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Abstract

We define the matrix U (a,b,s)
n of type s, whose elements are defined by the general second-order non-degenerated sequence and

introduce the notion of the generalized Fibonacci matrix F (a,b,s)
n , whose nonzero elements are generalized Fibonacci numbers.

We observe two regular cases of these matrices (s = 0 and s = 1). Generalized Fibonacci matrices in certain cases give the usual

Fibonacci matrix and the Lucas matrix. Inverse of the matrix U (a,b,s)
n is derived. In partial case we get the inverse of the generalized

Fibonacci matrix F (a,b,0)
n and later known results from [Gwang-Yeon Lee, Jin-Soo Kim, Sang-Gu Lee, Factorizations and

eigenvalues of Fibonaci and symmetric Fibonaci matrices, Fibonacci Quart. 40 (2002) 203–211; P. Stǎnicǎ, Cholesky factorizations
of matrices associated with r -order recurrent sequences, Electron. J. Combin. Number Theory 5 (2) (2005) #A16] and [Z. Zhang,
Y. Zhang, The Lucas matrix and some combinatorial identities, Indian J. Pure Appl. Math. (in press)]. Correlations between the

matrices U (a,b,s)
n , F (a,b,s)

n and the generalized Pascal matrices are considered. In the case a = 0, b = 1 we get known result
for Fibonacci matrices [Gwang-Yeon Lee, Jin-Soo Kim, Seong-Hoon Cho, Some combinatorial identities via Fibonacci numbers,
Discrete Appl. Math. 130 (2003) 527–534]. Analogous result for Lucas matrices, originated in [Z. Zhang, Y. Zhang, The Lucas
matrix and some combinatorial identities, Indian J. Pure Appl. Math. (in press)], can be derived in the partial case a = 2, b = 1.
Some combinatorial identities involving generalized Fibonacci numbers are derived.
c© 2007 Elsevier B.V. All rights reserved.

Keywords: Fibonacci number; Lucas number; Fibonacci matrix; Lucas matrix

1. Introduction

The Fibonacci numbers {Fn}
∞

n=0 are the terms of the sequence 0, 1, 1, 2, 3, 5, . . . where each term is the sum of
the two preceding terms, and we get things started with 0 and 1 as F0 and F1. You cannot go very far in the lore of
Fibonacci numbers without encountering the companion sequence of Lucas numbers {Ln}

∞

n=0, which follows the same
recursive pattern as the Fibonacci numbers, but begins with L0 = 2 and L1 = 1. The sequence of Lucas numbers is
therefore 2, 1, 3, 4, 7, . . . [13].

We also observe so-called generalized Fibonacci numbers, {F (a,b)
n }

∞

n=0, which satisfy the same recursive formula

F (a,b)
n+2 = F (a,b)

n+1 + F (a,b)
n , n = 0, 1, . . . , but starting with arbitrary initial values F (a,b)

0 = a and F (a,b)
1 = b, (see for

example [9,6,12], ([10], Chapter 7)).
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The n × n Fibonacci matrix Fn = [ fi, j ] (i, j = 1, . . . , n) is defined by [7]:

fi, j =

{
Fi− j+1, i − j + 1 ≥ 0,

0, i − j + 1 < 0.
(1.1)

The inverse and Cholesky factorization of the Fibonacci matrix are given in [7]. The relations between the Pascal
matrix and the Fibonacci matrix are studied in [8].

As an analogy of the Fibonacci matrix, the n × n Lucas matrix Ln = [li, j ] (i, j = 1, . . . , n) is defined in [16]:

li, j =

{
L i− j+1, i − j ≥ 0,

0, i − j < 0.
(1.2)

In the paper [11] the author investigated the inverse and Cholesky factorization of the matrix Un with entries

ui, j =

{
Ui− j+1, i − j + 1 ≥ 0,

0, i − j + 1 < 0,
(1.3)

where Un is the non-degenerated second order sequence Un+1 = AUn + BUn−1, δ =
√

A2 + 4B real, and where
A, B, U1 are integers and U0 = 0 (i.e. A = B). In [11] the author also generalized these results to r -order recurrent
sequence satisfying U0 = U−1 = · · · = U2−r = 0, U1 arbitrary. Results obtained in [11] include known facts about
the Fibonacci matrix [7,8] in the case U1 = 1, A = B = 1. But, results about the Lucas matrices from [16] are not
included. Lucas sequence is generated by the associated sequence Vn which satisfy V0 = 2, V1 = a. Our goal in this
paper is to generalize all results about the Fibonacci and Lucas matrices. The purpose of this paper is to demonstrate
that known properties of Fibonacci, Lucas matrices and the matrices defined in [11] are valid for a more general class
of matrices, introduced in Section 2.

Throughout the paper we adopt the following two conventions: 00
= 1 and

( n
k

)
= 0 for k > n, even in the case

k = 0. By rank(A) we denote the rank of matrix A.
The paper is organized as follows. In Section 2 we define the matrix U (a,b,s)

n of type s, whose entries are
numbers U (a,b)

n satisfying the general second order non-degenerated recurrence formula U (a,b)
n+1 = AU (a,b)

n + BU (a,b)
n−1 ,

δ =
√

A2 + 4B real, and initial conditions U (a,b)
0 = a, U (a,b)

1 = b. In the case A = B = 1 we introduce the

generalized Fibonacci matrix F (a,b,s)
n of type s, whose nonzero elements are generalized Fibonacci numbers F (a,b)

n .
Only two cases generating regular matrices are s = 0 and s = 1. Generalized Fibonacci matrices reduce to known
definition of the usual Fibonacci matrix in the cases s = 0, a = 0, b = 1 and s = 1, a = 0, b = 1. In the
case a = 2, b = 1, s = 0 we obtain the matrix whose nonzero entries are Lucas numbers, and arranged as in the
Fibonacci matrix. This matrix is called the Lucas matrix [16]. At this moment we consider the matrices U (a,b,0)

n
and F (a,b,0)

n . Inverses of the generalized Fibonacci matrix and for the matrix U (a,b,0)
n are derived. In the partial case

a = 0, b = 1 we get known result about the inversion of the usual Fibonacci matrix from [7]. Similarly, in the case
a = 2, b = 1 we obtain the inverse of the Lucas matrix, originated in [16]. Moreover, in Section 2 we consider
the matrix U (a,b,0)

n defined by means of the general non-degenerated second-order recurrent sequence, and generalize
Proposition 2 from [11]. Various correlations between the matrix U (a,b,s)

n and the Pascal matrix of the first and the
second kind are considered in Section 3. Corresponding results for the generalized Fibonacci matrix F (a,b,0)

n are given
as corollaries. Partial case a = 0, b = 1 produces known result from [8]. In the case a = 2, b = 1 we derive
analogous results for Lucas matrices, investigated in [16]. In Section 4 we get some combinatorial identities involving
generalized Fibonacci numbers and binomial coefficients.

2. Generalized Fibonacci matrix and its inverse

By F (a,b)
n we denote the n-th generalized Fibonacci number, generated by the Fibonacci recursive formula and by

the initial values F (a,b)
0 = a, F (a,b)

1 = b. Notions of Fibonacci and Lucas matrix are generalized in the following
definition.

Definition 2.1. Let F (a,b)
n be the n-th generalized Fibonacci number, where the starting members of the Fibonacci

array are F (a,b)
0 = a and F (a,b)

1 = b, and where a, b ∈ C. The generalized Fibonacci matrix of type s and of the order
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n, denoted by F (a,b,s)
n = [ f (a,b,s)

i, j ], is defined by

f (a,b,s)
i, j =

{
F (a,b)

i− j+1, i − j + s ≥ 0
0, i − j + s < 0

, i, j = 1, . . . , n. (2.1)

It is clear that the integer s means the shift of non-zero elements with respect to main diagonal. We also define a
generalization U (a,b,s)

n = [u(a,b,s)
i, j ] of the matrix F (a,b,s)

n and the matrix Un from (1.3).

Definition 2.2. The matrix U (a,b,s)
n = [u(a,b,s)

i, j ] is defined by

u(a,b,s)
i, j =

{
U (a,b)

i− j+1, i − j + s ≥ 0,

0, i − j + s < 0,
(2.2)

where the second order recurrent sequence U (a,b)
n satisfies the following conditions:

U (a,b)
n = AU (a,b)

n−1 + BU (a,b)
n−2 , U (a,b)

0 = a, U (a,b)
1 = b, A2

+ 4B > 0. (2.3)

Remark 2.1. (a) Generalized Fibonacci matrices F (0,1,1)
n and F (0,1,0)

n are both identical to the usual Fibonacci matrix
defined in (1.1).

(b) The generalized Fibonacci matrix F (2,1,0)
n corresponds to Lucas matrix, defined in (1.2).

(c) The matrix U (0,b,1)
n reduces to the matrix Un defined in (1.3).

Example 2.1. The 6 × 6 generalized Fibonacci matrix of type 0 is equal to

F (a,b,0)
6 =


b 0 0 0 0 0

a + b b 0 0 0 0
a + 2b a + b b 0 0 0
2a + 3b a + 2b a + b b 0 0
3a + 5b 2a + 3b a + 2b a + b b 0
5a + 8b 3a + 5b 2a + 3b a + 2b a + b b

 .

The 6 × 6 generalized Fibonacci matrix of type 1 is defined by

F (a,b,1)
6 =


b a 0 0 0 0

a + b b a 0 0 0
a + 2b a + b b a 0 0
2a + 3b a + 2b a + b b a 0
3a + 5b 2a + 3b a + 2b a + b b a
5a + 8b 3a + 5b 2a + 3b a + 2b a + b b

 .

The matrix U (a,b,0)
4 is equal to

U (a,b,0)
4 =


b 0 0 0

Ab + aB b 0 0
bB + A(Ab + aB) Ab + aB b 0

B(Ab + aB) + A(bB + A(Ab + aB)) bB + A(Ab + aB) Ab + aB b

 .

Proposition 2.1. The nondegenerated second-order recurrent sequence U (a,b)
n , defined in (2.3), satisfies the following

generalization of the Binet’s Fibonacci number formula

U (a,b)
n = c1α

n
+ c2β

n, (2.4)
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where

c1 =
a(A2

+ 4B) + (2b − a A)
√

A2 + 4B

2(A2 + 4B)
, (2.5)

c2 =
a(A2

+ 4B) − (2b − a A)
√

A2 + 4B

2(A2 + 4B)
, (2.6)

α =
A +

√
A2 + 4B

2
, β =

A −
√

A2 + 4B

2
. (2.7)

In the case s > 1 it is necessary to use generalized Fibonacci numbers F (a,b)
n and the numbers U (a,b)

n with negative
indices n. Recurrent definition of the generalized Fibonacci numbers can be expanded for negative indices n using
(2.4)–(2.7), similarly as for the Fibonacci numbers in [10].

Lemma 2.1. The following identity is valid for the second order non-degenerated recurrent sequence U (a,b)
n satisfying

b 6= 0 and for two arbitrary integers i, j satisfying i ≥ j + 2:

(a2 B + abA − b2)

i∑
k= j+2

(−1)k− j ak− j−2 Bk− j−1

bk− j+1 U (a,b)
i−k+1 =

aB

b2 U (a,b)
i− j −

B

b
U (a,b)

i− j−1. (2.8)

Proof. By using (2.7) we obtain

αβ = −B, α + β = A, α − β =

√
A2 + 4B. (2.9)

By applying (2.4) and simple transformations, we obtain the following:

(a2 B + abA − b2)

i∑
k= j+2

(−1)k− j ak− j−2 Bk− j−1

bk− j+1 U (a,b)
i−k+1

= (a2 B + abA − b2)

i∑
k= j+2

(−1)k− j
·

ak− j−2 Bk− j−1

bk− j+1

(
c1α

i−k+1
+ c2β

i−k+1
)

=
a2 B + abA − b2

b3

i∑
k= j+2

((
−

aB

bα

)k− j−2

Bαi− j−1c1 +

(
−

aB

bβ

)k− j−2

Bβ i− j−1c2

)
.

Using

i∑
k= j+2

(
−

aB

bα

)k− j−2

=
1 −

(
−

aB
bα

)i− j−1

1 +
aB
bα

,

i∑
k= j+2

(
−

aB

bβ

)k− j−2

=

1 −

(
−

aB
bβ

)i− j−1

1 +
aB
bβ

we get

(a2 B + abA − b2)

i∑
k= j+2

(−1)k− j ak− j−2 Bk− j−1

bk− j+1 U (a,b)
i−k+1

=
a2 B + abA − b2

b3

(
c1

1 − (− aB
bα

)i− j−1

1 +
aB
bα

αi− j−1
+ c2

1 − (− aB
bβ )i− j−1

1 +
aB
bβ

β i− j−1

)
B.

With consideration of (2.9), we have

(a2 B + abA − b2)

i∑
k= j+2

(−1)k− j ak− j−2 Bk− j−1

bk− j+1 U (a,b)
i−k+1
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=
a2 B + abA − b2

b3 ·
( aB

b + β)
(
αi− j

− α(− aB
b )i− j−1

)
c1 + ( aB

b + α)
(
β i− j

− β(− aB
b )i− j−1

)
c2

−1 +
a A
b +

a2 B
b2

=
1
b

[
c1

(
aB

b
αi− j

+ α

(
−

aB

b

)i− j

− Bαi− j−1
+ B

(
−

aB

b

)i− j−1
)

+ c2

(
aB

b
β i− j

+ β

(
−

aB

b

)i− j

− Bβ i− j−1
+ B

(
−

aB

b

)i− j−1
)]

.

By grouping similar members, using c1 + c2 = a, c1α + c2β = U (a,b)
1 and using (2.4) and (2.9), one can verify the

following:

(a2 B + abA − b2)

i∑
k= j+2

(−1)k− j ak− j−2 Bk− j−1

bk− j+1 U (a,b)
i−k+1

=
1
b

[
aB

b

(
c1α

i− j
+ c2β

i− j
)

+ (c1α + c2β)

(
−

aB

b

)i− j

− B
(

c1α
i− j−1

+ c2β
i− j−1

)
+ B(c1 + c2)

(
−

aB

b

)i− j−1
]

=
aB

b2 U (a,b)
i− j +

1
b

U (a,b)
1

(
−

aB

b

)i− j

−
B

b
U (a,b)

i− j−1 +
aB

b

(
−

aB

b

)i− j−1

.

The proof can be completed by using U (a,b)
1 = b. �

In the partial case A = B = 1 we obtain the following result for the generalized Fibonacci numbers.

Corollary 2.1. For the generalized Fibonacci numbers F (a,b)
n , b 6= 0 and for two arbitrary integers i, j satisfying

i ≥ j + 2 the following is valid:

(a2
+ ab − b2)

i∑
k= j+2

(−1)k− j ak− j−2

bk− j+1 F (a,b)
i−k+1 =

a

b2 F (a,b)
i− j −

1
b

F (a,b)
i− j−1. (2.10)

In the case a = 2, b = 1, from the previous corollary we get known result from [16].

Corollary 2.2. For the Lucas numbers and each i ≥ j + 2 the following is valid:

5
i∑

k= j+2

(−1)k− j 2k− j−2L i−k+1 = 2L i− j − L i− j−1.

Theorem 2.1. The inverse U−1(a,b,0)

n = [u′(a,b,0)
i, j ] of the matrix U (a,b,0)

n = [u(a,b,0)
i, j ] (b 6= 0) is equal to

u′(a,b,0)
i, j =



(−1)i− j
·

a2 B + abA − b2

bi− j+1 ai− j−2 Bi− j−1, i ≥ j + 2,

−
aB + bA

b2 , i = j + 1,

1
b
, i = j,

0, i < j.

(2.11)

Proof. Let
∑n

k=1 u(a,b,0)
i,k u′(a,b,0)

k, j = ci, j . Obviously ci, j = 0 for i < j . In the case i = j one can verify the following:

ci,i = u(a,b,0)
i,i u′(a,b,0)

i,i = b
1
b

= 1.
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In the case i = j + 1 we obtain

c j+1, j = u(a,b,0)
j+1, j u′(a,b,0)

j, j + u(a,b,0)
j+1, j+1u′(a,b,0)

j+1, j = (Ab + Ba)
1
b

+ b

(
−

aB + bA

b2

)
= 0.

For i ≥ j + 2, by applying results of Lemma 2.1 and (2.3) and (2.11) we obtain

ci, j =

n∑
k=1

u(a,b,0)
i,k u′(a,b,0)

k, j

= u(a,b,0)
i, j u′(a,b,0)

j, j + u(a,b,0)
i, j+1 u′(a,b,0)

j+1, j +

i∑
k= j+2

u(a,b,0)
i,k u′(a,b,0)

k, j

=
1
b

U (a,b)
i− j+1 −

aB + bA

b2 U (a,b)
i− j + (a2 B + abA − b2)

i∑
k= j+2

(−1)k− j ak− j−2 Bk− j−1

bk− j+1 U (a,b)
i−k+1

=
1
b

U (a,b)
i− j+1 −

aB + bA

b2 U (a,b)
i− j +

aB

b2 U (a,b)
i− j −

B

b
U (a,b)

i− j−1

=
1
b
(U (a,b)

i− j+1 − AU (a,b)
i− j − BU (a,b)

i− j−1)

= 0.

Therefore, we verify U (a,b,0)
n U−1(a,b,0)

n = In , where In is n × n identity matrix. In a similar way one can verify

U−1(a,b,0)

n U (a,b,0)
n = In . �

Example 2.2. The inverse of the matrix U (a,b,0)
4 is equal to

1
b

0 0 0

−
Ab + aB

b2

1
b

0 0

B
(
Ba2

+ Aba − b2
)

b3 −
Ab + aB

b2

1
b

0

aB2
(
−Ba2

− Aba + b2
)

b4

B
(
Ba2

+ Aba − b2
)

b3 −
Ab + aB

b2

1
b


.

Remark 2.2. Proposition 2 from [11] can be derived by placing a = 0 in (2.11).

In the partial case A = B = 1 from Theorem 2.1 we obtain the inverse of the generalized Fibonacci matrix of
type 0.

Corollary 2.3. Let F (a,b,0)
n = [ f (a,b,0)

i, j ], b 6= 0, be n × n generalized Fibonacci matrix of type 0. The inverse of

F (a,b,0)
n , denoted by F−1(a,b,0)

n = [ f ′(a,b,0)
i, j ], is equal to

f ′(a,b,0)
i, j =



(−1)i− j
·

a2
+ ab − b2

bi− j+1 ai− j−2, i ≥ j + 2,

−
a + b

b2 , i = j + 1,

1
b
, i = j,

0, i < j.

(2.12)
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Example 2.3. The inverse of the generalized Fibonacci matrix F (a,b,0)
6 is equal to

1
b

0 0 0 0 0

−
a + b

b2

1
b

0 0 0 0

a2
+ ab − b2

b3 −
a + b

b2

1
b

0 0 0

−
a(a2

+ ab − b2)

b4

a2
+ ab − b2

b3 −
a + b

b2

1
b

0 0

a2(a2
+ ab − b2)

b5 −
a(a2

+ ab − b2)

b4

a2
+ ab − b2

b3 −
a + b

b2

1
b

0

−
a3(a2

+ ab − b2)

b6

a2(a2
+ ab − b2)

b5 −
a(a2

+ ab − b2)

b4

a2
+ ab − b2

b3 −
a + b

b2

1
b


.

In the case a = 2, b = 1 we get the inverse Lucas matrix, derived in [16].

Corollary 2.4. The inverse of the Lucas matrix L−1
n = [l ′i, j ] (i, j = 1, . . . , n) is equal to

l ′i, j =


5(−1)i− j 2i− j−2, i ≥ j + 2,

−3, i = j + 1,

1, i = j,
0, otherwise.

In the case a = 0, b = 1 we get the inverse Fibonacci matrix, which is the known result from [7].

Corollary 2.5. The inverse Fibonacci matrix F−1
n = [ f ′

i, j ] (i, j = 1, . . . , n) is equal to

f ′

i, j =

−1, j + 1 ≤ i ≤ j + 2,

1, i = j,
0, otherwise.

In the following theorem we study rank of the matrix U (a,b,s)
n (b 6= 0):

Theorem 2.2. Matrices U (a,b,s)
n of the order n > 2 of an arbitrary type s > 1 or s < 0 are singular. The generalized

Fibonacci matrices U (a,b,s)
2 are always regular. In the case b 6= 0 matrices U (a,b,0)

n and U (a,b,1)
n are regular.

Proof. In the case s < 0 the proof is trivial, since |s| diagonal parallels below the main diagonal in U (a,b,s)
n are filled

by zeros (i.e. the last |s| columns are zero columns), and therefore rank(U (a,b,s)
n ) = n −|s| < n. Denote by Ri the i-th

row of the matrix U (a,b,s)
n . In the case s ≥ 0 the last s + 1 rows (i.e. the rows Rn−s, . . . , Rn) in U (a,b,s)

n are completely
filled by the elements U (a,b)

i− j+1. For these rows it is not difficult to verify from (2.3)

Ri = ARi+1 + B Ri+2, i = n − s + 2, . . . , n.

Therefore, between the rows Rn−s, . . . , Rn there is only one linearly independent row in the case s = 0, and only
two linearly independent in the case s > 0. On the other hand, it is clear that rows R1, . . . , Rn−s−1 are linearly
independent. Hence, in the case s > 1

rank(U (a,b,s)
n ) =

{
n − s + 1 < n, s ≤ n − 1,

2, n ≥ s > n − 1

so the matrix U (a,b,s)
n is singular.

From the previous argumentation, it is not difficult to verify that both U (a,b,0)
n and U (a,b,1)

n are regular
matrices. �
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Example 2.4. The last two columns of the matrix

U (a,b,−2)
4 =


0 0 0 0
0 0 0 0

A2b + a AB + bB 0 0 0
A3b + a A2 B + 2Ab B + aB2 A2b + a AB + bB 0 0


are the zero columns, and rank(U (a,b,−2)

4 ) = 2.
On the other hand, the rank of the matrix

U (a,b,2)
4 =


b a

b − a A

B
0

Ab + aB b a
b − a A

B
bA2

+ aB A + bB Ab + aB b a
bA3

+ aB A2
+ 2bB A + aB2 bA2

+ aB A + bB Ab + aB b


is 3, because of R4 = AR3 + B R2.

3. Generalized Fibonacci matrix and Pascal matrices

Various types of Pascal matrices are investigated in [1,2,4,5,14,15]. The generalized Pascal matrix of the first kind
Pn[x] = [pn(x; i, j)], i, j = 1, . . . , n is defined in [4]:

pn(x; i, j) =

x i− j
(

i − 1
j − 1

)
, i ≥ j,

0, i < j.
(3.1)

In the case x = 1, the generalized Pascal matrix of the first kind reduces to ther well-known Pascal matrix
Pn = [pn(i, j)], i, j = 1, . . . , n, which is defined in [3,4]:

pn(i, j) =


(

i − 1
j − 1

)
, i ≥ j,

0, i < j.
(3.2)

In the following theorem we define the matrix Gn[x; a, b] = [gi, j (x; a, b)], i, j = 1, . . . , n which gives a

correlation between the matrix U (a,b,0)
n and the generalized Pascal matrix of the first kind:

Theorem 3.1. The matrix Gn[x; a, b] (x 6= 0, b 6= 0), whose entries are defined by

gi, j (x; a, b) = x− j

[
1
b

x i
(

i − 1
j − 1

)
−

aB + bA

b2 x i−1
(

i − 2
j − 1

)

+

i−2∑
k= j

(−1)i−k a2 B + abA − b2

bi−k+1 ai−k−2 Bi−k−1xk
(

k − 1
j − 1

)]
, (3.3)

satisfies

Pn[x] = U (a,b,0)
n Gn[x; a, b]. (3.4)

Proof. It is sufficient to verify

U−1(a,b,0)

n Pn[x] = Gn[x; a, b].

It is evident that gi, j (x; a, b) = 0 for i < j , which is of the form (3.3). So, it remains to verify all the other cases. The
cases i = j and i = j + 1 can be simply verified:
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g j, j (x; a, b) = u′(a,b,0)
j, j pn(x; j, j) =

1
b

= x− j 1
b

x j
(

j − 1
j − 1

)
;

g j+1, j (x; a, b) = u′(a,b,0)
j+1, j pn(x; j, j) + u′(a,b,0)

j+1, j+1 pn(x; j + 1, j)

= −
aB + bA

b2 +
j x

b

= x− j
[

1
b

x j+1
(

j + 1 − 1
j − 1

)
−

aB + bA

b2 x j
(

j + 1 − 2
j − 1

)]
.

In the last case, i ≥ j + 2, by applying results of Theorem 2.1 we get

gi, j (x; a, b) = u′(a,b,0)
i,i pn(x; i, j) + u′(a,b,0)

i,i−1 pn(x; i − 1, j) +

i−2∑
k= j

u′(a,b,0)
i,k pn(x; k, j)

=
1
b

x i− j
(

i − 1
j − 1

)
−

aB + bA

b2 x i−1− j
(

i − 2
j − 1

)
+

i−2∑
k= j

(−1)i−k a2 B + abA − b2

bi−k+1 ai−k−2 Bi−k−1xk− j
(

k − 1
j − 1

)
,

which is also of the form (3.3). �

In the case A = B = 1 we get analogous result for the generalized Fibonacci matrix.

Corollary 3.1. The matrix Gn[x; a, b] (x 6= 0, b 6= 0), whose entries are defined by

gi, j (x; a, b) = x− j

[
1
b

x i
(

i − 1
j − 1

)
−

a + b

b2 x i−1
(

i − 2
j − 1

)
+

i−2∑
k= j

(−1)i−k a2
+ ab − b2

bi−k+1 ai−k−2xk
(

k − 1
j − 1

)]
,

satisfies

Pn[x] = F (a,b,0)
n Gn[x; a, b].

Moreover, the last corollary produces a known result from [8] in partial case a = 0, b = 1 and x = 1:

Corollary 3.2. Let Mn be the matrix with elements defined by

mi j =

(
i − 1
j − 1

)
−

(
i − 2
j − 1

)
−

(
i − 3
j − 1

)
.

The Pascal matrix and the Fibonacci matrix are related with Pn = FnMn .

Proof. The proof follows from Mn = Gn[1; 0, 1]. �

In the case a = 2, b = 1, from Corollary 3.1 we give a corresponding result for Lucas matrices [16]:

Corollary 3.3. The generalized Pascal matrix of the first kind and the Lucas matrix satisfy Pn[x] = LnGn[x; 2, 1],

where

gi, j (x; 2, 1) = x− j

[
x i
(

i − 1
j − 1

)
− 3x i−1

(
i − 2
j − 1

)
+ 5(−1)i 2i−2

i−2∑
k= j

(−1)k
(

k − 1
j − 1

)( x

2

)k
]

.

After the substitution x = 1 in the previous result, the following result immediately follows:

Corollary 3.4. The Pascal matrix and the Lucas matrix satisfy Pn = LnGn[1; 2, 1], where

gi, j (1; 2, 1) =

(
i − 1
j − 1

)
− 3

(
i − 2
j − 1

)
+ 5(−2)i−2

i−2∑
k= j

(−2)−k
(

k − 1
j − 1

)
.



P. Stanimirović et al. / Discrete Applied Mathematics 156 (2008) 2606–2619 2615

In the following theorem we define the matrix Hn[x; a, b] = [hi, j (x; a, b)], i, j = 1, . . . , n which gives a similar

correlation between the matrix U (a,b,0)
n and the generalized Pascal matrix of the first kind:

Theorem 3.2. The matrix Hn[x; a, b], (b 6= 0), defined by

hi, j (x; a, b) = x i

[
1
b

x− j
(

i − 1
j − 1

)
−

aB + bA

b2 x− j−1

+

i∑
k= j+2

(−1)k− j a2 B + abA − b2

bk− j+1 ak− j−2 Bk− j−1x−k
(

i − 1
k − 1

)]
(3.5)

satisfies

Pn[x] = Hn[x; a, b]U (a,b,0)
n . (3.6)

Proof. Similar as the proof of Theorem 3.1. �

An analogous result for the generalized Fibonacci matrix can be derived in the case A = B = 1.

Corollary 3.5. The matrix Hn[x; a, b], (b 6= 0), defined by

hi, j (x; a, b) = x i

[
1
b

x− j
(

i − 1
j − 1

)
−

a + b

b2 x− j−1
(

i − 1
j

)

+

i∑
k= j+2

(−1)k− j a2
+ ab − b2

bk− j+1 ak− j−2x−k
(

i − 1
k − 1

)]
satisfies

Pn[x] = Hn[x; a, b]F (a,b,0)
n .

An analogous result for Lucas matrices is [16]:

Corollary 3.6. The Lucas matrix satisfies Pn[x] = Hn[x; 2, 1]Ln , where

hi, j (x; 2, 1) = x i− j−1

[
x

(
i − 1
j − 1

)
− 3

(
i − 1

j

)
+ (−1) j 5x j+1

2 j+2

i∑
k= j+2

(−1)k
(

i − 1
k − 1

)
2k x−k

]
.

The generalized Pascal matrix of the second kind Qn[x] = [qn(x; i, j)], i, j = 1, . . . , n is defined by [4]:

qn(x; i, j) =

x i+ j−2
(

i − 1
j − 1

)
, i ≥ j,

0, i < j.
(3.7)

Theorem 3.3. The matrices Sn[x; a, b] = [si, j (x; a, b)] and Tn[x; a, b] = [ti, j (x; a, b)], i, j = 1, . . . , n, (b 6= 0)

whose entries are defined by

si, j (x; a, b) = x j

[
1
b

x i−2
(

i − 1
j − 1

)
−

aB + bA

b2 x i−3
(

i − 2
j − 1

)

+

i−2∑
k= j

(−1)i−k a2 B + abA − b2

bi−k+1 ai−k−2 Bi−k−1xk−2
(

k − 1
j − 1

)]
, (3.8)
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ti, j (x; a, b) = x i

[
1
b

x j−2
(

i − 1
j − 1

)
−

aB + bA

b2 x j−1
(

i − 1
j

)

+

i∑
k= j+2

(−1)k− j a2 B + abA − b2

bk− j+1 ak− j−2 Bk− j−1xk−2
(

i − 1
k − 1

)]
(3.9)

satisfy

Qn[x] = U (a,b,0)
n Sn[x; a, b], (3.10)

Qn[x] = Tn[x; a, b]U (a,b,0)
n . (3.11)

Proof. Similar as the proof of Theorem 3.1. �

Corollary 3.7. The matrices Sn[x; a, b] = [si, j (x; a, b)] and Tn[x; a, b] = [ti, j (x; a, b)], i, j = 1, . . . , n, (b 6= 0)

whose entries are defined by

si, j (x; a, b) = x j

[
1
b

x i−2
(

i − 1
j − 1

)
−

a + b

b2 x i−3
(

i − 2
j − 1

)

+

i−2∑
k= j

(−1)i−k a2
+ ab − b2

bi−k+1 ai−k−2xk−2
(

k − 1
j − 1

)]
,

ti, j (x; a, b) = x i

[
1
b

x j−2
(

i − 1
j − 1

)
−

a + b

b2 x j−1
(

i − 1
j

)

+

i∑
k= j+2

(−1)k− j a2
+ ab − b2

bk− j+1 ak− j−2xk−2
(

i − 1
k − 1

)]
satisfy

Qn[x] = F (a,b,0)
n Sn[x; a, b],

Qn[x] = Tn[x; a, b]F (a,b,0)
n .

Theorem 3.4. In the case b 6= 0 the matrix Gn
[
−

a
b ; a, b

]
is defined by

gi, j

(
−

a

b
; a, b

)
=

(−a)i− j−2

bi− j+1

[
a2
(

i − 1
j − 1

)
+ (a + b)a

(
i − 2
j − 1

)
+ (a2

+ ab − b2)

(
i − 2

j

)]
(3.12)

and satisfies

Pn

[
−

a

b

]
= F (a,b,0)

n Gn

[
−

a

b
; a, b

]
. (3.13)

Proof. Follows from Corollary 3.1 and the following simple combinatorial identity:

i−2∑
k= j

(
k − 1
j − 1

)
=

(
i − 2

j

)
. �

In a similar way as Theorem 3.4, the following result can be proved:

Theorem 3.5. The matrix Sn
[
−

a
b ; a, b

]
(b 6= 0) is defined by

si, j

(
−

a

b
; a, b

)
=

(−a)i+ j−4

bi+ j−1

[
a2
(

i − 1
j − 1

)
+ (a2

+ ab)

(
i − 1

j

)
− b2

(
i − 2

j

)]
(3.14)
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and satisfies

Qn

[
−

a

b

]
= F (a,b,0)

n Sn

[
−

a

b
; a, b

]
. (3.15)

In the partial case a = 2, b = 1 Theorems 3.4, 3.5 and Corollary 3.7 yield the following results:

Corollary 3.8. The Lucas matrix satisfies:

Pn[−2] = LnGn[−2; 2, 1],

Qn[−2] = LnSn[−2; 2, 1],

Pn[−2] = Hn[−2; 2, 1]Ln,

Qn[−2] = Tn[−2; 2, 1]Ln,

where

gi, j (−2; 2, 1) = (−2)i− j−2
[

4
(

i − 1
j − 1

)
+ 6

(
i − 2
j − 1

)
+ 5

(
i − 2

j

)]
,

si, j (−2; 2, 1) = (−2)i+ j−4
[

4
(

i − 1
j

)
+ 6

(
i − 2
j − 1

)
−

(
i − 2

j

)]
,

hi, j (−2; 2, 1) = (−2)i− j−2

[
4
(

i − 1
j − 1

)
+ 6

(
i − 1

j

)
+ 5

i∑
k= j+2

(
i − 1
k − 1

)]
,

ti, j (−2; 2, 1) = (−2)i+ j−4

[
4
(

i − 1
j − 1

)
+ 6

(
i − 1

j

)
+ 5

(
i − 1
j + 1

)
+ 5

i∑
k= j+3

22 j+2k
(

i − 1
k − 1

)]
.

4. Some combinatorial identities

In this section we investigate some combinatorial identities involving the generalized Fibonacci numbers.

Theorem 4.1. If i, j are positive integers satisfying i ≥ j + 2, and b 6= 0, we have(
−

a

b

)i− j
(

i − 1
j − 1

)
=

F (a,b)
i− j+1

b
− F (a,b)

i− j
b + ( j + 1)a

b2 +

i∑
k= j+2

F (a,b)
i−k+1

(−a)k− j−2

bk− j−1

×

[
a

b2

(
k − 1
j − 1

)
+

(a + b)a

b2

(
k − 2
j − 1

)
+

a2
+ ab − b2

b2

(
k − 2

j

)]
. (4.1)

Proof. From (3.12) we derive the following identities:

g j, j

(
−

a

b
; a, b

)
=

1
b
,

g j+1, j

(
−

a

b
; a, b

)
=

(−a)−1

b2

(
a2 j + (a + b)a

)
= −

a + b

b2 +
j

b

(
−

a

b

)
= −

b + ( j + 1)a

b2 . (4.2)

Now, the proof can be derived by applying identities (4.2) and the next identity

pn

(
−

a

b
; i, j

)
=


(
−

a

b

)i− j
(

i − 1
j − 1

)
, i ≥ j,

0, i < j

together with (3.12), (3.13) and (2.1). �
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Theorem 4.2. If i, j are positive integers satisfying i ≥ j + 2 and b 6= 0, we have(
−

a

b

)i+ j−2
(

i − 1
j − 1

)
= F (a,b)

i− j+1
a2 j−2

b2 j−1 − F (a,b)
i− j

a2 j−2

b2 j [( j + 1)a + b] +

i∑
k= j+2

F (a,b)
i−k+1

(−a)k+ j−4

bk+ j−1

×

[
a2
(

k − 1
j − 1

)
+ (a2

+ ab)

(
k − 1

j

)
− b2

(
k − 2

j

)]
. (4.3)

Proof. From (3.14) we derive the following identities:

s j, j

(
−

a

b
; a, b

)
=

a2 j−2

b2 j−1 ,

s j+1, j

(
−

a

b
; a, b

)
= −

a2 j−2

b2 j [( j + 1)a + b] . (4.4)

Now, the proof can be derived by using (4.4), the next identity

qn

(
−

a

b
; i, j

)
=


(
−

a

b

)i+ j−2
(

i − 1
j − 1

)
, i ≥ j

0, i < j

and (3.14), (3.15) and (2.1) �

Theorem 4.3. For 1 ≤ r ≤ n and b 6= 0 we have(
n − 1
r − 1

)
=

n∑
l=r

F (a,b)
n−l+1

[
1
b

(
l − 1
r − 1

)
−

a + b

b2

(
l − 2
r − 1

)
+

l−2∑
k=r

(−1)l−k a2
+ ab − b2

bl−k+1 al−k−2
(

k − 1
r − 1

)]
.

(4.5)

Proof. In the partial case x = 1 from Corollary 3.1 we get

gi, j (1; a, b) =
1
b

(
i − 1
j − 1

)
−

a + b

b2

(
i − 2
j − 1

)
+

i−2∑
k= j

(−1)i−k a2
+ ab − b2

bi−k+1 ai−k−2
(

k − 1
j − 1

)
.

Now, the proof follows from(
n − 1
r − 1

)
= pn(n, r) =

n∑
l=r

F (a,b)
n−l+1gl,r (1; a, b). �

In the partial case a = 0, b = 1 Theorem 4.3 reduces to Corollary 2.2 from [8].

Corollary 4.1. For 1 ≤ r ≤ n(
n − 1
r − 1

)
=

n∑
k=r

Fn−k+1
(k − 3)!

(
r(k − 1) − 2(r − 1) − (k − r)2

)
(r − 1)!(k − r)!

.

Proof. The proof can be completed using Theorem 4.3 and Corollary 3.2, in the same way as in [8]. �

5. Conclusion

In the present paper we introduce the matrix U (a,b,s)
n of type s, whose entries are numbers U (a,b)

n satisfying the
general second order non-degenerated recurrence formula Un+1 = AUn + BUn−1, δ =

√
A2 + 4B real, and initial

conditions U (a,b)
0 = a, U (a,b)

1 = b. In the case A = B = 1 we define the generalized Fibonacci matrix F (a,b,s)
n of

type s, whose entries are generalized Fibonacci numbers satisfying known recursive formula and initial conditions
F (a,b)

0 = a, F (a,b)
1 = b. We observe two regular cases (s = 0 and s = 1) of these matrices. Generalized Fibonacci
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matrices of type s = 0 or s = 1 correspond to known definition of the usual Fibonacci matrix, in the case a = 0, b = 1.
In the case a = 2, b = 1, s = 0 we obtain definition of the Lucas matrix from [16]. Inversion of the matrix U (a,b,s)

n
and generalized Fibonacci matrix is considered. In certain cases we get known results from [7,11,16]. A correlation
between the generalized Fibonacci matrix and the Pascal matrix of the first and the second kind is considered. In two
partial cases (a = 0, b = 1, s = 0 and a = 0, b = 1, s = 0) we get known result from [8]. We get some combinatorial
identities involving generalized Fibonacci numbers. In the partial case a = 2, b = 1, s = 0 we derive analogous result
for Lucas matrices, introduced in [16].
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