dz’ . (11
@ms0 W wn 0n

We see, then, that «f is the polynomial, satisfying

the equations

y o .v—1
Doagy, = VE g

; (12)

V . Y —

Dxy, = vxy, =,
besides the initial conditions

0 - Yo 2 13
xOn 1 ’ x()o x . ( )

This polynomial is, 'thgref01'e, identical with Norlund’'s
generalization of Bernoulli’s polynomial (for “zusammen-
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fallende Spannen”), as (12) and (13) express properties
of Norlund’s polynomial1 and, as we have seen, are suf-

ficient for determining it. That is, in Nérlund’s notation,

X = Bf}") (x). a4
It follows that xgl is Bernoulli’'s polynomial, or
X, = Bp(.?c) (15)
whence, for Bernoulli’s numbers, |
0, =B, 0 =B". (16)

3. The polynomfals a) ~may also be delined by means
of a generating function which may for some pur-
poses be found preferable. They may; in fact, be defined
by the expansion .

- t A\ xz
eV arerr =N o an
((1“—&)05‘*1) 1/_2,

valid for sufficiently small values of |{|. For, performing
the operation A on both sides of (17), we find

t n—1 7111/*
) Grens ="
(I+wbH®—1/ 7 =0

and, comparing with (17), writing n—1 for n, (1) results.
Similarly, if we perform the operation A on (17), we have

v—1
( >(1+wt)w _2 : run’
(l—l—wt)"’%l

and comparison with (17) leads to (2). Finally, the initial
conditions (3) are obtained from (17) for ¢#= 0 and for
n=2y0 respectively,“ as '

1 NérLunp: Differenzenrechnung, p. 130—1; Mémoire sur les poly-
nomes de. Bernoulli, Acta mathematica 43 (1920) p. 121
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[ee]
i ‘/tV :
I+ ehHo = g ;Tx(a:—w) e (x—rot o).
=0 )
If =20, n=1, (17) becomes
[*s)
t P o

= D> - @8)

The quantities 0,,; are well known; they are polynomials
in w, called Lubbock’s polynomials. They are usually
introduced by means of the expansion’

oo

z . 1

— Do, )
- (A4+2)?—1 »=0

As (19) is obtained from (18) by putting {= -, we have
yp g "
001 — Wyl A, . 20)
Lubbock’s polynomials as far as OZU , are:
1 . wil
Owl - 9
2
2 _ _(!) _1
Owl o 6
2
3 o —l1
U s
2
4 _ __CO —1 2 .
0, = 0 (19w*—1) (21)
05 =P (gu—1
0% = —?’2“1(863 14502+ 2)
0l 84 ® ®
o =1y (275 w*— 61 w®+ 2)
w1 g4 °® ® ®

1 Sge, for instance, SterreNsen: “Interpolationslere” p. 140—1,
where m is written for w. Numerical values of 4, are given in Institute
of Actuaries’ Text-Book II p.471.
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4. We shall now occupy ourselves with the practical
calculation of the polynomials x”

If, in (5), we put x =0 and therealter 57 = x, we have

g —s () )¢
o ( ) :) n—s ’ ’ (2'2)

so that our polynomlals may be developed in descending
factorials ), if the values of the polynomials for x = 0
are known.

But these values also appear in the development in
factorials of the form a:fu oo For, if P(x) is a polynomial
of degree », we have

m@_§-ﬂA}w) (23)
) s=0 -
hence
3 ys
v S w0 s
(x4 ])mn o 0’ o1 % x:un'
—
But by (2)
S v (8 . w—s ’
Now = al (24)
so that .
v P
(x+!])?un :Z(é’)yfuommn " (25)
s=0 .

This formula which is an analogon to (5) may be
written symbolically

(x+ )

wn = (yw0+ mmn)y (26)
where the right-hand member is to be developed by the
binom“ial theorem.

If, in _‘(25), we put x=0 and then y = a, we have
v

v ; v ¥—35 .8 9~
Lon (s)omn Lo 27

pa——
§=0
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or symbolically ,
x:;) n: (wa + Own).y ) (28)
A comparison of (27) and (22) shows that if the values

of Ozm are known, we obtain snnultaneouslv the develop-

) and in factorials oc 0" 1t

seems, ther ef01e practical to calculate a table of the 0”

ments of x , in factorials x
wn
which are a generalization of Lubbock’s polynomials. This

will be done presently.

D, If we differentiate (17) with respect to 7 and put,
for abbreviation,

t

A=—++—, B=1+at,

(1+ed?—1
1

~ 1
we obtain, as = %(I—AB‘” ),

dt
z_4q n ® n e+l g Sw $r—1
.’EAH B{U +TAIL]3 [i1] ‘_7}" An+lB w© — (‘ xv
. =1 *

or, multiplying by Bf,

. . s
T x+1 A

a:tA"B‘“+nA"B 0 pATIRO = (14w > L.

Now, by (17), (2) and (1),

0
'7[1/
AnBru — IR
2!
=0
rhw jw 1
AJIB w — *-*(:L‘ )1/
i p! wn
ey

E t"
¥ -1
- (un—]— - un)

=20
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r4+1
A"TiB ¢ = ~(a:—l—1)”

w,n+1

¥ ={)

- .
ptt
__ Loy oy ,1/—1)
vl (mgg,n+1+’}a’a)n ’

» =0

Inserting these developments in the above equation and
examining the coefficients of #, we find

xw, n+1 <1 —F) x:,/m + H

We combine this formula with the formula obtained
from (25) by putting y =1 and making use of (1), that is

_ > s
w,n—l mn

or, writing »+1, n+1 and s+1 for », n and s,

”_) +*~1J a1 (29)

wn

s+1
— ; 4 7/—9
mn q+1 w n-41’
If, in (29), we write » —s for », we have
y—s VSN s _v—s—1 xr y—s5—1
Loyntr = ( n Lon + 1 n + 1\ S)xum ’

and, inserting this expression in the preceding equation,

we find after reduction, replacing » by » -1,

’/._, 4 15—[—1
1 Yyviln—v-+s . o w0 s
% (S,) [—SH (w+1) n] T (30)
Putting in succession » =0, 1, 2, ... we obtain all the

- 2
polynomials «x .

6. Instead of calculating these directly, we decided to
calculate the 0” which are obtained by putting x = 0 in
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(30). Even the expressions of the 07 become rapidly
complicated, but the first few of them may be written

comparatively simply by introducing the notation

* = g(w —1) (31)
and developing in factorials “fuo' Eliminating n by this

relation, putting x = 0 and keeping the first term on. the
right by itself, we obtain from (30)

0t = {a ——(w + 1)] 0”

wn win

2a(s+1—w)—(»—s5) (1—u?) =1 gr—s
+2( ) ‘ (s+1) (s-+2) =20y, 0" (32)

By this formula we find in succession:

0° —1

wi

T _

Own -«

2 _ 2 w—f—I

Omn - m0+ 6

3 __ 3 w1 o2

Own - awO + 9 wO

08, = ot oyt + @ED 2 0l g

wn wO ® cuO wO

z +1 (o)+1)“ ‘ m+1

OZm: +') +5 “’0 (1 20 )wO 2w, 0

1 5 1)°
08— 20+5w+ o« +5 (“”L )* o — (103m —100w+18) ® |
1

+ ‘%OE (1»2@20 [21 (11w—1) agw’o +2(0—2) (5w-1)A «|

_— w+1 (m*rl)" 4
07 n= %773 “20+35 12 ““’0 Dy

m—I—l

(*)a) —1) (11— )m)io[ mo—4(10w—|—1)0¢ o, -2oo(m——2) cc}
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It should be noted that «”  has, in 0° , 0° and 0’

wn wn wn®
9 ’

5.0 DY means of the obvious relation
]

been replaced by «

o0 T O (33)

[N

& 2 o
4( _
w0

which simplifies the writing.

7. Without attempting completeness, we proceed tO
derive a few of the simplest properties of the polynomials

”
wnr’
If, in (17), instead of x, w and [ we write respectively

n-—x, —m, and —t, we find
a = (— 1) (n—:c)im’ - 34)

In particular we have, for x = n,

R 53
and for x = 5
n\v A '
(5. = (5], @0

2v
It follows that (%>wn contains only even powers of o,
(£>2 r+1 - :

5 only odd powers of e.

wn

If @ =—1, we obtain from (34) by (10)
x” = (x+pr—n—1D". ' (37)

—1,n
An important particular case is found from (29). Put-

ling n = » we have first

SV _ _ v—1
a’w, v+1 (x + « V) xuw

and by repeated application of this formula

¥ o _— ( )
T LT (x+ o — 1. (38)
The polynomials of negative order (n = —s) serve for

expressing the differences of m’(j)o. Putting n=0 in (4) we

have immediately
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NS ¥ =y (39

@0 v, —s"
The differences of x” are obtained from this formula
by putting @ = 0, that is
A g =y (40)

s —S

whence for the “differences of nothing”

DS = 0 (41)

0,—s "
The differences %S x® are obtained as follows. If, in

(38), we replace * by x—w -1, we have

=) = (x—w+1)

w, v+1
whence
s () . () (e y—$
% ¥ =y (x (')Jrl)w,w-l' _ (42)
In particular, we have for o = 0
Df x®) = (x+1>3,‘,,11- - (43)

We need hardly repeat that (40), (41) and (43) as
well as all other formulas obtained by putting w =0, are,
owing to (14), identical with those found by Nérlund. We
shall therefore, as a rule, omit the results obtained for
w = 0.

8. Our polynomials facilitate several elementary develop-
ments, such as «x  in polynomials 9, «* in polynomials

x> ete. For instance, we find immediately from (22),
putting n=20, v
vy YN ar—s _(5)
x —_/S (S)Ow’__sa, . (44)
§=0
S
00
is obtained by substitution. For, putting x = wy, we have

From this, the development of £*) in polynomials x

v
. (v o
w' g = ; <s> 07 (w nHE
)

5=
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. s 1
and hence, replacing y by x and writing - for w,
w

I
7 ;
() __ Yy vr—sa¥ 8 s K
x E <s)w O%’*sxmo. (45)

§=0

A development which will be useful later on, is the

development of ac:,l in polynomials x;o It is obtained

from (25), putting =0, n=1 and replacing thereafter y
by «x. The result is

P
_ v —8 .8
= > (V)0 D

§=0
Another useful special result is the development

. ¥
@y = (V)0 (47)
s=0

which is obtained from (5) for n =O;v it contains, of
course, (44).

It may finally be mentioned that the differential coef-
ficient of x’ ~may in several ways be expressed as a
linear function of these polynomials. If, in (5) and (25),
the first term on the right is transferred to the left, we
obtain by dividing by y and letting y— 0

¥ .
L S —1)yt .
Dx" = (SmbD A Y& s (48)
wn S m, n—s
s=1 .
¥ 1
" — 1)~ _
Dy’ = L)— o' s (49)
wn s wn
s=1

9. Several important summation-problems can be solved
by the polynomials «” . first of all the summation of the
polynomials themselves. If, in (1), instead of x, » and n
we put x+s, v+ 1 and n+1 respectively, we find by
summation from s =0 to s = k—1
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k—1
\’ 1 ;
N — T AT a1 =
2, (:E +'S)(un - 7,+1 [(.’L‘ +1\)Z), n+4-1 xw, n+1} ) (DO)
s=0

In particular we have, for x =0, n= 0
E—1

1 .
¥y y+L O Aav1Y
ZSU)O o »+1 (1\1(»1 Oml ) ’ (51)
0

bl

&=

the polynomials «”  of which use is made on the right
have already been given by (46).

From (2) we obtain, replacing x and » by x+sw and
y=+1, by summation from s=0 to s=k—1

];1} 1 [ +1 +1
v . A 2 2 =
(CC"}“SQ))“”I = (2/_}_1) . [(-’L ] kw)(uu an } . (02)
s=0
. . 1 .
If, in particular, o = - e have, owing to (1),
k—1
1\’ s\ v’ .
S e w
i3 =0 . T
whence for n=1
k—1
1 7 s e N : _
= = — . 54)
b <x+ A)All x%,o (
s=10

In (53) we may let k—> oo, the result being Norlund’s

»Spannenintegral«

sx+1 )
Sx afda =z, . (55)

10. - Our polynomials lend themselves conveniently to
treatment by the so-called »symbolic« methods. 1 assume
that the reader is familiar with the conditions under which
such treatment is legitimate,! the main point being that
if f(x) can be expanded in powers of x, and if P(x) is a
polynomial, then f(A) P(x) has a meaning and signi-

1 See, for instance, “Interpolationslere” § 18.
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fies the resull of expanding f(£) in powers of A and
applying this composite operation to P(x) whereby all

terms beyond a certain order vanish.
. . r —T
As an example, let us consider the operations A A
w

and A" A”" where r is inlegral and > 0. These operations
] —r _r
are unambiguous, as the indetermination of A  and A i
w
is cancelled by A" and A" respectively. Therefore, if P(x)
! w

is a polynomial, the polynomial Q (x)

Q@ = 2" 2T P@) (56)
w

is perfectly determined, and we have, as is seen by per-

forming the operation Ar A~ " on both sides,
(G}

Py = A" AT Q). (57)
«w
Now, if' the symhol K is defined by
E'f(x) = flx+y),

we have

w_
pn=E—1, pn=FE"1
w @
1
E=(14an),

[43]
1

@+w%V—L

AN
If, in (56), we replace & by x4y, we therefore have

Qx+y) = A"rn "E'P(x)

A d ¥
= —2 | ({14+w A\eP(x)
(1+w19%—1 ( 2

or, comparing with (17),

8

- yﬂ)l‘
0ty = " 2t P@. 59

s=10
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The series on the right contains, of course, only a
finite number of terms, but it is convenient to retain
as the upper limit of summation instead of specifying the
degree of the polynomial P (x).

If, in (58), we introduce the expression (57) for P(x),
we have

N yfdl‘ r S—r
Qlx+y) = § STL A Q (). (59)
5=0 ®

This is Lhe expansion of an arbitrary poly-
nomial in polynomials g’ . If, on both sides of (59),
we perform the operation AT we obtain the following
formula which may be calledwthe generalized Euler-
Maclaurin formula for a polynomial '

s

ArQty) =2, 2T A" AT Q). 0)

s=0

The extention of these formulas to other functions than
polynomials is an important problem with which I hope to
occupy myself on another occasion.

11. As an application of (60) we put Q(x) = a2”'"

W, n+r
and find ,
o —
@9 = > (2w (6D
s=10
or symbolically ,
(OC + U)Z), n+r = (ywr + an)”' (62)

This is a generalization of (25) or (26) which are obtained

for r=0. In particular, we have for y=0, r=1

¥
—/,,
v — s y—s, ]
xw, n+1 2 <S‘> Ow‘l an (63)
s=0

Vidensk. Selsk. Math.-fys. Medd. VII, 5. 2
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Eliminating a” belween this equation and (29) we
find by (31)

¥ )
N/ 0

A P vl 9 O 1 py ol s

xr [a (v 1)w+x}xmn 2a— Eks 1 %un (64)
§==2

which, O:l being known by (21), may serve for the suc-

. cessive calculation of the r;’m For x =0 (64) becomes

V, 8
_ v—1 w+1 AR y—s =
OZJH = [OC—(Vgl) w] ‘Own —2&—'7"/'*— <5> 52_:1— Own (60)
=

which was actually used for checking the results obtained
obtained above by (32).

By specifying the polynomial Q in (60) we may evi-
dently obtain any number of formulas for calculating our

polynomials by recurrence.

Fzerdig fra Trykkeriet d. 11. Februar 1926,





