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This paper presents a systematic introduction to and several applications of a
certain method of obtaining bilinear or bilateral generating relations for a large
variety of sequences of special functions. The main result, given by Theorem 1
below, is shown to apply, for instance, to the Bessel, Brafman, Charlier, Gegenbauer
(or ultraspherical), Gould-Hopper, Jacobi, Hermite, Konhauser, Laguerre (or the
modified Laguerre) and Srivastava-Singhal polynomials, while its generalization,
given by Theorem 2, would apply to the Lauricella polynomials in several variables
and to the familiar Lagrange polynomials which arise in certain problems in
statistics. It is also shown how these results can be extended to yield bilateral
generating relations for such other special functions as the Bessel functions.

1. INTRODUOTION

In her recent monograph [7] McBRIDE presented a systematic study
of the various methods of obtaining generating functions. Every special
function, which she considered as the coefficient set in a bilinear (or
bilateral) generating relation, belongs to a class of functions {S,(z)
n=0,1,2, ...} generated by

o0
(1) S A Swin@tn=f(a, O){g(a, 0} Sn (h, 1)),
n=0

where m =0 is an integer, the A, » are arbitrary constants, and f,g, A
are arbitrary functions of « and f. Thus it would seem worthwhile to
investigate an effective method of obtaining bilateral generating functions
for the Su(z) defined by (1). With this object in view, we first prove the
following general result.

THEOREM 1. Corresponding to every sequence {Sy(x)} generated by
(1), let

(2) Fylz, t]= E @n Sgn(x)t?,

n=0

1) The authors wish to acknowledge the support of this work by the National
Research Council of Canada under grants A-7353 and A-4027, respectively.
For an abstract of this paper see Notices Amer. Math. Soc. 21 (1974), p. A-491,
# 74T-B 162.
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where q is an arbitrary positive integer, and the ay+# 0 are arbitrary constants.
Then

(3) > Sa(x)ol(y)tn =K, t)Folh(z, t), yit/g(x, t)}4],
n=0
where o(y) is a polynomial of degree [n/q) in y defined by

[n/a]
(4) ":(?/)= Z ax Aqk,n-gk Y*.

k=0

PROOF. If we substitute for the polynomials ¢{(y) from (4) into the
left-hand side of (3), we find that

In/a)

S Su@) = S Sa@tr S ax Ag e g

n=0 =0 k=0
[oo] oo

= z ak yk tqk z Aqk,n qu-}—n(x)t”
k=0 n=0

=) 3 o S (bio, ) Iyflate, D}F,

by employing the generating relation (1). Now the theorem would follow
at once if we interpret this last expression by means of (2).

2. APPLICATIONS TO CLASSICAL POLYNOMIALS

For g=1 the above theorem would readily yield a class of bilateral
generating functions for the sequence {Sx(x)} given recently by SiNeHAL
and SrIvasTava [10, p. 755]. In this section we show how Theorem 1
for integers ¢ =1 can be applied to derive bilinear or bilateral generating
functions for those classical polynomial systems that satisfy a relationship
like (1).

First of all we recall that the Hermite polynomials Hyu(z) defined by
Rodrigues’ formula

(5) Ha(®)=(~1)" exp (&) D{exp (—22)}, Dy = dfdw,
satisfy the relationship [7, p. 14]

(6) z H ppia x) — = exp (2zt—#2) Hn(z 1),

n=0

which is of type (1) with Amn=1/n!, f= exp (2xt—1#2), g=1, and h=x—1.
Thus we are led to the following application of Theorem 1.

COROLLARY 1. If

(7) FVz, t]= % . qn )' Hgn(x)tn,
then

(8) 3 Halo) M3(9) 3; — oxp (20t — 1) F¥la—t, gt
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where, as well as throughout this paper,

[n/a)
(9) Miy)= S (q’;) ax g,

k=0

By suitably specializing the arbitrary coefficients a, in (9), the poly-
nomials M?(y) can easily be reduced to a number of familiar systems.
For instance, if we put

(10) o = {(qn)! ]1[1 (a,)n}(n! fI1 (/31)%,—1, n=0,1,2 ...,
i- j
and replace y by y/(—g)?, the Mi(y) will become identical with the
Brarman polynomials [1, p. 186]
(11) Bj[o, ..o, or; Bu, oo, ot Yl=gurFslAlg; —n), 01, .o 00r5 B, oo B3 ),
where, for convenience, A(q; A) denotes the set of ¢ parameters
Alg, A+ 1)fg, ..., (A+q—1)/g, g=1.

Thus we obtain a special case of Corollary 1 given by

COROLLARY 1.1. If

12 PP = 3{' }{n'H (e | Eenta,

j=1
then

00 in
ZO Hn(x) Bg,[le, cees Oy s ﬂl, s ﬂ‘?: y],n_

= exp (2wt —2)FP[x—t, y(—t/q)9].

(13)

On the other hand, for the GouLp-HoPPER generalization of the classical
Hermite polynomials, viz. [4, p. 58]

n/a) n!
(04 dile, D= 3 pro—agr e t=an Fold(g; —n); = M—gle)),
which obviously are contained in the Brafman polynomials (11) with
r=¢8=0, from (5) and Corollary 1 we readily get

COROLLARY 1.2. If

(15) FP[x, t]= exp (x2) exp [{(— Dy)tl{exp (—22)},

then

(16) 2 Ha(x) g4(y, ) — = exp 2wyt —y?A)\FPlx—yt, M),
Since i

(17) g2z, —1)=Ha(®), n=0,1,2, ..,
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a special case of (16) when ¢g=2, A= —1, and y is replaced by 2y, would
yield

oo
(18) 3 Hola) Haly) gy = oxp (dayi—dg2) PPz —2t, —12,

where FP[x, t] is given by (15) with ¢=2. In view of Glaisher’s operational
formula

(19) exp (t DZ){exp (—a?)}=(1+4¢)~12 exp [ —a?/(1+44)],
we have
(20) F®lx, t]=(1+ 487172 exp [422/(1 + 41)],

and we arrive immediately at the bilinear generating relation

— (1— 48712 oxp [0 — (2 — 2yt)2/(1 — 42)],

@) 3 Ha@) Haly) oy

n=0
which is well known as Mehler’s formula (cf., e.g., [7], p. 15 and [9],
p. 198).
As a final application of Corollary 1 we derive a hitherto unnoticed
bilateral generating relation for the Hermite polynomials given by
n

§ Hy(x) Co(y) -t—— = exp (2wyt — 222 +2) .
n=0 (217)7;

-Dslv; v+ 1/2; (y2 — 1)82, (z—yt)2(y2 — 1)12],

(22)

where C, (x) are the Gegenbauer (or ultraspherical) polynomials [7, p. 3],
and @3 is a confluent hypergeometric function of two variables defined
by [3, Vol. 1, p. 225]

- _ 9 ¥)m oy
(23) @3[06, Vi, y]" m,gno (Pmin m! nl .
Indeed if in Corollary 1 we set ¢=2, a5 =(2n)!{n!(r+1/2),}*, and replace
y by (y2—1)/4y2, the M:(y) given by (9) will, in view of the known
relationship [9, p. 280]

_ (2v)n 2®

(24) Oyfa) = =2

2F1[A(2; —n); v+ 1/2; (22— 1)[2?],

correspond to

n!
25 —— O (y).
( ) (211)“ y” n(y)
On the other hand, since it is easily verified that
(26) Hon(x)=(~1)n 22mp 1 L7VP(a2),  n=0,1,2, ...,

where L (x) denotes the classical Laguerre polynomial of order « and
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degree n in z [7, p. 10, Eq. (12)], from equation (7) with the aforementioned
values of ¢ and a, we have

F(zl)[x, t] § n'(v+ 1/2 Hz,.(x)

fn-

(27) S (4"
B uzo (r+1/2)s "

= exp (—4t) Dg[v; v+ 1/2; 4i, 42%],

L( 1/2)( 2)

by virtue of the formula
X n

(28) > © )nL“"’(x = exp (1) Ps[o—a—1;0; —&, —at],

n=0
which follows fairly easily from the generating relation (3.1), p. 76 of
SrIvasTava [14].

Now we substitute in (8) the values of MZ(y) and Fy’'[x,¢] given by
(25) and (27), respectively, replace y by yt in the resulting equation,
and this completes the derivation of the bilateral generating relation (22).
Notice that (22) is contained also in the generating relation (13) with
g=2, r=8—1=0, f=v+1/2.

Next we consider the classical Jacobi polynomials P*# (z) which
satisfy the elegant relationships [10, p. 759]

(29) P (m;: n) P i (et
= {14+ Mo+ 1™ {1+ H—1)fp-™ po-mb-m (x-}— Har—1))
and
(30) ,20 (m;: n) Pl @
=(1—tf ™ (1—J+ 1}~ Pt (X),
where, for convenience,
(31) X={o— o+ DEHl— @+ D

On comparing (29) and (30) with the generating relation (1) we obtain
the following special cases of Theorem 1.

COROLLARY 2. If
(32) Flz,t]= 3 an PO/~ (a)tn,
n=0
then

(33) §0 P () MO (y)tn = {1+ $(x+ 1)t} {1+3@— 1))’
POz -+ a2 — D)t yia/{1+ J(z+ D)t}e{l + e —1)t}4],

where, as before, the Mi(y) are given by (9).
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COROLLARY 3. If

(34) FOla,f]= 3 aa Plf=a ()i,
n=0
then
(35) S PR () M (y)n
n=y0

=(I—tf {1-}@+ Dty " FOLX, yte)(1-t)0),
where X 18 given by (31).

Notice, however, that Corollaries 2 and 3 are essentially equivalent, since
we have

1—-z\" x+3)
(x, B~n) I i (—ax—~f—n—1,~n)
(36) peon @)= (15 ) s (x—l :

which is a rather immediate consequence of the known formula (7), p. 255
in [9]. Also, since [op. cit., p. 256]

(37) PP (g)=(—1)» PP¥ (—g), =2=0,1,2,..,

formula (35) can easily be transformed into a bilateral generating relation
for the Jacobi polynomials P*™# (z).

Similar applications of our theorem will lead to the following results
involving other classical polynomials.

COROLLARY 4. If

(38) POz, f]= S an O (x)in,

then "

(39) S O () Mig)n=R"> FO@—t)/R, yt/RY)
(40) BR=(1— 2t -+,

COROLLARY 5. If

(41) Flz,t]= 3 an LY (x)im,
n=0
then
(42) S LY (x) Mi(y)te
ne=0

=(I—t)"* " exp [—at/(I 1)) F [x/(1—t), yta[(1—£)q].
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COROLLARY 6. 1If

(43) FOa,t]= 3 an LG~ (@)tn,

n=0

then

(W) S IE" (@) MO ()= (1 +4)" exp (—at) FOa(1 +1), yie/(1 1 1)]

n=0

Since [7, pp. 68-69]
(45) fo @)= (= 1 Lg="(o) = Zon(a; 2),

Corollary 6 may alternatively be stated as follows in terms of the modified
Laguerre polynomials f}(x) defined by [op. cit., p. 4]

(46) (1—1)"% exp (xt) z fix)

or the Charlier polynomials c,(x; «) defined by [op. cit., p. 68]

(47)  cnlw; a)= (—1)k<n)(x)k!oc—k,oc>0,x=0,1,2,....
k=0 k) \k

COROLLARY 7. If

(48) POz t= S anf5 2,

n=0
then
(49) zo fix) Mi(y)tr=(1—1t)~" exp (xt) FY [a(1—1), yto/(I-t)q],

where, as before, the M(y) are defined by (9).

COROLLARY 8. Let

(50) Fao[g, ¢]= ZO é%‘)—! Cqn (o ; T)tM,
where x>0 and x=0,1, 2, ...
Then
(651) 3 ealow; 2) Maly) oy = (I—tja)" exp (i) F¥—t, yia].
n=0 .

Yet another form of Corollary 6 would involve the generalized Bessel
polynomials defined by (cf., e.g., [9], p. 294)

(52) Yo, a, b)=oFo[—n,a—1+n; —; —z/b].
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Indeed, it is easily verified that

(63)

Yn (x, a—n, b)=n!(—x/b)» LI~*""(b/x),

which would enable one to rewrite the familiar result (13), p. 757 in [10] as

(54)

00 tn
Y Yminlr,a—m—n,b) =
n=0 n:

=(1—at/b)12 exp (!) ym (x(l —xtfb)1, a—m, b).

{See also [4], p. 58, Eq. (5.6).}
Making use of the relationship (53) in Corollary 6, or else by comparing
(54) and (1), we obtain

COROLLARY 9. If

(85)

then

(56)

Fuv[z, t]= E (qn /yq,,(x a—qn, b)tr,

% (T, a—mn, b) M?,(y)

= (1 —xt[b)1~a exp (t) F‘ql” [2(1 —at[b)1, yta].

For the simple Bessel polynomials [7, p. 47]

(87)

(58)

Ya(®)=2Fo[ —n,n+1; —; —x/2]=yalz, 2, 2),
it is known that (cf., e.g., [10], p. 758)

2 ym+n(x) = (1 — 2at)~tm+1)/2 exp [x~1{1 — (1 — 2xt)}}]

Y (x(l ~ 2at)4),

which may be compared with (1) to get

COROLLARY 10. If

(59)

then

\

(60) <

(

P, t]= 3 G

2 Ve

,,(x ) Me( )t = (1 —2zt)t exp [ 11— (I — 2ut)t}]

- F02 (1 — 2x8)}, yte(1 — 2xt)-2/2].

Evidently this last Corollary 10 is not contained in Corollary 9.
We remark in passing that Corollaries 2 through 10 can also be applied
to the Brafman polynomials (11), the Gould-Hopper polynomials (14),
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and several other polynomial systems, in the same manner as we deduced
Corollaries 1.1 and 1.2, and the generating relations (21) and (22), from
Corollary 1.

3. OTHER APPLICATIONS
For the sequence of functions .Q:f"” [¥1, +oes Yu; 01y ..., Op: 2] defined by
s .Q:f”” 15 -+es Yu3 61, -0, Op: ]

(61)
? =pruFo[A(p; A4+n), v1, ooy Yus 01, oo, O 2], =0,1,2, ...,

where p is an arbitrary positive integer, it is easy to establish the re-
lationship
S (A+m
(—'Tﬁggigz [Vl, ey yu; 61, cesy 61): x]t”
(62) ¢ =0 M

=(1—t)—1_m Qg'”)[yl, seny yu; 61, ceny 60: x/(l——t)"],

which evidently is of type (1) with Am,n=(A+m)u/n!, f=(1—1)3, g=1—¢,
and h=z/(1—
Thus Theorem 1 when applied to this sequence would yield

COROLLARY 11. If

(63) F¥fa, )= 3 ?(7;(7/1))3"9%”) Dt oos yas B1s o B 2,
then

(1 ngu ?) ¥, 8y: 21 M ()tn
(64) Eo (V1 -ees Yus O, .oy B 2] M(y)

=(I—t)" F [z/(1-t), yit/(1-t)}4],
where the M(y) are given by (9).

In terms of the Brafman polynomials (11), a special case of (64) with
P=4q, a, given by (10), and y replaced on each side by y/(—¢q)?, will result
in the generating relation

® (4
> @) .Q“ D [Y1, eeey Vus 81y oeny Opt Z]BL 01, ..., & 1y -osy Bat YIEB

MG A): Y1y oo Vus KLy oens Oy X ytt ]
- e
( ) 101, eery Ov; B1, -0, Bsy (1—0t)0° (£—1)2

where F[z, y] denotes a generalized Appell function of two variables in
the contracted notation of BurcHNALL and CHAUNDY [2, p. 112].
Bilinear relations of type (65) have indeed been known to the first
author for a long time. For hypergeometric forms of (65) with g=1 one
may refer, for instance, to pages 43 and 82 of SrRIvasTavA’s papers [11]
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and [14], respectively, and also to the other papers cited there. Some
interesting special cases of (65) with ¢=2 are worthy of mention.

If in (65) we set ¢=2, A=2v4m, r=8—1=0, u=v—-1=0, f1=p+1/2,
di=v+1/2, m being an arbitrary nonnegative integer, apply the familiar
hypergeometric transformation [3, Vol. I, p. 64]

(66) offifa, b;c; z]=(1 -2} o Fi[c—a,c—b;c; 2], 2] <],

to Q™2 [y +1/2: 2], replace x,y,t by (2—1)/2?, (y2—1)/y2 and
yt/x, respectively, and apply the known formula (24), we shall obtain the
elegant bilinear generating relation (cf. [6], p. 254, Eq. (10))

> ‘1"(2%”2 O, (&) O () = (2)m (—yt) 2"
(67) ne=

22 —1 (y2~l)tz]
(@—yt)?’ (z—yt)? 1’
where F4 denotes the fourth type of Appell’s double hypergeometric
functions defined by [3, Vol. I, p. 224]

Fa[rrbm vt imi kot otk

(-] m n
68 Fula, ;7,7 2, y]= Dmin Bmin 2 g
(69 weo n)s ml ]
On the other hand, if we set ¢=2, 1=2v+m, r=8=0, u=v—-1=0,
d1=»+1/2, formula (65) will similarly lead to a (divergent) bilateral
generating function, viz.

3 ("5") Curne) Hatehr o (1) e 2

N

(69)

2_1 --4t2
'F: [v_[_%m’,‘,_}_%m—{—%,il‘{'%:(xa_:_ yt)z’ (.’17_2yt)2]’

where Fi is a double hypergeometric function closely related to the
Appell function F, defined by (68); indeed we have

(70) Fil, B;v; z, yl= lim Fylx, B; v, 0; z, dy].
é— 00

Note also that in the special case when x=0, the bilinear relation (65)
would reduce to the generating function

S (4
2 %Bg[m, ooy O3 B1, oony Bet YIlP
72=0 .

=(1 =)= o Fs[A(q; A), 01, --., Oir; B1, --.r Bs; Yt/ (E— 1)),

(1)

which is substantially the same as the known result (55), p. 187 due to
Brarmax [1].
Next we recall a generalization of the Hermite polynomials, viz.

(72) H(z, a,p)=(— 1) 2% exp (pa7)D{z* exp (—pa")},
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which was considered recently by GourLp and HoppER [4, p. 52, Eq. (2.1)].
Since [op. cit., p. 57]

(18) (1=t exp [par(l — (1~ tfo) ) Hylo~t, 0, p)= 3 Hools, 0,9 57,

Theorem 1 would apply to these Gould-Hopper polynomials, and we
obtain

COROLLARY 12. If

(14) Fole = 3 ot How, @,
then

- o
75) ,Z(, Hi(x, a, p) Mi(y) ~

= (I t}a)* exp [par{1— (1~ tfay}] Fooe —t, yt).

The polynomials G:f’(x, 7, P, &), which were introduced by SRIvasTava
and SiNgHAL [12] in an attempt to provide an elegant unification of the
various recent generalizations of the classical Hermite and Laguerre
polynomials, satisfy the relationship [op. cit., p. 79].

< [m+n @
(76) ngo ( n )G‘m+n (x’ P, o)in

=(1—ot) ™™ ¥*exp [par{l — (1 —at)""} GP (x(l —at)™V 1, p, oc),
which is of type (1). Thus we have
COROLLARY 13. If

(77) F¥z, t]= 3 a, G% (x, 7, p, a)in,

n=0

then

o 3 6% @7, p, o) ME(y)n=(1— at)~4* exp [pa’{I— (1—at)""}]
n=0

.F“II‘” [2(I —at)™Y*, yta/(1—ad)a].

In view of the relationships (1.4) through (1.9) in {12, p. 76], Corollary 13
can be shown to incorporate, as its special cases, a fairly large number
of bilateral generating functions including those that are contained in
Corollaries 1, 5 and 12.

For the Konhauser biorthogonal polynomials ¥, (x; k), where a«> —1
and k is a positive integer, it is easy to show that

(79) Yix; 1)=LP (), n=0,1,2, ...,
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and that (cf, e.g., [8], p. 803)

(80) ngo (m:l_n> Y:H-'n (.’L‘, k)t"’
=(1 —t)‘m—(a+1>/k exp [z{l —(1—¢t)"V¢}] Y (x(l _ k),

which evidently would lead to a generalization of Corollary 5, involving
Laguerre polynomials, given by

COROLLARY 14. If
(81) F1 [z, t]= z an Y2 (x; k)tn,

n=0

then
% V(s k) Mi(y)tn = (1)~ "+ exp [2{I — (1 —t)-Vk}]
(82) ne0
- P3O [a(1—t)-Vk, yta[(1—t)a].
On comparing (80) with (76) it follows at once that
(83) Yix; )=k "G (2, 1,1, k), a>—-1,k=1,2,8, ...,

whence Corollary 14, which would reduce to Corollary 5 when k=1, is
contained in Corollary 13.

Finally, we consider a unification of the classical orthogonal polynomials
of Hermite, Jacobi, and Laguerre, the Bessel polynomials (52), the Gould-
Hopper polynomials (72), and several other polynomial systems studied
in recent literature, defined by the Rodrigues formula [13, p. 969]

— _ﬂ
TP (2, 0,b, ¢, d, p, 1)~ D2 d)
4 n!
- Dif(aw+ b+ (e +dJ*+9 exp (—pan)}.

exp (pa’)

Making use of the known generating relations [13, p. 973, Eq. (31) and
(32)] in Theorem 1 above, we shall arrive at the following generalizations
of Theorems 1 and 2 in [op. cib., p. 974].

COROLLARY 15. If

> ]

(85) Flaw, t]= 3 an T0 ™P (2,a,b,¢,d, p, r)tn,
n=0
then
> Te™P(x,a,b,c,d, p,r) M (y)tr={1+(ad—bc)t}*
n=0
A1 —a—-f-1 r__ M)r]
(86) {I—c(ax+b)t} exp [px p(]—c(az+b)t
_pan [x +d(ax +b)t yie ]
‘ I—clax+b)t’ {1+ (ad—bo)t}e
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COROLLARY 16. If

[=+
(87) F,8]= 3 an T ™™ (z,a,b,¢,d,p, ),
n=0
then
[ 4]
z T:‘a—«n.ﬂ-m (x, a, b, c, d, P, ,,.) Mﬁ(y)tﬂ
n=0
(88)

={I+afcx+d)t}* {1+claz+b)tY exp [par —p{z -+ (ax +b)(cx +d)t )]
P8+ (ax +b)(cx + d)t, yt2/{1+a(cz+d)t}e{I +c(ax+b)t}4].

In view of the relationships (4) through (9) in [13, p. 970], it can be
verified fairly easily that Corollary 15 provides a unification of Corollaries

1, 3, 5, 6, 9 and 12, while Corollary 16 generalizes Corollaries 1, 2, 6
and 12, Note also that since [loc. cit.]

(89) TP (x,a,b,c,d, p,r)=(ab) T (bex/ad,a,b,a?d, b%c, p(ad/be), r),
a V4 »

which obviously is a generalization of the familiar result (37), Corollary 15
may be restated in terms of the polynomials

T::.p_”)(x, a, b: ¢, d’ D, 7'), n=0, 1, 2,....

4. EXTENSION IN SEVERAL VARIABLES

If we define a sequence of functions of several variables {Su(x;, ..., zr)|
7=0,1,2, ...} by means of the generating relation

3 % — f(xla veey Ly, t)
" 3 Z A S 200 Gy s

Sm (hl(xl, vees X 8), oony P2, ..o, T t)),

where f, g, b1, ..., hy are arbitrary functions of z,...,%, and ¢, and, as
before, the Am,n are arbitrary constants, and m=0, 1, 2, ..., it is fairly
straightforward to prove the following extension of Theorem 1.

THEOREM 2. For arbitrary as+0, n=0, let

oo
(91) Fq'r[xl, ooy xr N t]= z a»n Sqn(x]_, ceey xr)t”.

n=0

Then

o 30 Sa(er, .orr 2)S )= fla1s oy 71 1)

Foella(xy, ..., % t), ooy Be(, .., 2 s ) y{tg(, .. 2 s 8)}9],

where the of(y) are given by (4).
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For an interesting application of Theorem 2, we recall Toscano’s
formula [15, p. 240]

oo +m
z (y — ) FP[—~m—mn, B, ..., Bri y; @1, ..., Zelt®
n=0 '

. o (e 2)

z1 %
F(IS) [—m, ﬂl, ey :31‘; V; 1__t+xlt’ T l—tri—mrt]’

where F¥ denotes the fourth type of Lauricella’s hypergeometrio
functions of r variables defined by [5, p. 113]

( FPle, B, ..., Bry v %1,y -ov, X1

(94) _ § (&)my+ ... +my (ﬂ1)m1 vee (Br)m, z’l"l—_ x__:”r_
Ty .eos Myp=0 (Y)my+ .o +my my! " mel’

Formula (93) is the same as (90) with A, n=(y+m)a/n!,

-
t 7
_ 14 —_— = _.__ ) =
f=(-9" 1'[(1+ t) , g=1-t, b= t+x,t’3 Loty

i=1
and
(95) Sﬂ(xl’ ceey xf)=F(£)[—n: ﬁl’ ceey ﬂf; Y3&Ly ooy xf]; n=0.

Consequently, Theorem 2 would yield a class of bilateral generating
functions for the Lauricella polynomials in (95), and we have

S L PpL—n, b o Bri v o, o ) M3 "

—(1—t) yH( x,tt) 8

§=1

Fl(lf)r [xll —t+mt), ..., x"/(l —t+zd); ytq/(l —t)],
where the M(y) are defined by (9), and

(96)

(97) FP, [x1,...,2r;8]= 2 az;:;)“” F® [—qn, 1, .oy Br; v 21, ..., 2,0,
Evidently this last result (96) with g=1 and ap=(A)s/(¥)s, n=0, 1, 2, ...,
would reduce to a bilateral generating relation due to Toscano [15, p. 246,
Eq. (14.1)].
Yet another application of Theorem 2 would result in a class of bilateral
generating relations for the familiar Lagrange polynomials defined by
(cf., e.g., [3], Vol. III, p. 267, Eq. (1))

(98) S ge? (@, yitn=(L—at)~ (1—yt)~;

ne=0
21 Indagationes



318

these polynomials occur in certain statistical problems. Indeed it is easily
verified from (98) that

5 ()
=(1—at)™(1 —yt)“ﬂg:;':' P (w/(1—t), y/(1—-1)),

and Theorem 2 with r=2 yields

(99)

(100) E 9P (x, y) M? ()in=(1—at)~* (1—yt)~F
n=0

F2 [w)(1—at), y/(1—yt); 244],

where the M:(z) are given by (9) with y replaced by z, and
(101) Foulz, y; t]= 2 an gor ” (2, Y,
n=0

for arbitrary coefficients a,%0, =0, and ¢=1, 2, 3, ....
Finally, it may be of interest to observe from (98) that

(102) de? @)= Lo L i, o 1 s afy],

and on comparing this result with the known hypergeometric repre-
sentation of the Jacobi polynomials [9, p. 254, Eq. (3)], we readily have

(103 g (5, )=y Pyi-s -0 (224,

In view of this interesting relationship between Jacobi and Lagrange
polynomials, the bilateral generating function in (100) would evidently
follow also from Corollary 3 above.

5. FURTHER GENERALIZATIONS

Since the Bessel function J,(z) possesses a generating relation of the
type (ef., eg., [9], p. 121, Ex. 12)

(104) E s (x — _(1——2t/x) uiz J (V(xz—zxt)),
it may be worthwhile to conclude by recording here a nontrivial gener-

alization of Theorem 1 to hold for a set of functions 4,(x) of order u
generated by

(105) ? Yuon Autn (7) 87 =0(x, t){d(z, 0} 4, (w(x, t))»

where u is an arbitrary complex number, the y,,, are arbitrary constants,
and 0, ¢, p are arbitrary functions of « and ¢.



(106) ® [z, t]=
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Indeed, if we let

o0
6M A,Mn (x)tn, 4,, # 0,
n=0

where ¢ is a positive integer, but » is an arbitrary complex number, then
it is readily seen that

(107) E 4, @) B, , (y) "=0(, t){$(x, )}~ D, [y(x, t), y{t/$(, £)}9],

where R; (y) is a polynomial of degree [n/g] in y defined by

[n/q]

(108) RZ', (y) = kzo Yot qk,n—qk 6v.k yk'

Evidently, when y=m and »=0, this last result (107) would correspond

to the bilateral generating relation (3) given by Theorem 1.

A similar generalization of Theorem 2, involving a set of functions of

several variables, is fairly straightforward, and it may well be left to the
interested reader.
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