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Abstract

Modern natural science requires the development of new mathematical apparatus. The generalized Fibonacci num-

bers or Fibonacci p-numbers (p = 0,1,2,3, . . .), which appear in the ‘‘diagonal sums’’ of Pascal�s triangle and are

assigned in the recurrent form, are a new mathematical discovery. The purpose of the present article is to derive ana-

lytical formulas for the Fibonacci p-numbers. We show that these formulas are similar to the Binet formulas for the

classical Fibonacci numbers. Moreover, in this article, there is derived one more class of the recurrent sequences, which

is defined to be a generalization of the Lucas numbers (Lucas p-numbers).

� 2005 Elsevier Ltd. All rights reserved.
1. Introduction

As is well known, the Golden Proportion s ¼ 1þ
ffiffiffi
5

p

2
plays an increasingly important role in modern physical re-

search [1–14]. A substantial number of researchers from various areas of science are inclined to believe that the Golden

Proportion is one of the fundamental constants of the ‘‘physical world.’’ As early as in Johannes Kepler�s research the

Golden Proportion was named as one of two treasures of geometry and compared it to Pythagorean Theorem. The

outstanding American theoretical physicist, Richard Feynman (1918–1988), who is one of the founders of the quantum

electrodynamics, expressed his admiration of the Golden Proportion in the following words: ‘‘What miracles exist in

mathematics! According to my theory, the Golden Proportion of the ancient Greeks gives the minimal power condition

of the butadiene1 molecule.’’

The generalized Fibonacci or Fibonacci p-numbers [18] are one of the important mathematical discoveries of the

modern Golden Section and Fibonacci numbers theory [15–34]. Let us define the basic recurrence relation for Fibonacci

p-numbers. For any given p (p = 0,1,2,3, . . .) they are given by the following recurrent relation:
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F pðnÞ ¼ F pðn� 1Þ þ F pðn� p � 1Þ. ð1Þ

Eq. (1) is then the basic recurrence relation.

It is necessary to note, that for various initial conditions
F pð1Þ ¼ a1; F pð2Þ ¼ a2; . . . ; F pðp þ 1Þ ¼ apþ1; ð2Þ
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where a1,a2, . . .,ap+1 are elements of the set of integers, real or complex numbers, we will obtain from (1) the infinite set

of recurrent numerical sequences that relate to the class of the recurrent Fibonacci p-series.

In particular, if we take
F pð1Þ ¼ 1; F pð2Þ ¼ 1; . . . ; F pðpÞ ¼ 1; F pðp þ 1Þ ¼ 1; ð3Þ
then for these initial conditions, the basic recurrence relation (1) ‘‘generates’’ a class of the Fibonacci p-numbers that are

‘‘diagonal sums’’ of Pascal�s triangle [18].

For different p, the basic recurrence relation (1) ‘‘generates’’ a number of the remarkable numerical sequences

that are widely used in mathematics. For example, for the case p = 0, the recurrence relation (1) is reduced to the

following:
F 0ðnÞ ¼ 2F 0ðn� 1Þ; ð4Þ
which generates the sequence of the powers of two: 1,2,4,8,16,32, . . ., for the given initial condition
F 0ð1Þ ¼ 1. ð5Þ
For the case p = 1, the basic recurrence relation (1) takes the following form:
F 1ðnÞ ¼ F 1ðn� 1Þ þ F 1ðn� 2Þ. ð6Þ
This recurrence relation for the initial conditions:
F 1ð1Þ ¼ 1; F 1ð2Þ ¼ 1 ð7Þ
generates the classical Fibonacci numbers F(n) = {1,1,2,3,5,8,13,21 . . .}. Furthermore, given the initial conditions:
F 1ð1Þ ¼ 1; F 1ð2Þ ¼ 3; ð8Þ
the relation (6) generates the classical Lucas numbers L1(n) = {1,3,4,7,11,18,29, . . .}.
It is known that the limit of the ratio of two adjacent Fibonacci numbers F1(n) (as well as the adjacent Lucas num-

bers L1(n) and the adjacent numbers of any numerical sequence that is given by the recurrence relation (6)) tends to the

Golden Proportion, i.e.:
lim
n!1

F 1ðnÞ
F 1ðn� 1Þ ¼ s ¼ 1þ

ffiffiffi
5

p

2
. ð9Þ
The Golden Proportion s is a positive root of the following characteristic equation:
x2 ¼ xþ 1; ð10Þ
that is also called the Golden Section equation.

Eq. (10) has two real roots:
x1 ¼ s1 ¼
1þ

ffiffiffi
5

p

2
and x2 ¼ � 1

s1
¼ 1�

ffiffiffi
5

p

2
. ð11Þ
Binet formulas are well known in the Fibonacci numbers theory [15–17]. These formulas allow all Fibonacci numbers

F1(n) and Lucas numbers L1(n) to be represented by the roots x1 and x2 of Eq. (10):
F 1ðnÞ ¼
sn1 � � 1

s1

� �n

ffiffiffi
5

p ; ð12Þ

L1ðnÞ ¼ sn1 þ � 1

s1

� �n

; ð13Þ
where n = 0,±1,±2,±3, . . ..
Note that the recurrence relations (4), (6), Eq. (10), and the Binet formulas (12) and (13) are widely used for sim-

ulation of various physical and biological phenomena. In particular, they are used for the process of cell division

[32,33] and in the description of Fibonacci�s lattices on the surface of the ‘‘phyllotaxis’’ objects [22].

In recent years it has been shown that the Fibonacci p-numbers, given by (1), can be used for simulation of biological

cell division [31,33] and the self-organizing systems [21]. Moreover, the connection of the Fibonacci p-numbers to Pas-

cal�s triangle has a special interest. It became a source of new mathematical and even philosophical discoveries based on

the Fibonacci p-numbers, i.e. the ‘‘Law of structural harmony of systems’’ [21], the Generalized Principle of the Golden



1164 A. Stakhov, B. Rozin / Chaos, Solitons and Fractals 27 (2006) 1162–1177
Section [29] and others. In this vein, the basic goal of the present article is to derive the general analytical formulas that

are similar to Binet formulas (12) and (13) for the Fibonacci p-numbers, given by (1). Undoubtedly, these formulas

expand the mathematical apparatus of modern natural science, including physical research.
2. Some properties of the Fibonacci p-series

2.1. Extended Fibonacci and Lucas numbers

The extended Fibonacci F1(n) and Lucas numbers L1(n) that are given for positive and negative values of the discrete

argument of n (see Table 1) are well-known.

As it follows from Table 1, the extended Fibonacci and Lucas numbers are infinite numerical sequences whose terms

possess remarkable mathematical properties. For all the even (n = 2k) and odd (n = 2k + 1) values of the argument n, we

have the following correlations for the Fibonacci numbers:
Table

Extend

N

F1(n)

F1(�n)

L1(n)

L1(�n
F 1ð2kÞ ¼ �F 1ð�2kÞ; F 1ð2k þ 1Þ ¼ F 1ð�2k � 1Þ; ð14Þ
and for the Lucas numbers:
L1ð2kÞ ¼ L1ð�2kÞ; L1ð2k þ 1Þ ¼ �L1ð�2k � 1Þ. ð15Þ
It is necessary to note, that the Binet formulas (12) and (13) give the extended Fibonacci and Lucas numbers.

2.2. Extended Fibonacci p-numbers

Let us consider the extended Fibonacci p-numbers that are given by the recurrence relation (1) at the initial condi-

tions (3). As we saw earlier, this class of the Fibonacci p-numbers has direct relation to Pascal�s triangle and sets the

diagonal sums of Pascal�s triangle.
For calculation of the Fibonacci p-numbers Fp(0),Fp(�1),Fp(�2), . . .,Fp(�p), . . .,Fp(�2p + 1), . . ., that correspond to

negative or zero integer values of n, we will use the basic recurrence relation (1) and the initial conditions (3). Let us

represent the Fibonacci p-number Fp(p + 1) according to (1):
F pðp þ 1Þ ¼ F pðpÞ þ F pð0Þ. ð16Þ
According to (3) Fp(p) = Fp(p + 1) = 1, it then follows from (16) that Fp(0) = 0.

Continuing this process, i.e. representing the Fibonacci p-numbers Fp(p),Fp(p�1), . . .,Fp(2) in the form (1), we can

get:
F pð0Þ ¼ F pð�1Þ ¼ F pð�2Þ ¼ � � � ¼ F pð�p þ 1Þ ¼ 0. ð17Þ
Let us represent the Fibonacci p-number Fp(1) in the form:
F pð1Þ ¼ F pð0Þ þ F pð�pÞ. ð18Þ
Since Fp(1) = 1 and Fp(0) = 0, then it follows from (18) that
F pð�pÞ ¼ 1. ð19Þ
Representing the Fibonacci p-numbers Fp(0),Fp(�1), . . .,Fp(�p + 1) in the form (1), we can get:
F pð�p � 1Þ ¼ F pð�p � 2Þ ¼ � � � ¼ F pð�2p þ 1Þ ¼ 0. ð20Þ
Continuing this process, we can get all the values of the Fibonacci p-numbers Fp(n) for the negative values of n.

Table 2 gives the values of the extended Fibonacci p�numbers for the cases p = 1,2,3,4,5.
1

ed Fibonacci and Lucas numbers

0 1 2 3 4 5 6 7 8

0 1 1 2 3 5 8 13 21

0 1 �1 2 �3 5 �8 13 �21

2 1 3 4 7 11 18 29 47

) 2 �1 3 �4 7 �11 18 �29 47



Table 2

Extended Fibonacci p-numbers

N 8 7 6 5 4 3 2 1 0 �1 �2 �3 �4 �5 �6 �7 �8 �9

F1(n) 21 13 8 5 3 2 1 1 0 1 �1 2 �3 5 �8 13 �21 34

F2(n) 9 6 4 3 2 1 1 1 0 0 1 0 �1 1 1 �2 0 2

F3(n) 5 4 3 2 1 1 1 1 0 0 0 1 0 0 �1 1 0 1

F4(n) 4 3 2 1 1 1 1 1 0 0 0 0 1 0 0 0 �1 1

F5(n) 3 2 1 1 1 1 1 1 0 0 0 0 0 1 0 0 0 �1
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2.3. Properties of the sums for the Fibonacci p-numbers

The following property for the Fibonacci p-numbers is proved in [18]:
F pð1Þ þ F pð2Þ þ F pð3Þ þ � � � þ F pðnÞ ¼ F pðnþ p þ 1Þ � 1. ð21Þ

Note that the formula (21) includes a number of the remarkable formulas of discrete mathematics. For example, for

the case p = 0, this formula is reduced to the following well-known formula for the binary numbers:
20 þ 21 þ 22 þ � � � þ 2n�1 ¼ 2n � 1.
As it was mentioned for the case p = 1, the Fibonacci p-numbers coincide with the classical Fibonacci numbers F1(n).

Therefore, Eq. (21) reduces to the following formula:
F 1ð1Þ þ F 1ð2Þ þ F 1ð3Þ þ � � � þ F 1ðnÞ ¼ F 1ðnþ 2Þ � 1;
that is well known from the Fibonacci numbers theory [15–17].

2.4. The Golden p-Sections

As it was mentioned, the ratio of the adjacent Fibonacci numbers F1(n)/F1(n � 1) tends to the Golden Proportion at

the unlimited increase of n.

Let us consider the limit of the adjacent Fibonacci p-numbers
F pðnÞ

F pðn� 1Þ for the case n !1. To do this, let us intro-

duce the following definition:
lim
n!1

F pðnÞ
F pðn� 1Þ ¼ x. ð22Þ
Let us represent now the ratio of the adjacent Fibonacci p-numbers in the following form:
F pðnÞ
F pðn� 1Þ ¼

F pðn� 1Þ þ F pðn� p � 1Þ
F pðn� p � 1Þ ¼ 1þ 1

F pðn� 1Þ
F pðn� p � 1Þ

¼ 1þ 1

F pðn� 1Þ � F pðn� 2Þ � � � � � F pðn� pÞ
F pðn� 2Þ � F pðn� 3Þ � � � � � F pðn� p � 1Þ

.

ð23Þ

Taking into consideration the definition (22) for the case n ! 1, we can replace the expression (23) with the follow-

ing algebraic equation for the Fibonacci p-numbers:
xpþ1 � xp � 1 ¼ 0; ð24Þ
note that Eq. (24) is the algebraic equation of the (p + 1)th degree and has (p + 1) roots x1,x2,x3, . . .,xp,xp+1. Designate

the positive root of the algebraic equation (24) as sp and, without loss of generality, let x1 = sp.
Let us examine the values of Eq. (24) for the different values of p. For the case p = 0, Eq. (24) is the trivial equation

x = 2. For the case p = 1, Eq. (24) is simplifies to Eq. (10). Accordingly, the positive roots of Eq. (24) were named as the

generalized Golden Proportions or the Golden p-Proportions [18].

The following identity connects the powers of the Golden p-Proportions sp and is a direct result of Eq. (24):
snp ¼ sn�1
p þ sn�p�1

p ¼ sp � sn�1
p . ð25Þ
It is necessary to point out, that this identity is holds for all the roots x1,x2,x3, . . .,xp,xp+1 of Eq. (24). Hence, for the

general case, we have:
xnk ¼ xn�1
k þ xn�p�1

k ¼ xk � xn�1
k ; ð26Þ
where n = 0,±1,±2,±3, . . .; xk is the root of Eq. (24); k = 1,2, . . .,p + 1.
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2.5. The properties of the roots of the characteristic equation

Theorem 1. For the given integer p > 0, the following correlations for the roots of the characteristic equation

xp+1 � xp � 1 = 0 is valid:
x1 þ x2 þ x3 þ x4 þ � � � þ xp þ xpþ1 ¼ 1. ð27Þ

x1x2 þ x1x3 þ x1x4 þ � � � þ x1xp þ x1xpþ1 þ x2x3 þ x2x4 þ � � � þ x2xp þ x2xpþ1 þ � � � þ xp�1xp þ xp�1xpþ1 þ xpxpþ1 ¼ 0;

x1x2x3x4 þ x1x2x3x5 þ � � � þ xp�2xp�1xpxpþ1 ¼ 0;

. . . ; ð28Þ
x1x2x3x4 � � � xp�2xp�1xp þ x1x3x4 � � � xp�1xpxpþ1 þ � � � þ x2x3x4 � � � xp�1xpxpþ1 ¼ 0.

x1x2x3x4 � � � xp�1xpxpþ1 ¼ ð�1Þp. ð29Þ
Proof. The characteristic equation (24) has the p + 1 roots x1,x2,x3,x4, . . .xp,xp+1. Thus, by factoring algebraically, it is
possible to write:
xpþ1 � xp � 1 ¼ ðx� x1Þðx� x2Þðx� x3Þðx� x4Þ � � � ðx� xpÞðx� xpþ1Þ ¼ 0. ð30Þ
Let us remove the parentheses in (30). Then, for the even p, we have:
xpþ1 � xp � 1 ¼ ðx� x1Þðx� x2Þðx� x3Þðx� x4Þ � � � ðx� xpÞðx� xpþ1Þ

¼ xpþ1 � ðx1 þ x2 þ x3 þ x4 þ � � � þ xp þ xpþ1Þxp

þ ðx1x2 þ x1x3 þ x1x4 þ � � � þ x1xpþ1 þ x2x3 þ x2x4

þ � � � þ x2xp þ x2xpþ1 þ � � � xp�1xp þ xp�1xpþ1 þ xpxpþ1Þxp�1

� ðx1x2x3 þ x1x3x4 þ � � � þ x1xpxpþ1 þ x2x3x4 þ x2x3x5

þ � � � þ x2xpxpþ1 þ � � � þ xp�1xpxpþ1Þxp�2

þ ðx1x2x3x4 þ x1x2x3x5 þ � � � þ xp�2xp�1xpxpþ1Þxp�3

þ � � � þ ðx1x2x3x4 . . . xp�2xp�1xp þ x1x3x4 . . . xp�1xpxpþ1

þ � � � þ x2x3x4 � � � xp�1xpxpþ1Þx� x1x2x3x4 � � � xp�1xpxpþ1 ¼ 0. ð31Þ
It follows from the comparison of (24) and (31):
x1 þ x2 þ x3 þ x4 þ � � � þ xp þ xpþ1 ¼ 1;

x1x2 þ x1x3 þ x1x4 þ � � � þ x1xpþ1 þ x2x3 þ x2x4 þ � � � þ x2xp þ x2xpþ1 þ � � � þ xp�1xp þ xp�1xpþ1 þ xpxpþ1 ¼ 0;

x1x2x3x4 þ x1x2x3x5 þ � � � þ xp�2xp�1xpxpþ1 ¼ 0;

. . . ;

x1x2x3x4 � � � xp�2xp�1xp þ x1x3x4 � � � xp�1xpxpþ1 þ � � � þ x2x3x4 � � � xp�1xpxpþ1 ¼ 0;

x1x2x3x4 � � � xp�1xpxpþ1 ¼ 1.
For the odd p, we have:
ðx� x1Þðx� x2Þðx� x3Þðx� x4Þ � � � ðx� xpÞðx� xpþ1Þ

¼ xpþ1 � ðx1 þ x2 þ x3 þ x4 þ � � � þ xp þ xpþ1Þxp þ ðx1x2 þ x1x3 þ x1x4 þ � � � þ x1xpþ1

þ x2x3 þ x2x4 þ � � � þ x2xp þ x2xpþ1 þ � � � þ xp�1xp þ xp�1xpþ1 þ xpxpþ1Þxp�1

� ðx1x2x3 þ x1x3x4 þ � � � þ x1xpxpþ1 þ x2x3x4 þ x2x3x5 þ � � � þ x2xpxpþ1 þ � � � þ xp�1xpxpþ1Þxp�2

þ ðx1x2x3x4 þ x1x2x3x5 þ � � � þ xp�2xp�1xpxpþ1Þxp�3 þ � � � � ðx1x2x3x4 � � � xp�2xp�1xp

þ x1x3x4 � � � xp�1xpxpþ1 þ � � � þ x2x3x4 � � � xp�1xpxpþ1Þxþ x1x2x3x4 � � � xp�1xpxpþ1 ¼ 0. ð32Þ
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It follows from the comparison of (24) and (32):
x1 þ x2 þ x3 þ x4 þ � � � þ xp þ xpþ1 ¼ 1;

x1x2 þ x1x3 þ x1x4 þ � � � þ x1xpþ1 þ x2x3 þ x2x4 þ � � � þ x2xp þ x2xpþ1 þ � � � þ xp�1xp þ xp�1xpþ1 þ xpxpþ1 ¼ 0;

x1x2x3x4 þ x1x2x3x5 þ � � � þ xp�2xp�1xpxpþ1 ¼ 0;

. . . ;

x1x2x3x4 � � � xp�2xp�1xp þ x1x3x4 � � � xp�1xpxpþ1 þ � � � þ x2x3x4 � � � xp�1xpxpþ1 ¼ 0;

x1x2x3x4 � � � xp�1xpxpþ1 ¼ �1. �
Let us give some explanations regarding to the identities (27)–(29) that connect the roots of the characteristic equa-

tion (24). It is evident from identity (27) that the sum of the roots of Eq. (24) is identically equal to 1. Expression (28)

gives the values for the every possible sums of the roots of the algebraic equation (24) taken by two, three, . . .,p roots

from the (p + 1) roots of Eq. (24). According to (28), each of these sums is identically equal to 0! At last, the expression

(28) sets the value of the product of all the roots of Eq. (24). According to (28) this product is equal to 1 (for the even p)

or �1 (for the odd p).

These surprising properties of the roots of the algebraic equation (24) give us a right to rigorously consider the basic

recurrence relation (1) and Fibonacci p-numbers that are diagonal sums of Pascal�s triangle.
Let us consider the following expression for the roots of Eq. (24):
ðx1 þ x2 þ x3 þ x4 þ � � � þ xp þ xpþ1Þk ; ð33Þ
where k = 1,2, . . .,p. Taking into consideration the identity (27) we can write:
ðx1 þ x2 þ x3 þ x4 þ � � � þ xp þ xpþ1Þk ¼ 1. ð34Þ
On the other hand, the expression (33) can be factorized if we use the binomial (for the case p = 1), trinomial (for the

case p = 2) and polynomial (for the arbitrary p) formulas in [34]. As it is known in [34], for the given k, the polynomial

formula for (34) will include in itself the sum of all the kth powers of the characteristic equation (24) that are taken with

the coefficient 1, that is,
xk1 þ xk2 þ xk3 þ xk4 þ � � � þ xkp þ xkpþ1; ð35Þ
and the sum of the products of every possible combination of two (k = 2), three (k = 3), or k roots of the characteristic

equation (24), which are taken with the factors that are known as polynomial coefficients. Therefore, the next theorem

follows from the reasoning above and expressions (33) and (34).

Theorem 2. For the given integers p = 1,2,3 . . . and k = 1,2,3, . . ., p, the following identity is true for the roots of the

characteristic equation xp+1 � xp�1 = 0:
ðx1 þ x2 þ x3 þ x4 þ � � � þ xp þ xpþ1Þk ¼ xk1 þ xk2 þ xk3 þ xk4 þ � � � þ xkp þ xkpþ1 ¼ 1. ð36Þ
3. Binet formulas for the Fibonacci and Lucas p-numbers

Let consider the Binet formulas (12) and (13). As we mentioned, these formulas give the Fibonacci and Lucas num-

bers via the roots of the algebraic equation (10).

For the given p > 0, using (12) and (13), we will derive the Binet formula that gives Fibonacci p-numbers in the form:
F pðnÞ ¼ k1ðx1Þn þ k2ðx2Þn þ � � � þ kpþ1ðxpþ1Þn; ð37Þ
where x1,x2, . . .,xp+1 are the roots of the characteristic equation (24) that satisfy the identity (26) and k1,k2, . . .,kp+1 are
some constant coefficients that depend on the initial terms of the Fibonacci p-series.

It follows from (17) that Fp(0) = 0 for the given p > 0. Therefore, we will consider the Fibonacci p-numbers given by

the recurrence relation (1) for the following initial conditions:
F pð0Þ ¼ 0; F pð1Þ ¼ F pð2Þ ¼ � � � ¼ F pðpÞ ¼ 1. ð38Þ
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Taking into consideration (37) and (38) it is possible to derive the following system of algebraic equations:
F pð0Þ ¼ k1 þ k2 þ � � � þ kpþ1 ¼ 0;

F pð1Þ ¼ k1x1 þ k2x2 þ � � � þ kpþ1xpþ1 ¼ 1;

F pð2Þ ¼ k1ðx1Þ2 þ k2ðx2Þ2 þ � � � þ kpþ1ðxpþ1Þ2 ¼ 1;

� � � ;
F pðpÞ ¼ k1ðx1Þp þ k2ðx2Þp þ � � � þ kpþ1ðxpþ1Þp ¼ 1;

8>>>>>>><
>>>>>>>:

ð39Þ
solving the system of the equations (39), we will get the numerical values of the coefficients k1,k2, . . . , kp+1.
4. The Derivation of the Binet formulas for the classical Fibonacci and Lucas numbers

We next apply the general formula (37) in order to derive the Binet formulas for the case p = 1. For this case, the

characteristic equation (24) reduces to (10). As it was mentioned above, Eq. (10) has two roots x1 = s1 and x2 ¼ � 1

s1
,

where s1 ¼
1þ

ffiffiffi
5

p

2
.

Therefore, the formula (37), for the case p = 1, takes the following form:
F 1ðnÞ ¼ k1ðs1Þn þ k2 � 1

s1

� �n

; ð40Þ
and, using (38) and (39), it is possible to derive the following system of the algebraic equations:
F 1ð0Þ ¼ k1 þ k2;

F 1ð1Þ ¼ k1s1 þ k2 � 1

s1

� �
;

8<
: ð41Þ
where F1(0) = 0 and F1(1) = 1 according to (38).

Solving the system (41) we get: k1 ¼
1ffiffiffi
5

p and k2 ¼ � 1ffiffiffi
5

p . If we substitute k1 and k2 to (39), we get the well-known

Binet formula for the classical Fibonacci numbers given by (12).

If we accept k1 = k2 = 1 in (40) we get the Binet formula for the classical Lucas numbers that is given by (13). This

formula generates the Lucas series with the initial terms L1(0) = 2 and L1(1) = 1:
2; 1; 3; 4; 7; 11; 18; 29; . . . ð42Þ
Let us make one important note regarding the identity F1(0) = 0. This fact follows directly from the Binet formula

(40). Indeed, according to (40), we have the following for the case n = 0:
F 1ð0Þ ¼ k1ðsÞ0 þ k2ð�1=sÞ0 ¼ k1 þ k2 ¼
1ffiffiffi
5

p � 1ffiffiffi
5

p . ð43Þ
These simple calculations show that the identity F1(0) = 0 follows from the fact that the sum of the coefficients k1, k2
in the expression (40) is identically equal to 0.
5. The Binet formulas for the Fibonacci and Lucas 2-numbers

5.1. Binet formula for the Fibonacci 2-numbers

Let us give p = 2 and use the above approach for the derivation of the Binet formula in order to calculate the Fibo-

nacci 2-numbers. The recurrence relation (1), the initial conditions (38), and the algebraic equation (24) take the follow-

ing forms respectively for the case p = 2:
F 2ðnÞ ¼ F 2ðn� 1Þ þ F 2ðn� 3Þ; ð44Þ
F pð0Þ ¼ 0; F pð1Þ ¼ F pð2Þ ¼ 1; ð45Þ
x3 ¼ x2 þ 1. ð46Þ
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Eq. (46) takes three roots, one is real root x1 and two are complex conjugate roots x2 and x3:
x1 ¼
h
6
þ 2

3h
þ 1

3
¼ 1.4655712319 . . . ; ð47Þ

x2 ¼ � h
12

� 1

3h
þ 1

3
� i

ffiffiffi
3

p

2

h
6
� 2

3h

� �
¼ �0.233 . . .� ð0.793 . . .Þi; ð48Þ

x3 ¼ � h
12

� 1

3h
þ 1

3
þ i

ffiffiffi
3

p

2

h
6
� 2

3h

� �
¼ �0.233 . . .þ ð0.793 . . .Þi; ð49Þ
where
h ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
116þ 12

ffiffiffiffiffi
93

p3

q
. ð50Þ
Let point out that the real root x1 of the algebraic equation (46) is an irrational number and equates to the golden 2-

proportion s2 [18]. The value of h given by (50) is also irrational; therefore, the roots x2 and x3 are complex numbers,

the real parts of which are irrational.

Using (37), it is possible to write the Binet formula for the Fibonacci 2-numbers in the following form:
F 2ðnÞ ¼ k1ðx1Þn þ k2ðx2Þn þ k3ðx3Þn. ð51Þ
Using (45) and (51), it is possible to derive the following system of algebraic equations:
F 2ð0Þ ¼ k1 þ k2 þ k3;

F 2ð1Þ ¼ k1x1 þ k2x2 þ k3x3;

F 2ð2Þ ¼ k1x21 þ k2x22 þ k3x23;

8><
>: ð52Þ
where F2(0) = 0 and F2(1) = F2(2) = 1 according to (45).

Solving the system (52) we get:
k1 ¼
2hðhþ 2Þ
ðh3 þ 8Þ

; ð53Þ

k2 ¼
�ðhþ 2Þ þ i

ffiffiffi
3

p
ðh� 2Þ

� �
h

ðh3 þ 8Þ
; ð54Þ

k3 ¼
�ðhþ 2Þ � i

ffiffiffi
3

p
ðh� 2Þ

� �
h

ðh3 þ 8Þ
. ð55Þ
Note that, due to the irrationality of h given by (50), the coefficient (53) is an irrational number. Therefore, the coef-

ficients (54) and (55) are complex conjugate numbers, real parts of which are irrational.

Using (53)–(55), we can now write the following Binet formula for the Fibonacci 2-numbers:
F 2ðnÞ ¼
2hðhþ 2Þ
ðh3 þ 8Þ

h
6
þ 2

3h
þ 1

3

� �n

þ
�ðhþ 2Þ þ i

ffiffiffi
3

p
ðh� 2Þ

� �
h

ðh3 þ 8Þ
� h
12

� 1

3h
þ 1

3
� i

ffiffiffi
3

p

2

h
6
� 2

3h

� � !n

þ
�ðhþ 2Þ � i

ffiffiffi
3

p
ðh� 2Þ

� �
h

ðh3 þ 8Þ
� h
12

� 1

3h
þ 1

3
þ i

ffiffiffi
3

p

2

h
6
� 2

3h

� � !n

. ð56Þ
It seems incredible at first sight that formula (56) is apparently a complicated combination of complex numbers with

irrational real components, actually gives the integer Fibonacci 2-series Fp(n) for any integer n = 0,±1,±2,±3, . . ..

5.2. The Binet formula for the Lucas 2-numbers

As we mentioned above, the Binet formula (13), for the classical Lucas numbers, is a special case of formula (40) if

the coefficients k1 and k2 in (40) are identically equal to 1. Similarly, if in formula (51), we take k1 = k2 = k3 = 1, then we

get the integer series that is called the Lucas 2-series L2(n).

Thus, the Lucas 2-series is given by the following formula:
L2ðnÞ ¼ ðx1Þn þ ðx2Þn þ ðx3Þn; ð57Þ
or
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L2ðnÞ ¼
h
6
þ 2

3h
þ 1

3

� �n

þ � h
12

� 1

3h
þ 1

3
þ i

ffiffiffi
3

p

2

h
6
� 2

3h

� � !n

þ � h
12

� 1

3h
þ 1

3
� i

ffiffiffi
3

p

2

h
6
� 2

3h

� � !n

. ð58Þ
Let us calculate the initial terms of the series (57). For the case n = 0, it follows directly from (57):
L2ð0Þ ¼ 3. ð59Þ
For the calculation of the Lucas 2-numbers L2(1), L2(2) we can use Theorem 2. Indeed, formula (57) is a special case

(p = 2) of the more general formula (36). According to (36), we have:
L2ð1Þ ¼ L2ð2Þ ¼ 1. ð60Þ
Thus, the Lucas 2-series is the following numerical sequence that extends infinitely to the left and right of L2(0) = 3,

depending on n:
. . . ; 1;�5; 2; 3;�2; 0; 3; 1; 1; 4; 5; 6; 10; 15; 21; 31; 46; 67; 98; 144; . . . ð61Þ
Note that every term L2(n) (n = 0,±1,±2,±3, . . .) is determined according to the following recurrence relation:
L2ðnÞ ¼ L2ðn� 1Þ þ L2ðn� 3Þ ð62Þ
for the initial conditions (59) and (60).
6. The Binet formulas for the Fibonacci and Lucas 3-numbers

6.1. The Binet formula for the Fibonacci 3-numbers

For the case p = 3, the basic recurrence relation (1), the initial conditions (38), and the characteristic equation (24)

take the following forms, respectively:
F 3ðnÞ ¼ F 3ðn� 1Þ þ F 3ðn� 3Þ; ð63Þ
F 3ð0Þ ¼ 0; F 3ð1Þ ¼ F 3ð2Þ ¼ F 3ð3Þ ¼ 1; ð64Þ
x4 ¼ x3 þ 1. ð65Þ
Eq. (65) has four roots––two real roots, x1 and x2, and two complex conjugate roots, x3 and x4. The roots of Eq. (65)

are irrational complex numbers that have complicated symbolic representation. Therefore, we will use their approxi-

mate numerical values:
x1 ¼ 1.38 . . . ;

x2 ¼ �0.819 . . . ;

x3 ¼ 0.219 . . .þ i0.914 . . . ;

x4 ¼ 0.219 . . .� i0.914 . . . .
It is necessary to point out that the root x1 of the algebraic equation (65) is the golden 3-proportion s3 [18].
Formula (37) for the Fibonacci 3-numbers takes the following form:
F 3ðnÞ ¼ k1ðx1Þn þ k2ðx2Þn þ k3ðx3Þn þ k4ðx4Þn. ð66Þ
From (64) and (66), it is possible to derive the following system of equations:
F 3ð0Þ ¼ k1 þ k2 þ k3 þ k4;

F 3ð1Þ ¼ k1x1 þ k2x2 þ k3x3 þ k4x4;

F 3ð2Þ ¼ k1x21 þ k2x22 þ k3x23 þ k4x24;

F 3ð3Þ ¼ k1x31 þ k2x32 þ k3x33 þ k4x34;

8>>>><
>>>>:

ð67Þ
where F3(0) = 0 and F3(1) = F3(2) = F3(3) = 1 according to (64).

Solving the system (67) we get the following coefficients:
k1 ¼ 0.3969 . . . ; k2 ¼ �0.1592 . . . ; k3 ¼ �0.1188 . . .� i0.2045 . . . ; k3 ¼ �0.1188 . . .þ i0.2045 . . . ð68Þ
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Therefore, using (68), we represent the Binet formula for the Fibonacci 3-numbers in the following numerical form:
F 3ðnÞ ¼ 0.3969 � 1.38n � �0.1592ð�0.819Þn þ ð�0.1188� i0.2045Þð0.219þ i0.914Þn

þ ð�0.1188þ i0.2045Þð0.219� i0.914Þn. ð69Þ
6.2. Binet formula for the Lucas 3-numbers

If we accept k1 = k2 = k3 = k4 = 1 in (66) then we can get the following formula:
L3ðnÞ ¼ ðx1Þn þ ðx2Þn þ ðx3Þn þ ðx4Þn; ð70Þ
that gives the Lucas 3-series L3(n).

Using the given values for each xi, we represent the formula (70) for the Lucas 3-numbers in the following numerical

form:
L3ðnÞ ¼ 1.38n � þð�0.819Þn þ ð0.219þ i0.914Þn þ ð0.219� i0.914Þn. ð71Þ
Hence, by using (70) and Theorem 2, we calculate the initial terms of the Lucas 3-numbers. Here we have:
L3ð0Þ ¼ 4; ð72Þ
and
L3ð1Þ ¼ L3ð2Þ ¼ L3ð3Þ ¼ 1. ð73Þ
Consequently, the Lucas 3-series is:
. . . ; 4;�7; 3; 0; 4;�3; 0; 0; 4; 1; 1; 1; 5; 6; 7; 8; 13; 19; 26; 34; 47; 66; 92; . . . ð74Þ
in which each term L3(n) (for n = 0,±1,±2,±3, . . .) is determined according to the following recurrence relation:
L3ðnÞ ¼ L3ðn� 1Þ þ L3ðn� 4Þ; ð75Þ
using the initial conditions (72) and (74).
7. The Binet formulas for the Fibonacci and Lucas 4-numbers

7.1. The Binet formulas for the Fibonacci 4-numbers

For the case p = 4 formulas (1), (38) and (24) take the following forms, respectively:
F 4ðnÞ ¼ F 4ðn� 1Þ þ F 4ðn� 4Þ; ð76Þ
F 4ð0Þ ¼ 0; F 4ð1Þ ¼ F 4ð2Þ ¼ F 4ð3Þ ¼ F 4ð4Þ ¼ 1; ð77Þ
x5 ¼ x4 þ 1. ð78Þ
Eq. (78) has five roots, one real is root x1 that coincides with the golden 4-proportion s4 [18] and two pairs of com-

plex conjugate roots x2, x3 and x4, x5:
x1 ¼
h
6
þ 2

h
¼ 1.3247 . . . ;

x2 ¼
1

2
� i

ffiffiffi
3

p

2
¼ 0.5� i 0.866 . . . ;

x3 ¼
1

2
þ i

ffiffiffi
3

p

2
¼ 0.5þ i 0.866 . . . ;

x4 ¼ � h
12

� 1

h
� i

ffiffiffi
3

p

2

h
6
� 2

h

� �
¼ �0.6623 . . .� i 0.5623 . . . ;

x5 ¼ � h
12

� 1

h
þ i

ffiffiffi
3

p

2

h
6
� 2

h

� �
¼ �0.6623 . . .þ i 0.5623 . . . ;

ð79Þ
where h ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð108þ 12

ffiffiffiffiffi
69

p
Þ3

q
.
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For this case, formula (37) for the Fibonacci 4-numbers takes the following form:
F 4ðnÞ ¼ k1ðx1Þn þ k2ðx2Þn þ k3ðx3Þn þ k4ðx4Þn þ k5ðx5Þn. ð80Þ
From (77) and (78), it is possible to derive the following system of algebraic equations:
F 4ð0Þ ¼ k1 þ k2 þ k3 þ k4 þ k5;

F 4ð1Þ ¼ k1x1 þ k2x2 þ k3x3 þ k4x4 þ k5x5;

F 4ð2Þ ¼ k1x21 þ k2x22 þ k3x23 þ k4x24 þ k5x25;

F 4ð3Þ ¼ k1x31 þ k2x32 þ k3x33 þ k4x34 þ k5x35;

F 4ð4Þ ¼ k1x41 þ k2x42 þ k3x43 þ k4x44 þ k5x45;

8>>>>>>>><
>>>>>>>>:

ð81Þ
where F4(0) = 0 and F4(1) = F4(2) = F4(3) = F4(4) = 1 according to (77).

Solving the system (81) we get the approximate values of the coefficients:
k1 ¼ 0.38095 . . . ; k2 ¼ �0.07133 . . .þ i0.2063 . . . ; k3 ¼ �0.07133 . . .� i0.2063 . . . ;

k4 ¼ �0.1191 . . .þ i0.04577 . . . ; k5 ¼ �0.1191 . . .� i0.04577 . . . ð82Þ
Substituting the numerical values of the roots (79) and the coefficients (82) into formula (80), we can get the follow-

ing Binet formula for the Fibonacci 4-numbers in the numerical form.

7.2. The Binet formula for the Lucas 4-numbers

If we accept k1 = k2 = k3 = k4 = k5 = 1 in (80), then we get the following formula:
L4ðnÞ ¼ ðx1Þn þ ðx2Þn þ ðx3Þn þ ðx4Þn þ ðx5Þn; ð83Þ
that gives the Lucas 4-series.

Substituting the expressions (79) into (83), we get formula (83) in the analytic form:
L4ðnÞ ¼
h
6
þ 2

h

� �n

þ 1

2
� i

ffiffiffi
3

p

2

 !n

þ 1

2
þ i

ffiffiffi
3

p

2

 !n

þ � h
12

� 1

h
� i

ffiffiffi
3

p

2

h
6
� 2

h

� � !n

þ � h
12

� 1

h
þ i

ffiffiffi
3

p

2

h
6
� 2

h

� � !n

. ð84Þ
The initial terms of the Lucas 4-series can be calculated by using (83) and Theorem 2. Here we have:
L4ð0Þ ¼ 5; ð85Þ
and
L4ð1Þ ¼ L4ð2Þ ¼ L4ð3Þ ¼ L4ð4Þ ¼ 1. ð86Þ
Hence, the following Lucas 4-series are:
. . . ; 5;�9; 4; 0; 0; 5;�4; 0; 0; 0; 5; 1; 1; 1; 1; 6; 7; 8; 9; 10; 16; 23; 31; 40; 50; 66; . . . ð87Þ
in which each term L4(n) (n = 0,±1,±2,±3, . . .) is determined by the recurrence formula:
L4ðnÞ ¼ L4ðn� 1Þ þ L4ðn� 5Þ; ð88Þ
for the initial conditions (85) and (86).
8. The Binet formulas for the Fibonacci and Lucas p-numbers (a general case)

8.1. The Binet formula for the Fibonacci p-numbers

In the general case the Binet formula for the Fibonacci p-series has the form given by (37). The coefficients

k1,k2,k3, . . .,kp,kp+1 in formula (37) can be calculated by means of the solution of the system (39).
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Let us prove the following theorem.

Theorem 3. For the given integer p > 0 any Fibonacci p-number Fp(n) (n = 0,±1,±2,±3, . . .) can be represented in the

form:
F pðnÞ ¼ k1ðx1Þn þ k2ðx2Þn þ � � � þ kpþ1ðxpþ1Þn;
where x1,x2, . . .,xp+1 are the roots of the characteristic equation (24), and k1,k2, . . .,kp+1 are constant coefficients, which

are one solution of the system (39).

Proof. The initial terms of the recurrence Fibonacci p-series for the values n = 0,1,2, . . .,p are determined according to

(39).

Let us represent the Fibonacci p-number Fp(p + 1) using (37):
F pðp þ 1Þ ¼ k1ðx1Þpþ1 þ k2ðx2Þpþ1 þ � � � þ kpþ1ðxpþ1Þpþ1
. ð89Þ
Given the identity from Eq. (26) we now write (89) in the form:
F pðp þ 1Þ ¼ ½k1ðx1Þp þ k2ðx2Þp þ � � � þ kpþ1ðxpþ1Þp� þ ½k1ðx1Þ0 þ k2ðx2Þ0 þ � � � þ kpþ1ðxpþ1Þ0�. ð90Þ
Therefore, according to (39), we have:
F pðp þ 1Þ ¼ F pðpÞ þ F pð0Þ; ð91Þ
i.e., the basic recurrence relation (1) is true for the Fibonacci p-number Fp(p + 1).

Furthermore, by applying formula (37) for the Fibonacci p-numbers Fp(p + 2),Fp(p + 3), . . .,Fp(n),. . ., and using

identity (26), it is easy to prove that the formula (37) is valid for all positive values of n.

Let us prove that the formula (37) is true for the negative values of n = �1,�2,�3, . . ..
In order to do this, let us consider the formula (37) for the case n = �1:
F pð�1Þ ¼ k1ðx1Þ�1 þ k2ðx2Þ�1 þ � � � þ kpþ1ðxpþ1Þ�1
. ð92Þ
Let write identity (26) in the form:
xn�p�1
k ¼ xnk � xn�1

k . ð93Þ
For the case n = p, identity (93) takes the form:
x�1
k ¼ xpk � xp�1

k . ð94Þ
Using Eq. (94), we represent expression (92) by the following equation:
F pð�1Þ ¼ ½k1ðx1Þp þ k2ðx2Þp þ � � � þ kpþ1ðxpþ1Þp� � ½k1ðx1Þp�1 þ k2ðx2Þp�1 þ � � � þ kpþ1ðxpþ1Þp�1�. ð95Þ
Hence, by (39), we see that expression (95) is equivalent to:
F pð�1Þ ¼ F pðpÞ � F pðp � 1Þ ¼ 0;
that is, formula (95) gives the Fibonacci p-number Fp(�1) = 0.

Furthermore, considering formula (37) for the negative values n = �2,�3,�4, . . . and using (93), it is easy to prove

that formula (37) is valid for all negative values n. h

Theorem 4. For the given integer p > 0, the formula
LpðnÞ ¼ ðx1Þn þ ðx2Þn þ � � � þ ðxpþ1Þn; ð96Þ
where x1,x2, . . .,xp+1 are the roots of the characteristic equation (24), gives the Lucas p-series Lp(n) (n = 0,±1,±2,±3, . . .),
which can be given by the recurrence relation:
LpðnÞ ¼ Lpðn� 1Þ þ Lpðn� p � 1Þ; ð97Þ
for the following initial conditions:
Lpð0Þ ¼ p þ 1; ð98Þ
Lpð1Þ ¼ Lpð2Þ ¼ � � � ¼ LpðpÞ ¼ 1. ð99Þ
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Proof. Let us prove that Theorem 4 is true for the initial terms of the Lucas p-series. In fact, for the case n = 0, we write

the formula (96) as:
Lpð0Þ ¼ ðx1Þ0 þ ðx2Þ0 þ � � � þ ðxpþ1Þ0 ¼ 1þ 1þ � � � þ 1 ¼ p þ 1.
This proves that expression (98) is true.

We now consider the expression (96) for the cases n = 1,2,3, . . .,p, that is,
Lpð1Þ ¼ x1 þ x2 þ � � � þ xpþ1;

Lpð2Þ ¼ ðx1Þ2 þ ðx2Þ2 þ � � � þ ðxpþ1Þ2;

Lpð3Þ ¼ ðx1Þ3 þ ðx2Þ3 þ � � � þ ðxpþ1Þ3;
� � � ;
LpðpÞ ¼ ðx1Þp þ ðx2Þp þ � � � þ ðxpþ1Þp.
According to Theorem 2, the expressions we previously considered are all identically equal to 1. This proves that the

formula (96) is true for the cases n = 1,2,3, . . .,p.
The validity of formula (96), for any Lucas p-number Lp(n) (n = 0,±1,±2,±3, . . .) given by the recurrence relation

(97) with initial conditions (98) and (99), is proved similarly to Theorem 3 and is based on identities (26) and (93) that

connect the roots of characteristic equation (24).

Thus, the basic result of Theorem 4 is the introduction of a new class of recurrent series, given by the recurrence

relation (97) with initial conditions (98) and (99). The class is expressed by the formula (96). These recurrent series are a

natural generalization of the classical Lucas numbers (42) that correspond to the case p = 1.

We calculate the initial terms of the Lucas p-series by using (96) and Theorem 2. Here we have:
Lpð0Þ ¼ p þ 1; ð100Þ
and
Lpð1Þ ¼ Lpð2Þ ¼ Lpð3Þ ¼ � � � ¼ LpðpÞ ¼ 1. ð101Þ
Then we will represent the Lucas p-series by the numerical sequence, in which each term Lp(n) (n = 0,±1,±2,±3, . . .)
is determined according to the recurrence relation
LpðnÞ ¼ Lpðn� 1Þ þ Lpðn� p � 1Þ; ð102Þ
for the initial conditions (100) and (102). h
9. Conclusion and discussion

The preceding fundamental mathematical formulas, which allow us to express in a compact form some deep math-

ematical laws found in the Universe, play a great role in theoretical natural sciences. The majority of these formulas

bear the names of their founders: ‘‘Euler�s formulas’’, ‘‘Gauss� law’’, ‘‘Moivre�s formulas’’, to name a few. Binet formu-

las (12) and (13), which express the connection of the Golden Section to the Fibonacci and Lucas numbers, belong to

the category of such formulas. These formulas are named in the honor of the French mathematician Jacques Philippe

Marie Binet (1786–1856) (of 19th century) who was elected a member of the Parisian Academy of sciences in 1843. He

published many works on mechanics, mathematics, and astronomy. In mathematics, Binet introduced the notion of

‘‘the Beta-function’’, he considered the linear differential equations with the variable factors, and made essential con-

tributions to the development of the matrix theory. In 1812, he discovered the rule of matrix multiplication. All this was

sufficient to immortalize his name in the history of mathematics. However, we may consider the Binet formulas (12) and

(13) his highest mathematical achievement.

The analysis of the formulas (12) and (13) allow us to feel true ‘‘aesthetic pleasure’’ and become confident in the

power of human mind once again. In fact, we see from those formulas that the Fibonacci and Lucas numbers always

have integer values. On the other hand, any degree of the Golden Proportion is an irrational number, that is, the right

parts of formulas (12) and (13) are some combinations of irrational numbers.

For example, the Lucas number L2 = 3, according to (13), can be represented in the form:
3 ¼ 1þ
ffiffiffi
5

p

2

 !2

þ 1þ
ffiffiffi
5

p

2

 !�2

; ð103Þ
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and the Fibonacci number F5 = 5 can be represented in the form:
5 ¼
1þ
ffiffi
5

p

2

� �5
þ 1þ

ffiffi
5

p

2

� ��5

ffiffiffi
5

p . ð104Þ
Thus, the Binet formulas (12) and (13) express a connection of integers (the Fibonacci and Lucas numbers) to irra-

tionals (the Golden Proportion powers). We further demonstrated in [25,27] that the Binet formulas are the basis of the

hyperbolic Fibonacci and Lucas functions that has a strategic importance for modern theoretical natural sciences.

From such point of view, it is necessary to estimate the new mathematical formulas (37) and (96) that give the ana-

lytical form for the Fibonacci and Lucas p-numbers. It is also necessary to point out that the number of new Binet for-

mulas for the Fibonacci and Lucas p-numbers obtained in the present article is theoretically infinite (p = 1,2,3 . . .), and
the classical Binet formulas (12) and (13) are their special cases for p = 1.

The situation with the comprehension of the ‘‘physical sense’’ of the new Binet formulas, which, at first sight, seem

incredible, is reminiscent of the situation in mathematics when complex numbers were introduced. It is well-known that

a solution of the cubic equation
x3 þ pxþ q ¼ 0; ð105Þ
is given by means of the following formula
x ¼ uþ v;
where
u ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� q
2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q
2

� �2
þ p

3

� �3r
3

s
; v ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� q
2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q
2

� �2
þ p

3

� �3r
3

s
; uv ¼ � p

3
; D ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q
2

� �2
þ p

3

� �3r
.

Using basic algebra, we see that there are three roots of Eq. (105), namely:

(1) For the case D > 0 we get one real and two complex conjugate roots; for example, the equation

x3 + 15x + 124 = 0, for which D > 0, has the roots: x1 ¼ �4; x2;3 ¼ 2� 3i
ffiffiffi
3

p
.

(2) For the case D = 0, p 5 0, q 5 0 the equation has three real roots, here two of them are coincident; for example

the equation x3 � 12x + 16 = 0 has the following roots: x1 = �4; x2,3 = 2.

(3) For the case D < 0 we have the most interesting case, so called ‘‘non-reducible’’ case, when we need to extract the

root of the 3-d degree from complex numbers and the cubic roots u, v are complex numbers. Nevertheless, in this

case Eq. (105) has the different real roots. For example, the equation x3 � 21x + 20 = 0, for which
D ¼ �243; u ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�10þ

ffiffiffiffiffiffiffiffiffiffiffi
�243

p3

q
; v ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�10�

ffiffiffiffiffiffiffiffiffiffiffi
�243

p3

q
; ð106Þ
has the real roots 1, 4, �5. The substitution of these roots into the corresponding algebraic equation will convince us of

this.

In the 16th century, this fact seemed paradoxical for mathematicians. In fact, all coefficients of the equation

x3 � 21x + 20 = 0 and all its roots are real numbers but the intermediate calculations lead us to ‘‘imaginary’’, ‘‘false’’,

‘‘nonexistent’’ numbers such as numbers in (106). Mathematicians appeared to be in very difficult situation, as had hap-

pened to them repeatedly (since the discovery of irrational numbers). The complete neglect of the numbers such as (106)

would have meant to refuse the general formulas for the solutions of the third degree algebraic equations, as well as

other remarkable mathematical achievements. On the other hand, to recognize these persistently appearing ‘‘mon-

strous’’ numbers such as (106), now understood to be as valid as real numbers, was intolerable from the common sense

point of view. Many mathematicians did not recognize the ‘‘monstrous’’ numbers such as (106) for a long time. For

example, Descartes considered that there would never be a serious interpretation for the complex numbers and they

were forever doomed to remain only as ‘‘imaginary numbers.’’ We have used the term ‘‘imaginary numbers’’ since

the 17th century. It is perpetual reminder of Descartes� skepticism. Others great mathematicians of that time, including

Newton and Leibnitz, had the same opinion.

The complex numbers finally obtained recognition after the works of the French mathematician Abraham de Moi-

vre (1667–1754), who is the author of the well-known Moivre�s formulas. Based on Moivre�s formulas, Euler established

the validity of the following expressions for the trigonometric functions:
cos x ¼ exi þ e�xi

2
; sin x ¼ exi � e�xi

2i
. ð107Þ
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Concerning the importance of these formulas, Euler wrote the following: ‘‘From here it is clear, how imaginary quan-

tities are led to the sine�s and cosine�s of the real arches’’.

Probably, the similar statement is pertinent for the analytical formulas given in the present article for the Fibonacci

and Lucas p-numbers.

We now return to the new Binet formulas, which we introduced in the present article. If we take into consideration

the above thoughts regarding the complex numbers, we come to the conclusion that these formulas, similar to ‘‘Moi-

vre�s formulas’’ and ‘‘Euler�s formulas’’ (107), touch upon some very deep numerical concepts. These concepts are the

relationships between the integers (the Fibonacci and Lucas p-numbers), irrationals (the Golden p-Proportions), the

complex numbers, and the binomial factors.

It is now difficult to predict in which part of science the above-introduced Binet formulas for the Fibonacci and Lu-

cas p-numbers will have the most effective application. It is clear that the theory of the Binet formulas, which we stated in

the present article, is a challenge to the branch of modern mathematics known as the Fibonacci numbers theory [15–17],

which is actively developing. Given the concepts of new Binet formulas, which we introduced in the present article, the

hyperbolic Fibonacci and Lucas functions [25,27], which are based on the Golden Section, and the generalized Fibonacci

matrixes [26], which are based on the Fibonacci p-numbers, we can quite pertinently speak about creation of the new

mathematical apparatus for scientific research. This apparatus has been recognized in modern science as Harmony

Mathematics [23,24]. The authors are sure that the new mathematical apparatus will attract the attention of theoretical

physicists if we take into consideration the active interest of physical science to the Fibonacci numbers and the Golden

Section [1–14]. It is already possible to predict the application of the new Binet formulas in the new coding theory [30]

that is based on the Fibonacci matrices [26], the elements of which are the Fibonacci p-numbers.
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