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Let qn and s,, n 6 N, respectively, be a set of polynomials of binomial type and a 
Sheffer set related to it, both having positive coefficients. Then q,(x), x > 0 is con- 
nected with the probabdity that a compound Poisson process starting at zero ts m 
state n at time TX and qJx)/q,,( 1) is the probability generating function of the num- 
ber of jumps of this process in [0, t] given that it is in state n at time T. The s, 
admit similar interpretations when the initial distribution of the compound Poisson 
process is not concentrated at zero. The possible limits for n --t 00 of qn(x)/qn( 1) and 
s.(x)/s,( 1) are studied. 9 1988 Academic Press. Inc. 

1. INTRODUCTION 

The theory of polynomials of binomial type was developed in [22, 251. 
The sequence of polynomials 

4n(x) = 2 qprkxk, 
k=O 

(1.1) 

elk(X) qn-k(YL x, YER, nEN. (1.2) 

Then qno = 0, n 2 1. The sequence ( 1.1) is of binomial type iff (if and only if) 
it is the sequence of basic polynomials for a delta operator Q: II + n, 
where ZZ is the set of polynomials R + OX, i.e., iff 

qo(x) = 1, (1.3) 

Qqn=wn-,, nz 1. (1.4) 

A delta operator is a linear operator L: fl-+ I7 that is shift-invariant, 

493 
0022-247X/88 $3.00 

CopyrIght ‘3.) 1988 by Academtc Press. Inc 
All rights of reproduction in any km reserved 



494 A. J. STAM 

i.e., LE”= E”L with E”f(x)=f(x+a), and such that Ll = 0. By the first 
expansion theorem [22; 25, Theorem 21 we have Q = q(D), where Df =f’ 
and the formal power series q has q(0) = 0, q’(0) ~0. Then q has a 
compositional inverse 

g(u)= 2 g,uk, g, +o, (1.5) 
k=l 

and we have the formal expansion, see [22, Section 4; 25, Section 31, 

f u”s,b)ln! =exp(xg(u)), (1.6) 
PI=0 

which is also sufficient for the q,, to be a basic set for Q. From [25, 
Corollaries 1 and 2 to Theorem 51 we have 

gk = ‘lk,/k!, kz 1. (1.7) 

The sequence of polynomials s,, n E N, is a Sheffer set for the delta 
operator Q, see [25, Section 51, if so(x) z c # 0, ifs, has exact degree n and 
Qs,, = ns, _ i, n 2 1. This holds iff 

sk(o) 9, - kh)> XER, rlEh4, 

with so(O) # 0, and then for x, y E R, n E f% 

sk(x) qn - k(y)* 

(1.8) 

(1.9) 

In Section 14(5) of [25] a connection between polynomials of binomial 
type and compound Poisson processes was suggested. The aim of this 
paper is to follow this suggestion. An interpretation different from ours, in 
terms of Poisson point processes, was given by Cerasoli [Z]. From (1.7) we 
see that qnl 2 0, n 5 1, iff gk 2 0, k 2 1, and (1.6) shows that then q& 2 0 for 
all n and k. This will be assumed, and also that the series (1.5) has radius of 
convergence p > 0. In Section 2 the probability distribution qnk/q,( 1 ), 
k = 0, . . . . n, with probability generating function (pgf) qJx)/q,( 1) and also 
the qnk and q,(x) for x20 will be interpreted in terms of a compound 
Poisson process and its jumps. For the Sheffer set (1.8) a related inter- 
pretation holds if ~~(0) 2 0, k 2 0. Umbra1 composition will be seen to have 
a probabilistic meaning. 

In Section 3 we will study the possible limits as n + cc of qn(x)/qn( 1) and 
s,(x)/s,( 1). Section 4 gives an example of applying the local central limit 
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theorem to obtain the asymptotic behavior of the qnk and describes a 
method to find explicit expressions for g(u) and q,,(x), used recently in 
probability theory to derive new distributions. 

2. THE COMPOUND POISSON PROCESS 

We take qn, g, and s, fixed as defined in Section 1. Let { Y, 5 Y(t), t 2 0 > 
with Y, = 0 be a compound Poisson process, i.e., a stochastic process 
with stationary independent nonnegative increments. See [15, Vol. I, 
Chap. X11.2; 19, Chap. 16.91. The pgf of Y(t + a) - Y(t), a 2 0, has the 
form, for (r.41 5 1, 

oc 

Eu ‘(‘) = exp -cct+ct c 7chUh 
> 

) (2.1) 
h=l 

with c > 0 and rrk 2 0, k 2 1, C rrR = 1. Let M, be the number of jumps of 
the Y-process occuring during the time interval [0, t]. Then (M,, tlO> is 
a Poisson process with intensity c, the jumps X, , X,, . . . are independent 
random variables, independent also of the M,-process, with P(X, = k) = TC~, 
k>= 1, iz 1, and we have 

y, = S(M,), (2.2) 

s, - S(0) = 0, S,rS(n)=X,+ ... +A-,, nz 1. (2.3) 

We take c = 1 and 

with gk and g as in (1.5). The dependence of probabilities and expectations 
on the parameter q will be shown by writing them as P, and E,. We have 
from (2.1) for x 10 

E ‘I u”(‘\-)=exp{ -tx+xg(qu)}, /uI 5 1. (2.5) 

With (1.6) this gives 

4,(x)/n! = qpne’“P& Y(zx) = n), x 2 0, (2.6) 

for all q > 0 with g(q) < co, so that q,(x)/n! for x 2 0, apart from the factor 
vl en exp(rx) has the meaning of a probability in the Y-process. The 
relation (1.2) corresponds to the convolution property for the Y-process: 
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P,(Yx+ v= n)=C;=oP~(Y,=k)P,(Y,=n-k), x, ~20. From (2.2) we 
have, by conditioning with respect to M,,, 

Pq( Y,, = n) = i (zx)k e -‘-‘P,(Sk = n)/k!, 
k=O 

(2.7) 

so with (2.6) and (1.1) 

qnk/n! = ?,-“TkP,(sk = n)/k!, (2.8) 

so that the coeffkients of the polynomial qn are connected to the dis- 
tributions of sums of jumps of the Y-process. 

From (2.8), (2.6) with x= 1, (2.2) and the independence of M, and Sk, 

qnk/qn( 1) = sk(k!)-’ eC*Pv(Sk = n)/P& Y, = n) 

= P&M, = k, Sk = n)/P,( Y, = n) 

=P,(M,=k, Y,=n)/P,(Y,=n)=P,(M,=kJ Yr=n). (2.9) 

So the probability distribution qJq,J 1 ), k = 0, . . . . n, is the conditional dis- 
tribution given Y, = n of the number of jumps in [0, T), for all q > 0 with 
g(q) < co. A similar interpretation holds for akq,,/q,(a). As applications we 
mention queues with Poisson group arrival and immigration where the 
process of immigrating families is Poisson, see [ 18, Chap. 1.21. Then (2.9) 
gives the conditional number of groups or families given the number of 
customers arrived or persons immigrated. 

From (1.1 ), (2.9) and (2.6), 

qn(x)/qn(l) = &(-+I Y, = n) 

= exp(rx - T) Pv( Y,, = n)/P& Y, = n), (2.10) 

where the second equality holds for x 2 0. The following more general 
results hold. 

THEOREM 1. Let {A 1, . . . . A,}beapartionof[O,r)with~Ai~=siandMi 
the number of jumps in Ai of the Y-process. Then 

Eq{X~l...x~l Y,=n}=q, (T-1 J, ‘iXi)/qn(l). (2.11) 

Proof With (2.2), the independence of {M,, tzO> and X,, X2, . . . . (2.8) 
and (2.6) for x= 1 we find, putting k=k, + .‘. -tk,, 
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P,(M,=k,, i= 1, . ..) ml Y,=n) 

= P,,(M, = k,, i = 1, . . . . m, S, = n)/P,( Y, = n) 

= ,fJ, ?r’exp(-ri)/k,!)P,(S,=n)/P,(Y,=n) 
i 

= k! qnk fj (z ‘+/ki! 4rs 1). 
i=l 

Multiplying with $1 . . .x2, summing first over k,, . . . . k, with 
k 1 + . . + k, = k using the multinomial theorem, and finally summing over 
k we find (2.11). 

Umbra1 Composition, See [25, Section 7 J 

Let p,(x) =xpPnkxkr UE N, be the sequence of basic polynomials for 
P= p(D) withf= p-l. Then the sequence 

r,(x) = i Pnkqli(x), nEfV, (2.12) 
k=O 

is basic for the delta operator r(D) = p( q(0)). Since r ~ ’ = q - ’ op ~ ’ = g of 
we have 

We assume that f has nonnegative coefficients and a positive radius of con- 
vergence. We consider the set of 8 7 0 such that g of(e) < co. Since f(0) = 0 
this set is nonempty. We put 

f(Q=v, g"f(e)=g(q)=z<cD. (2.14) 

Let U,, U,, . . . be independent and also independent of the M, and Xi. Let 
Vi have pgf 

z - ‘Pfvw = gq ~fo(U), (2.15) 

where g,(u) = g(qu)/g(q) and f”(u) =fl0u)/‘(@). Then in the same way 
as (2.6) 

r,(x)/n! = 8-“e’“P&!,, = n), x >= 0, (2.16) 

where Z,= V(M,), V/(0)=0, V(n)= U, + ... + U,. Now let o,, 02, . . . be 
independent and also independent of the M, and Xi and let w, have pgff,. 
By conditioning with respect to S, we see that Q(S,), with Jz(O)=O, 
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cqn) = 
Vol. I, 

0, + ... +o,, n 2 1, has the same pgf as l’(n), (g, of@)“, cf. [ 15, 
Chap. XII.1 1. So 2, = V(M,) by (2.2) has the same distribution as 

B(S(M,)) = Q( Y,). This also may be seen by conditioning with respect to 
Y, in Q( Y,). So umbra1 composition corresponds to sampling the random 
walk Q(n) at stochastic times S(n), or Y,, independent of the Q(i). This 
type of random time substitution is known in probability theory as 
subordination, see [ 15, Vol. II]. 

As an example we take g(u) = -log( 1 - u). Then by (2.13) 

f u”r,(x)/n! = { 1 -.f(f4)} ~ li, 
,1 = 0 

Sequences of this type are related to renewal sequences and will be 
discussed in another paper [27]. 

Sheffer Sets 

We give two interpretations. First let q and Y, be as in (2.2)-(2.4) and 
assume that ~~(0) _2 0, k E N, in (1.8) and 

c(v) = f ~~(0) $/k! < co. 
k=O 

(2.17) 

Let U be a random variable with pgf c(~u)/c(~), independent of the 
Y,-process. Writing (1.8) with (2.6) as 

f’s,(x)/n!=c(v])e’-‘I i P,(U=k)P,(Y,,=n-k), 
k=O 

we see that 

s,(x)/n! = tj-“c(q) eTxPq( U+ Y,, = n). (2.18) 

Here it is not necessary that s,(O) > 0. If s,(O) = 0, the interpretation (2.18) 
still holds and s,(x) is a polynomial of degree smaller than n. The process 
U + Y,, t 10, has independent increments with the same distributions as 
those of Y,, tz0. The difference is that the process does not start at 0 but 
at U. The relation (1.9), together with (2.6), reflects the fact that 
ZJ + Y(zx + rv) is the sum of the independent contributions U + Y(tx) and 
Y(zx + zy) - Y(tx). 

In the same way as (2.8) and (2.10) we find 

s,,/n! =q-“c(q) ~~ P,(U+ Sk =n)/k!, (2.19) 

s,(x)/s,( 1) = E,,(+) U + Y, = n) 

=exp(tx-t) P,(U+ Y,.=n)/P,(U+ Y,=n), 
x2o (2.20) 

_ , 
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so that s,(x)/s,( I) is the conditional pgf of the number of jumps in [0, z) of 
U + Y,, t 2 0, given U+ Y, = n. A result similar to Theorem 1 also holds 
for the s,,. 

For the second interpretation we assume that sJO)~O, kz0, and that 
nksk(0)/k! increases with k to a limit a E (0, co), whereas z = g(q) < co. Let 
V be a nonnegative integer random variable, independent of the Y, with 
P( P’s k) = ~~‘$s,(O)/k!. Then with (2.6) we may write (1.8) as 

s,,(x)/n!=~q~“e” f: P,(VJk)P,(Y,,=n-k) 
k=O 

x 2 0. _ (2.22) 

3. ASYMPTOTIC BEHAVIOR 

The local central limit theorem for sums of independent identically dis- 
tributed random variables [ 17, Chap. 4.21 gives first-order asymptotics for 
the coefficients (2.8) and (2.19), holding for In - kE,X,j = O(n”*) if X, has 
finite variance. This (n, k)-domain may be varied by different choices of q. 
An example is given in Section 4. The Edgeworth expansion [ 15, Vol. II, 
231 even gives an asymptotic expansion. 

A very difficult problem is determining all possible limit laws for n -+ cc 
of the distribution (2.9) with centering and scaling, i.e., all limiting dis- 
tributions of (M, - a,)/b, given Y, = n, and finding necessary and sufficient 
conditions for convergence. In [ 1; 33 sufficient conditions for convergence 
to a normal law were given. One difficulty arises from the fact that the pgf 
(2.10) is the quotient of two probabilities in the tails of distributions. One 
could try to let t -+ cc by increasing q, if possible, so that E, Y, = n and 
apply a local central limit theorem to the numerator and denominator 
of (2.10). However, as 4 increases the aperiodicity of the distribution (2.4) 
needed for the local limit theorem, may decrease. There does not seem to 
be a substitute for the hard analysis used in [l; 31. 

Here we give a partial solution to the problem of convergence without 
centering or scaling of the distribution with pgf (2.20) and its special 
case (2.9), (2.10). By the continuity theorem for generating functions [ 15, 
Vol. I, Chap. X1.61, 

lim s,~/s,( 1) = ak, kEN, (3.1) n-m 

iff 
lim ~,(x)l~,(l) = Icl(x), OSx<l, (3.2) n-m 
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and then C ak 5 1, (3.2) holds for [XI < 1 and 

k=O 

1x1 < 1. (3.3) 

Here something more is true. 

THEOREM 2. If (3.1) holds with C cc, > 0, we have C ak = 1 and the 
series (3.3) converges and (3.2) holds for all x E @. 

Proof: If (3.3) converges and (3.2) holds for 1x1 <b, then the same 
is true for 1x1 < 36/2: Take O< 1x1 <v < b. From (3.2) we have 
s,(u)/s,($) s C(v) < co, n E N. So with (1.9), 

So s,(~v/~)/s,( I ) is bounded, implying that 

lim c S,k(3x/21k/s,(l)=0, 
N-cc k>N 

uniformly in n. Then by (3.1) 

lim s,J 3x/2)/s,( 1) = 1 c+( 3~/2)~, 
n-rcr k 

finite. Finally, C elk = 1 follows by taking x = 1. 
The asymptotic behavior of the probability distribution (2.9) is fun- 

damentally different in the following two case: 

A. The convergence radius p of (1.5) is finite and g(p) < co. 

B. Either p = co or p < 03 and g(p) = co. 

To show this and identify the limiting distributions we need the inequality, 
holding if a,>O, b,,zO, nzn,, 

hm inf b,/a, s lim inf 1 b, c ak 
n+a: ‘-+a k&n i kzn 

5 lim sup b,/a,, 
n2z 

(3.4) 
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and the lemma, being the special case Q(x) = xm of [26, Theorems 1 
and 41. 

LEMMA 1. [ f  p is a probability measure on N with p[n, 00) > 0, n >= n, , 
we have for its m-fold convolution pm* 

lim inf pLm*[n, m)/p[n, co) 2 m, mEN, (3.5) n-r* 

If; moreover, pn=p({n])>O, nzn,, andC,,p,,x”=a3, x> 1, then 

lim inf p;*/pL, s m, nEN. (3.6) n-02 

THEOREM 3. Under A and B we have, respectively, 

lim sup qn(x)/qn( 1) > 0, x > 0, (3.7) 
n-m 

lim inf qn(x)/qn( 1) = 0, 05x-c 1. (3.8) n-m 

ProoJ In (2.4) take q = p. Then by (2.5) the pgf of Y,, t > 0, is infinite 
foru~l.AlsoP(Y,=n)~O,n~N,t~O,since~,~O.Soby(3.6),sincethe 
distribution of Y,,,, is the m-fold convolution of the distribution of Y,, we 
have for x = m-‘, 

limsupP,(Y,,=n)/P,(Y,=n)zm-‘, 
“-rX 

(3.9) 

and (3.7) follows from (2.10). 
For r] < p and 0 5 x < 1 we have from (2.10) and (3.4), 

lim inf 4&)/qn( 1) n-z 

2 exp(rx - r) lim inf P& Y,, 2 n)/P,( Y, 2 n) 
n-5 

5 exp(tx - r), 

since Y,, 5 Y,. Under B we have r = g(q) -+ cc as q --) p and (3.8) follows. 
So A is necessary for qJx)/q,,( 1) to have a nonzero limit. We conjecture 

that qJx)/q,(l) + 0 under B. 

We now show that the only nonzero limit for n + co of the dis- 
tribution (2.9) is a Poisson distribution shifted 1 to the right. 
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THEOREM 4. Under A, if 

lim q,(x)lq,( 1) = $(x), OSx<l, 
“-CC 

$(x)=xew{g(pNx- 1)). 

(3.10) 

(3.11) 

ProoJ: By (3.1)-(3.3) the relation (3.10) holds for 1x1 < 1 and $ is 
analytic on { 1x1 < I}. Take q = p in (2.10) so that r = g(p). We have 

lim Pp( Y,, = n)/P,( Y, = n) = 4(x), 1x1 < 1, ” - cc 

where +(rn ‘)Lm-’ by (3.9). From (3.4), 

lim Pp( Y,, I n)lP,,( Y, 2 n) = 4(x), Odx< 1, 
n-m 

so q5(rnp’)Srnp’ by (3.5). Since with II/ also 4 is analytic on { 1x1 < 1 } we 
have d(x) =x and the theorem follows from (2.10). 

Sufficient conditions for (3.10) are given in the theory of subexponential 
distributions, the latest surveys of which are 114, 133. We need the follow- 
ing weaker version of the deep theorem 1 in [4], proved by real analysis 
methods in [12]. 

LEMMA 2. In the notation of Lemma 1, if pu, > 0, n 2 n,, ,u”+ ,/p,, + 1, 
and pi’/p, -+ c E (0, co ), then c = 2. If, moreover, 

vn= f c,py, 
k=O 

and d(z) = C ckzk is analytic on { Iz( < 1 + E}, then v,/,u,, + @‘( 1). 

If g(p)< ~0, g,>O, n2nl, g,+Jg, -+P-I, and gi’lg, -a(p), then 
P,(X, =n) by (2.4) satisfies the conditions for p,? in Lemma 2 so that with 
Q(z) = exp(rxz) where z = g(p), we have with (2.7) 

P,( Y,, = n)lP,,(X, = n) --f 74 x > 0. (3.12) 

Then (3.10) and (3.11) follow with (2.10). 

Examples and simpler sufficient conditions are given in [12, 14,211. 
The pgfs (2.20) have a larger set of possible limits than (2.10). Roughly, 

the limiting behavior depends on whether P( U = n) decreases slower with n 
than P(X, = n) or faster. We have the following partial results. 
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THEOREM 5. Zf the sequence { g,} satisfies condition B and c(q) < co, 
q < p 5 00, see (2.17) then 

lim inf s,(x)/s,( 1) = 0, OSx<l. 
n-m 

Proof. The proof is the same as of (3.8) in Theorem 3, with (2.10) 
replaced by (2.20). 

THEOREM 6. If either (k+ 1) sk(0)/sk+,(O) + 1.~ (0, p) as k+ 00, or 
Ilks,(0)/k! + us (0, co) and g(i) < co, 

lim ~,(x)/~,(l)=exp((x- 1) g(n)), XEC. (3.13) 
n-cc 

Proof The first assertion follows by applying problem 178 in [24, 
p. 391 to the sequence s,(O)/n! and q,(x)/n! in (1.8); see also [12, 
Lemma 2.21, noting that the series (1.6) has convergence radius p. 

If g(A) < cc we have with (1.8) and (2.6) for q = 1, 

s,(x)/n! = I-“{exp xg(A)} $J P,,( Y,, =j) Anpi s,- ,(O)/(n -j)!. 
j=O 

If Aks,(0)/k! --) a, the sum converges to a by dominated convergence 
and (3.13) follows. 

The Poisson pgf (3.13) is the limit of (2.20) if U is preponderant in 
P(U+ Y,,). Mixtures of the pgfs in (3.11) and (3.12) are also possible. 

THEOREM 7. If the sequence {g,} satisfies the conditions stated after 

Lemma 2 and, us k -+ co, 

sk(O)lW C(P)) - Bgddp) (3.14) 

with OzZj<co, then for XEC us n-, co, 

s,(x)/s,U I+ MA + BNdd + W’ expUx - 1) g(d). 

Proof By (2.4), (2.17), and (3.12) we may write (3.14) as 

P,(U=k)=/I(zx)-’ P,(Y,,=k)+Ek, x > 0, 

with EJP,( Y,, = k) -+ 0 as k + co. Then 

(3.15) 

P,(U+ Y,,=n)=fi(rx)-‘P,(Y(2zx)=n)+ i EkPp(Yrl-=n-k)). (3.16) 
k=O 
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Since p,, = PJ Yrr=n) by (3.12) satisfies the conditions of Lemma 2, we 
have by [4, Lemma 1, p. 2601, 

i EkPp( y7.r = n - k) - pp( y7.r = n) f Ek, (3.17) 
k=O k=O 

where c a& = 1 -B/(U) by (3.15). From (3.16) (3.17), and (3.12) we have 

P,(u+ Y,,=n)-(p+TX) P,(X, =n), 

with z = g(p) and the theorem follows with (2.20). 

4. EXAMPLES 

The generating function with 0 < y < 1 

g(u)=l-(l-24)‘= f (-l)k-1 g 2,4k, 
0 

14 5 1, (4.1) 
k=l 

has positive coefficients and is a pgf, since g( 1) = 1. If X, has pgf (4.1) we 
have by (2.5) with q= 1, r= 1, 

EluY(.‘;)=exp{ -x(1 -u)‘}. (4.2) 

This is a discrete stable pgf as defined and studied in [28]. Expansion of 
the exponential and comparison with (2.6) gives 

P,(Y.,=n)=(-1)” x > 0, 

q,,(x)=.!(-1)“e’ (4.3) 

showing that (4.3) is a polynomial of binomial type with positive coef- 
ficients if 0 < y < 1. For y = 1 the distribution of Y, is Poisson, for y < 0 or 
y > 1 the qn in (4.3) are still polynomials of binomial type. 

From (4.1) we have, with 6, = k’lY, 

lim g(exp( --J/bk)) = exp( -sy), ReszO. 
k-s. 

So if X, has pgf (4.1) the distribution of Sk/b, converges to the stable dis- 
tribution on [0, co) with Laplace-Stieltjes transform exp( -sy), see [15, 
Vol. II, 173. The density h of this distribution has no simple closed form, 
except if y = 4 when h(x) = +t ~ “‘x 3’2 exp( -x ~ l/4), see [ 15, Chap. X111.3, 
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10, Sect. 3.41. Much, however, is known about stable densities, see [ 171. 
By the local limit theorem [ 17, Theorem 4.2.11 and (2.8) we have 

k! q,,/n! = P,(S, = n) = b,‘h(n/h,) + a(b,‘), 

uniformly in n. Since h(x) -+ 0 as x + cc or x -+ 0, see [ 15, Chap. X111.6, 17, 
Chap. 21, this is only useful if 0 < c, <n/b, < cl < 00. 

If the pgf of X, is g(qu)/g(q) with 0 < q < 1 and g as in (4.1), all moments 
of X, are finite and the local central limit theorem [23, Chap. VII, 
Theorem 61 gives, with (2.8) 

ft kk! qJn! = (2mkP) ~ “’ exp{ - (n - kp)2/2ka2} + O(k ‘), 

where p = E,X,, a2 = Var,X,, and which is useful if In - kpl = O(k”2). 
In [S] a method was developed that may give explicit expressions for the 

distributions (2.4) and (2.7) or their pgfs and therefore also for r = g(q). 
This is useful since classical probability theory gives relatively few examples 
of it. We sketch the method in a form adapted to our notation. Let 

.4(z)= f UkZk, 
k=O 

(4.4) 

with ak 2 0, a, > 0, and ah > 0 for some h 2 2, converge for z E C (the last 
assumption may be weakened). From the strict convexity of A on [0, co) 
we see that there is u0 > 0 such that the equation in z, 

z = u/l(z), (4.5) 

has two positive roots, 0 < t,(u) < t2(u), if 0 < u < u,,, one positive root 
t(u,) if U= u”, and no positive root if u > uO. Also 

uA’(t,(u)) < 1, z4,4’(~2(U)) > 1, o<u<u,, u,,A’(t(u,)) = 1. (4.6) 

For O<(ul <u,, and t,((ul)<lzl <:t2((uI), we have 

luA(z)l 5 /uI c dZlk = Id A(I=i)< IzI. 

So by Lagrange’s theorem [ 11, Section 381, Eq. (4.5) has a single root 
2 = z(u) in { JzI < f2( Ju( ) 1 given by the convergent series 

z(u)= f UkDk ‘Ak(0)/k!. (4.7) 
k=l 

If u > 0 we have z(u) = t,(u). The series is of the form ( 1.5) with non- 
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negative coefficients and therefore may be taken for g(u). By a continuity 
argument 

z(u(J z ti,‘t7, z(0) = t(uo), (4.8) 

and is still given by (4.7) with u = u,,. Again by Lagrange’s theorem, 

exp{xz(u)} = 1 +x f UnD”~‘eX’A”(z)I;=o/n! 
n=l 

n-l 

=l+ f Un 1 x’Dn- ‘A”(O)/n!. (4.9) 
n=l i= 1 

So by (1.6), we see that qo(x) = 1, 

is a set of polynomials of binomial type with nonnegative coefftcients. 
By (4.5) its delta operator is D/A(D). Distributions with pgf (4.7) orf(z(u)) 
when A and f are pgfs, were called Lagrangian in [S]. Their properties 
and applications, e.g., in queueing, were studied in [9, 201, see also [S, 
Chap. 11.3, App. 61. 

By substituting positive values of z into u = z/A(z) and consulting (4.6) 
we may find explicit values of t,(u) and U, or, in our notation (2.4), of g(v) 
and u = ye. As an example, we take A(z) = c exp(ctz), c > 0, a > 0. By (4.5) 
and (4.6) we have z = t,(u) iff z= UC exp(az) and uca exp(az)< 1 or 
z = uc exp(az) and az < 1, and u = uO, z = t(u,) iff z = UC exp(az) and az = 1. 
We find u0 = (cae)-‘, a = a-l and (4.7) and (4.9) give 

z(u) = f ukck(ka)kP’/k!, 
k=l 

exp(xz(u)} = 1 +x f z.Pcn(x + na)“- l/n!, I4 < uo. 
n=l 

So that c-nq, in (4.10) are the Abel polynomials, see [25, p. 7441. By the 
above remark we have z(u)=EaP’ with O<E< 1 for u=c-‘Ea-lexp(--E). 
Then (2.4) and (2.6) with r] = C-‘ECI-’ exp(--E) and z=g(~)=z(q)=~a~’ 
give us the pair 

P,(X, = k) = (~k)~-’ exp( -k&)/k!, (4.11) 

P(Y(~a~‘x=n))=~a~‘x(~a~‘x+n~)“~‘exp(-~a~’x-n~)/n!.(4.12) 
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The two-parameter distribution (4.12) is the generalized Poisson dis- 
tribution studied in [6, 73. Note that the right-hand sides of (4.11) 
and (4.12) have sum I over k and n. For these relations also see [16]. 
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