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A Unified Presentation of Certain
Classical Polynomials

By H. M. Srivastava and J. P. Singhal

Abstract. This paper attempts to present a unified treatment of the classical orthogonal
polynomials, viz. Jacobi, Laguerre and Hermite polynomials, and their generalizations
introduced from time to time. The results obtained here include a number of linear, bilinear
and bilateral generating functions and operational formulas for the polynomials
{Tn(a'ß)(x, a, b, c, d,p,r)\n = 0, 1, 2, ■••}, defined by Eq. (3) below.*

1. Introduction and Definition. In an attempt to give a unified presentation
of the classical orthogonal polynomials, viz. Jacobi, Laguerre and Hermite poly-
nomials, Fujiwara [4] studied the polynomials defined by the generalized Rodrigues'
formula

(1) P,Xx) = ^jjf (x - ay\b - x)~ß D"{(x - a)n+a(b - x)n+ß},

where D = d/dx.
The polynomials pn(x) are orthogonal with respect to the weight function

(x — d)a(b — x)ß, where a, ß > — 1, over the interval [a, b]. In fact, as pointed out
by Szegö himself [10, p. 58], they can be rewritten as (cf. also [2])

(2) Pn(x) = c\a - bfPl" ^^^ 4- l) ,

where Pna,ß)(x) is the classical Jacobi polynomial, orthogonal with respect to the
weight function (1 — x)a(\ + x)ß, where a, ß > —1, over the interval [—1, 1]. By
recourse to certain limiting processes, it is easy to verify that the pn(x), as also the
Jacobi polynomials Pn"-ß\x), give rise to Hermite and Laguerre polynomials.

It may be of interest to study here the polynomial system {T(n" ß)(x, a, b, c, d, p, r)}
defined by

Tn"'ß\x, a, b,c, d, p, r)

(ßX  ~\~  b~)      (CX  ~\-   d) t      r.        n / t .     ,.n+ör/ i     j\n + 0        _/ r.i=- exp(px ) D \(ax + b)    (cx + d)     cxp( — px )} .
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970 H. M. SRIVASTAVA AND J. P. SINGHAL

Apart from being more general than p„(x), the polynomial system defined by (3)
has a distinct advantage in that it can be specialized to almost all classes of orthogonal
polynomials without using any limiting processes. In particular, we mention the
following obvious connections.

(4) Tna'ß\x, a, -a, c, c, 0, r) = Tn"'ß)(x, a, -a, c, c, p, 0) = (2ca)nPna-ß)(x).

(5) Tna'ß)(x, a, 0,0, d, 1, 1) = (ad)nLna)(x).

(6) Ti9'm(x, 0, b, c, 0, 1, 1) = (bc)nLn0)(x).

(7) TimJ\x, 0, b, 0, d, 1, 2) = (-bd)nHn(x).

(8) Tla-°\x, a, 0,c, 0,2, -1) = (2ac)n Yna)(x).

(9) T(na'n-ß)(x, a, 0, 0, d, p, r) = (~gfx)" IfJLx, a, p).

Here, Yla)(x) denotes the generalized Bessel polynomial of Krall and Frink [6]
defined by

(10) Yna\x) = ,F0[-/i, » + « + 1; -;

and H'n(x, a, p) is the generalized Hermite polynomial

(11) HTn(x,a,p) = (—l)nx~a exp(px") Dn{x" exp(—pxr)\,

introduced earlier by Gould and Hopper [5].
By making use of Leibniz' rule, Tna,ß)(x, a, b, c, d, p, r) can be expressed in the

form

Tn"-ß)(x, a, b, c, d, p, r) = (ad - bc)n

Z( — )h {(ax + b)(cx + d)\k n,a+k.ß+k)(„   cx + d      .\„v    „ .

Moreover, it is readily seen that

(13) Tl"'ß)(x, a, b, c, d, p, r) = (abynT(/a){^ , a, b, a2d, b2c, (~fp, r) ,

which is a generalization of the familiar result [10, p. 59]

(14) Pna'ß)(-x) = (~)nPlßa)(x)

involving Jacobi polynomials.

2. Generating Functions.   From the definition (3), we have

r„ (x, a, b, c, d, p, r)SA ((ax + b)(cx + d)

(15) = (ax + bYa(cx + d)~ß exp(pxT)

■ Z     Dn{(ax + bT+a-"n(cx + dT+ß-ß" exp(-px)\
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CERTAIN CLASSICAL POLYNOMIALS 971

and, on interpreting this last expression by means of Lagrange's theorem [7]

(16> T-^J7^ = t h Dnil<t>(x)TKx)},     y = x + i*tv),1 - tip O)      >T=a «!

we find that

Z ^a-x"'^^0, a, fc, c, d, p, r)tn
n = 0

lay+bYlcy+dV .
(aJTb) fei CXP|[px —py

1

where

J» = X

If we put

(ax + b)/{ay + 6) = 1 + u,      (cx + <0/fe>- + «0 = 1 + v,
then we shall get the generating function

zZ Ti'-^-^ix, a, b, c, d, p, r)tn
(17) "=0

(1 + uya(\ + vyß /   ,       (ax - bu\
= 1 + (1 - X)u + (1 - p)v CXPr " *UT^~J

where u and i> are given by

(18)
u = -at(cx + d)(l + «)x(l + i0"~\

i; = -c/(a* + b)(\ + uf~\l + of.
Alternatively, by letting u = — £/(l + £) and c = — tj/(1 + »;), the generating

function (17) can be written as

ZZ Tna^n ß~"n)(x, a, b, c, d, p, r)t"

(19) "-°

= ! + X{ + M, - (1 - X - rib 6 P r  " *V + a {aX + b))f'

where

(20)
£ = fl/(c* + <0(1 + 0 0 + vf

V = ct(ax + ö)(l + %f~\\ + r?)1

In view of the relationships (4) through (9), the results given above would readily
yield a large number of generating functions for the polynomials of Jacobi, Hermite,
Laguerre, Gegenbauer, and many others. For instance, we have the following special
cases:
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972 H. M. SRIVASTAVA AND J. P. SINGHAL

(i) If X = p = 0, then both (17) and (19) would give us the elegant generating
function

£ Tna-ß)(x, a, b,c, d,p,r)tn
n = 0

(21) = 2a+V'{l + (be - ad)t + p\-"[ \ - (be - ad)t + p}'ß

J   r      P f        2(ax + b) T\
• expr ~7li + itc-ad)t + p- *j / ■

where p = {1 - 2«7>c + lacx + ad) + t\bc - adf\v\
(ii) For p or r = 0 and —a/6 = c/c? = 1, (17) and (19) correspond to our main

results in [9], while (21) would give us the familiar generating function ([10, p. 69];
see also [7, Vol. 1, pp. 127, 303, Problem 219])

(22) X) Pn",ß)(x)tn = 2a+ßR~'(l - t + R)-"(l + t + R)~ß,
n-0

in which R = (\ - 2xt + t2)'/2.
(iii) On combining (8) with (17) and (18), we get the known generating function

[1, P- 654]

(23) £ Yla^\x)^ = (1 + «r°{l + (2 + X)«}"1 exp{r(l + u)^],

where — \xt = «(1 + w)x+1.
(iv) On using (9) with (19) and (20), we are led to the generating function

(24) it Hl(x,a - \n,p)-= (1 + D° + 1(l + U + £)"' exp[^{l - 0 + Oil

where £ = -x~'t(\ + £f \
The last result (24) does not seem to have been noticed earlier.

3. Operational Formulas. In this section, we shall make use of the differential
operator 5 = xd/dx which possesses the following interesting properties:

(25) x"D" = 5(5 - 1) • ■ • (5 - n + 1),

(26) /(5) exp\g(x)jh(x) = exp{gO)}/{5 + xg')h(x).

Assuming Y to be a sufficiently differentiable function and using the properties
(25) and (26), we observe that

(ax + b)'"(ex + d)~ß exp(Avr) Dn{(ax + b)n*a(cx + d)n'ß e\p(-pxr)Y\

(27) = ) (ax -t b)(cx + d)y -rr I     , (
11 1 ax + b    1   cx + d

(n + a)ax     (n + ß)cx r        , |
8 + i—— +        , z-Prx — J + 1 \Y>

whereas, by employing Leibniz' rule, the left-hand side of (27) can also be expressed
in the form

Z(ax + bf(cx + df ^a+k,ß+k)/ k
- Tn-k       (x, a, b, c, d, p, r) D Y.

k-o k\

Equivalence of the two expressions yields the operational formula
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CERTAIN CLASSICAL POLYNOMIALS 973

nr s   I   a(n + a)x      c(n + ß)x ,
.      5 +     nv -4- h    +     rv -4- fi    ~ PrX    ~ J + 1 Y

ax + b cx + d

(28) , / x
(ax + b)(cx + d))   t=i k\

Tna-lk'ß+k\x, a, b,c, d,p,r) Dk Y.

(29)

For Y = 1, (27) would give us

nf       a(n + a)*  . c(/; + /3)a: p      . |5 + -—— H-——-prx —7+1i-i L         ax + b         cx + d J

(a* + ö)(cx + d) Tl~-'\x, a, b,c, d, p, r).

If in (29) we replace n by n + m and then interpret the left-hand side with the
help of (28) and (29), we shall get the interesting formula

(30)
(m + n\rr<«.ß), t j V (ax+J>)Jcx + d)
[ )Tn+n (x, a, b, c, d, p, r) = 2^-Tj-

■ Tn1+kk-ß+k)(x, a, b, c, d, p, r) DlTia+n-ß+"\x, a, b, c, d, p, r).

As an application of (30), we first replace a, ß by a — n and ß — n, respectively,
multiply both sides by t", take their sums from n = 0 to n = oo and then interpret
its right-hand side with the help of Taylor's theorem and formula (18). We are thus
led to the following generating function:

Z( m   +   n\     (a-n,ß-n). . n
I )Tm+n       (x, a, b, c, d, p, r)t

•-o V    n I
(31) = {1 + at(cx + d)\a{\ + ct'ax + b)}ß

• exp j pxT — p(x + t'ax + b)(cx + d)f}

■ T{m"lß)(x + t(ax + b)(cx + d), a, b, c, d, p, r).

On the other hand, by making use of the definition (3) and Lagrange's theorem
(16), we observe that

t (" + n)t--ß\x, a, b, c, d, p,
„.0 \    n    I \ax + bl

(ax + bTa(cx + d)~ß r^ 1  (d\m,. +        |^  ,\ß+m      t r,,
= -7j-~Trn+T- exp(px ) —- I — 1 {(ay + b)     (cy + rf)p    exp(-,p.y ) ,

(1 — ct) nv. \dyj

where y = (x + dt)(\ — ct)~l.
Interpreting the right-hand side of the last equation by means of (3), we get

another generating function in the form

2-, ( jTlm+~n'ß)(x, a, b, c, d, p, r)f

(32) = {1 + t(ad - be)}" {I - ct(ax + 6)j-*-<*-"•-»

/   r       (x + dt(ax + b)\\^a,ß)(x + dt(ax + b) \
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974 h. m. srivastava and j. p. singhal

It is worthwhile to remark here that in view of relations (5) and (6), the generating
function (32) provides us with a unification of a large number of results including,
for instance, the known formulas (cf., e.g., [2, pp. 221-222])

(33) ±       + *)Ll%\{x)t" = (1 - 0—*"-' exp(-r^)Llt"(r^)

and

(34) E I"' + n)Ll\7\x)tn = (1 + tT exp(-*/)Z.rU(l + t)}.

4. Bilateral Generating Functions.   In this section, we apply the generating
relations (31) and (32) to prove the following theorems.

Theorem 1. If

(35) Fix, t] = £ anTna-n-ß\x, a, b, c, d, p, r)tn,
n-0

where the a„ are arbitrary constants, then

{, + t(ad _ fc,)r{1 _ cf0w+exp|^ _  +*(«* + *>yj

LI— ct(ax+ b)   l + t(ad—bc)J £r0

where o-n(y) is a polynomial of degree n in y given by

(37) <r„60 = E U/W*-
t-o

Theorem 2.   Fo/- arbitrary an, n ^ 0, /er

(38) Gl>, f] = E *.lt*""^"",<*. «.    c, rf, p, r)tn,

(36)

(39)

11 + at(cx + d))"\ 1 + cr(a* + &)}" expjpA:' - pt> + t(\ax + b)(cx + rf))"}

■G[x + t(ax + b)(cx + d), yt/{l + at(cx + d)\ {1 + cr(a;c + &))]

= E 7,n""n,fl"n>(jr, a, b, c, d, p, r)o-n(y)t",

where <rn(y) is given by (37).
To prove Theorem 1, we substitute the series expansion of cjy), given by (37),

on the right-hand side of (36) and we get

E Ti"-n 0y(x, a, b,c, d,p,r)an(y)tn
n-0

= E ak/t" ±(n + k)Tit?-*'\x, a, b, c, d, p, r)t\
fc-0 n = 0  \       n I
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CERTAIN CLASSICAL POLYNOMIALS 975

On summing the inner series with the help of (32) and then interpreting the re-
sulting expression by means of (35), we are led immediately to Theorem 1.

Similar is the proof of Theorem 2. Indeed, we make use of the generating relation
(31) in place of (32).

Alternatively, Theorems 1 and 2 may be deduced as corollaries of a general result
on bilateral generating functions given elsewhere by us [8].
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