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In the vast literature in Analytic Number Theory, one can find systematic and
extensive investigations not only of the classical Bernoulli, Euler and Genocchi
polynomials and their corresponding numbers, but also of their many
generalizations and basic (or q-) extensions. Our main object in this presentation is to
introduce and investigate some of the principal generalizations and unifications of each
of these polynomials by means of suitable generating functions. We present several
interesting properties of these general polynomial systems including some explicit
series representations in terms of the Hurwitz (or generalized) zeta function and the
familiar Gauss hypergeometric function. By introducing an analogue of the Stirling
numbers of the second kind, that is, the so-called λ-Stirling numbers of the second
kind, we derive several properties and formulas and consider some of their interesting
applications to the family of the Apostol type polynomials. We also give a brief
expository and historial account of the various basic (or q-) extensions of the classical
Bernoulli polynomials and numbers, the classical Euler polynomials and numbers, the
classical Genocchi polynomials and numbers, and also of their such generalizations
as (for example) the above-mentioned families of the Apostol type polynomials and
numbers. Relevant connections of the definitions and results presented here with those
in earlier as well as forthcoming investigations will be indicated.
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1 Introduction, Definitions and Motivation

Throughout this presentation, we use the following standard notations: N :=

{1, 2, 3, · · · }, N0 := {0, 1, 2, 3, · · · } = N ∪ {0} and Z− := {−1,−2,−3, · · · } =

Z−
0 \ {0}. Also, as usual, Z denotes the set of integers, R denotes the set of real numbers

and C denotes the set of complex numbers. Furthermore,

{λ}0 = 1 and {λ}k = λ(λ− 1) · · · (λ− k + 1) (k ∈ N0; λ ∈ C)

denotes the falling factorial and

(λ)0 = 1 and (λ)k = λ(λ+ 1) · · · (λ+ k − 1) (k ∈ N0; λ ∈ C)

denotes the rising factorial.
The classical Bernoulli polynomials Bn (x), the classical Euler polynomials En (x)

and the classical Genocchi polynomials Gn (x), together with their familiar generalizations
B

(α)
n (x), E(α)

n (x) and G
(α)
n (x) of (real or complex) order α, are usually defined by means

of the following generating functions (see, for details, [62, p. 532–533] and [68, p. 61 et
seq.]; see also [72, p. 397, Problem 27] and [73] and the references cited therein):(

z

ez − 1

)α

· exz =

∞∑
n=0

B(α)
n (x)

zn

n!
(|z| < 2π; 1α := 1) , (1.1)

(
2

ez + 1

)α

· exz =
∞∑

n=0

E(α)
n (x)

zn

n!
(|z| < π; 1α := 1) (1.2)

and (
2z

ez + 1

)α

· exz =
∞∑

n=0

G(α)
n (x)

zn

n!
(|z| < π; 1α := 1) , (1.3)

so that, obviously, the classical Bernoulli polynomials Bn(x), the classical Euler polyno-
mials En(x) and the classical Genocchi polynomials Gn(x) are given, respectively, by

Bn (x) := B(1)
n (x) , En (x) := E(1)

n (x) and Gn (x) := G(1)
n (x) (n ∈ N0) . (1.4)

For the classical Bernoulli numbers Bn, the classical Euler numbers En and the classical
Genocchi numbers Gn of order n, we have

Bn := Bn (0) = B(1)
n (0) ,

En := En (0) = E(1)
n (0) ,

Gn := Gn (0) = G(1)
n (0) ,

respectively.
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Some interesting analogues of the classical Bernoulli polynomials and numbers were
first investigated by Apostol [2, p. 165, Eq. (3.1)] and (more recently) by Srivastava [66, pp.
83–84]. We begin by recalling here Apostol’s definitions as follows.

Definition 1 (Apostol [2]; see also Srivastava [66]). The Apostol-Bernoulli polynomials

Bn(x;λ) (λ ∈ C)

are defined by means of the following generating function:

zexz

λez − 1
=

∞∑
n=0

Bn(x;λ)
zn

n!
(1.5)

(|z| < 2π upwhen λ = 1; |z| < |log λ| upwhen λ ̸= 1)

with, of course,

Bn(x) = Bn(x; 1) and Bn (λ) := Bn (0;λ) , (1.6)

where Bn (λ) denotes the so-called Apostol-Bernoulli numbers.
Apostol [2] not only gave elementary properties of the polynomials Bn (x;λ), but also

obtained the following interesting recursion formula for the numbers Bn (λ) (see [2, p. 166,
Eq. (3.7)]):

Bn (λ) = n

n−1∑
k=0

k! (−λ)
k

(λ− 1)
k+1

S(n− 1, k)
(
n ∈ N0; λ ∈ C \ {1}

)
, (1.7)

where S(n, k) denotes the Stirling numbers of the second kind defined by means of the
following expansion (see [15, p. 207, Theorem B]):

xn =

n∑
k=0

(
x

k

)
k! S(n, k), (1.8)

so that

S (n, 0) = δn,0, S (n, 1) = S (n, n) = 1 and S (n, n− 1) =

(
n

2

)
, (1.9)

δn,k being the Kronecker symbol.
Recently, Luo and Srivastava [52] further extended the Apostol-Bernoulli polynomials

as the so-called Apostol-Bernoulli polynomials of order α. Luo [45], on the other hand,
gave an analogous extension of the generalized Euler polynomials as the so-called Apostol-
Euler polynomials of order α.

Definition 2 (cf. Luo and Srivastava [52]). The Apostol-Bernoulli polynomials

B(α)
n (x;λ) (λ ∈ C)
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of (real or complex) order α are defined by means of the following generating function:(
z

λez − 1

)α

· exz =
∞∑

n=0

B(α)
n (x;λ)

zn

n!
(1.10)

(|z| < 2π upwhen λ = 1; |z| < |log λ| upwhen λ ̸= 1)

with, of course,

B(α)
n (x) = B(α)

n (x; 1) and B(α)
n (λ) := B(α)

n (0;λ) , (1.11)

where B(α)
n (λ) denotes the so-called Apostol-Bernoulli numbers of order α.

Definition 3 (cf. Luo [45]). The Apostol-Euler polynomials

E(α)
n (x;λ) (λ ∈ C)

of (real or complex) order α are defined by means of the following generating function:(
2

λez + 1

)α

· exz =
∞∑

n=0

E(α)
n (x;λ)

zn

n!

(
|z| < |log(−λ)|

)
(1.12)

with, of course,

E(α)
n (x) = E(α)

n (x; 1) and E(α)
n (λ) := E(α)

n (0;λ) , (1.13)

where E(α)
n (λ) denotes the so-called Apostol-Euler numbers of order α.

Remark 1. The constraints on |z|, which we have used in Definitions 1, 2 and 3 above,
are meant to ensure that the generating functions in (1.5), (1.10) and (1.12) are analytic
throughout the prescribed open disks in the complex z-plane (centred at the origin z = 0)
in order to have the corresponding convergent Taylor-Maclaurin series expansions (about
the origin z = 0) occurring on their right-hand sides (each with a positive radius of con-
vergence). Moreover, throughout this investigation, log z is tacitly assumed to denote the
principal branch of the many-valued function log z with the imaginary part I

(
log z

)
con-

strained by −π < I
(
log z

)
5 π. More importantly, throughout this presentation, wherever

| log λ| and | log(−λ)| appear as the radii of the open disks in the complex z-plane (centred
at the origin z = 0) in which the defining generating functions are analytic, it is tacitly
assumed that the obviously exceptional cases when λ = 1 and λ = −1, respectively, are
to be treated separately. Naturally, therefore, the corresponding constraints on |z| in the
earlier investigations (see, for example, [45], [52], [53] and [66]) should also be modified
accordingly.

Remark 2. The classical Euler numbers Ẽn are usually defined by means of the following
generating function (see, for example, [68, p. 64, Eq. 1.6 (40)]):

2ez

e2z + 1
= sech z =

∞∑
n=0

Ẽn
zn

n!

(
|z| < π

2

)
, (1.14)
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which, when compared with the generating function in (1.2), yields the following relation-
ships [cf. Equation (1)]:

Ẽn = 2n En

(
1

2

)
= 2n E(1)

n

(
1

2

)
(1.15)

with the Euler numbers En and the Euler polynomials E(α)
n (x) used in this paper. For the

Apostol-Euler numbers Ẽ(α)
n (λ) (λ ∈ C) of order α, which correspond to the classical

Euler numbers Ẽn, Luo [45] made use of the following definition:(
2ez

λe2z + 1

)α

=

∞∑
n=0

Ẽ(α)
n (λ)

zn

n!

(
|z| < 1

2
|log(−λ)|

)
. (1.16)

However, for the sake of simplicity of the results presented in this paper, we find it to be
convenient to use the Apostol-Euler numbers E(α)

n (λ) (λ ∈ C) of order α, corresponding
to the Euler numbers En, which are defined by means of the following generating function
[cf. Equation (1.13)]:(

2

λez + 1

)α

=
∞∑

n=0

E(α)
n (λ)

zn

n!

(
|z| < |log(−λ)|

)
. (1.17)

Of course, if and when it is needed, the interested reader will find it to be fairly straightfor-
ward to apply the following explicit relationships between the Apostol-Euler numbers

E(α)
n (λ) (λ ∈ C) and Ẽ(α)

n (λ) (λ ∈ C)

in order to convert any of these results into their desired forms.

E
(α)
n (λ) = E(α)

n (0;λ) Ẽ
(α)
n (λ) = 2n E

(α)
n

(
α
2
;λ

)
Ẽ

(α)
n (λ) =

∑n
k=0

(
n
k

)
2k αn−k E

(α)
k (λ)

En(λ) = En (0;λ) Ẽn(λ) = 2n En

(
1
2
;λ

)
Ẽn(λ) =

∑n
k=0

(
n
k

)
2k Ek(λ)

E
(α)
n = E

(α)
n (0) Ẽ

(α)
n = 2n E

(α)
n

(
α
2

)
Ẽ

(α)
n =

∑n
k=0

(
n
k

)
2k αn−k E

(α)
k

En= En (0) Ẽn= 2n En

(
1
2

)
Ẽn=

∑n
k=0

(
n
k

)
2k Ek

Since the publication of the works by Luo and Srivastava (see [44], [45], [52], and [53]),
many further investigations of the above-mentioned Apostol type polynomials have ap-
peared in the literature. Boyadzhiev [4] gave some properties and representations of the
Apostol-Bernoulli polynomials and the Eulerian polynomials. Garg et al. [17] studied the
Apostol-Bernoulli polynomials of order α and obtained some new relations and formu-
las involving the Apostol type polynomials and the Hurwitz (or generalized) zeta function
ζ(s, a) defined by (1.20) below. Luo (see [46] and [47]) obtained the Fourier expansions
and integral representations for the Apostol-Bernoulli and the Apostol-Euler polynomials,
and gave the multiplication formulas for the Apostol-Bernoulli and the Apostol-Euler poly-
nomials of order α. Prévost [59] investigated the Apostol-Bernoulli and the Apostol-Euler
polynomials by using the Padé approximation methods. Wang et al. (see [78] and [79])
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further developed some results of Luo and Srivastava [53] and obtained some formulas in-
volving power sums of the Apostol type polynomials. Zhang and Yang [81] gave several
identities for the generalized Apostol-Bernoulli polynomials. On the other hand, Cenkci
and Can [8] gave a q-analogue of the Apostol-Bernoulli polynomials Bn(x;λ). Choi et
al. [11] gave the q-extensions of the Apostol-Bernoulli polynomials of order α and the
Apostol-Euler polynomials of order α (see also [12]). Hwang et al. [24] and Kim et al. [35]
also gave q-extensions of Apostol’s type Euler polynomials.

On the subject of the Genocchi polynomials Gn(x) and their various extensions, a
remarkably large number of investigations have appeared in the literature (see, for example,
[9], [12], [21], [22], [23], [25], [28], [30], [34], [38], [39], [40], [43], [41] [48], [49], [50],
[58] and [80]; see also the references cited in each of these works). Moreover, Luo (see
[48] and [50]) introduced and investigated the Apostol-Genocchi polynomials of a (real or
complex) order α, which are defined as follows.
Definition 4. The Apostol-Genocchi polynomials

G(α)
n (x;λ) (λ ∈ C)

of (real or complex) order α are defined by means of the following generating function:(
2z

λez + 1

)α

· exz =
∞∑

n=0

G(α)
n (x;λ)

zn

n!

(
|z| < |log(−λ)|

)
(1.18)

with, of course,

G(α)
n (x) = G(α)

n (x; 1) , G(α)
n (λ) := G(α)

n (0;λ) ,

Gn (x;λ) := G(1)
n (x;λ) and Gn (λ) := G(1)

n (λ) ,
(1.19)

where Gn (λ), G(α)
n (λ) and Gn (x;λ) denote the so-called Apostol-Genocchi numbers, the

Apostol-Genocchi numbers of order α and the Apostol-Genocchi polynomials, respec-
tively.

The main object of this presentation is to first present some elementary properties of the
Apostol-Genocchi polynomials G(α)

n (x;λ) of order α in Section 2. We derive several ex-
plicit series representations of G(α)

n (x;λ) in terms of the Gaussian hypergeometric function
in Section 3. We find some relationships between the various Apostol type polynomials in
Section 4. We obtain the series representations for the Apostol type polynomials involving
the Hurwitz (or generalized) zeta function ζ(s, a) in Section 5. We introduce the λ-Stirling
numbers S(n, k;λ) of the second kind, which aid us to prove some basic properties and
formulas in Section 6 in which we also pose two interesting open problems related to our
present investigation. Finally, in Section 7, we give some interesting applications of the
λ-Stirling numbers S(n, k;λ) of the second kind to the family of the Apostol type poly-
nomials. For example, by closely following the work of Srivastava [66] dealing with the
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special case α = 1, we will derive various explicit series representations for

G(α)
n

(
p

q
; e2πiξ

)
, G(l)

n

(
p

q
; e2πiξ

)
, E(α)

n

(
p

q
; e2πiξ

)
and E(l)

n

(
p

q
; e2πiξ

)
(q, l ∈ N; p ∈ Z; ξ ∈ R; α ∈ C) ,

involving either the Stirling numbers S(n, k) of the second kind defined by (1.8) or the
λ-Stirling numbers S(n, k;λ) of the second kind defined below by (6.1) and the Hurwitz
(or generalized) zeta function ζ (s, a) defined by (cf. [3, p. 249] and [68, p. 88])

ζ (s, a) :=
∞∑

n=0

1

(n+ a)
s

(
R (s) > 1; a ∈ C \ Z−

0

)
, (1.20)

so that

ζ (s, 1) =: ζ (s) =
1

2s − 1
ζ

(
s,

1

2

)
(1.21)

for the Riemann zeta function ζ (s).

2 Elementary Properties of the Apostol-Genocchi Polynomials
G(α)
n (x;λ) of Order α

The following elementary properties of the Apostol-Genocchi polynomials G(α)
n (x;λ)

of order α are readily derived from (1.18). We, therefore, choose to omit the details in-
volved.

Property 1. Special values of the Apostol-Genocchi polynomials (or the Apostol-Genocchi
numbers) of order α:

G(α)
n (λ) =G(α)

n (0;λ) , G(0)
n (x;λ) = xn,

G(0)
n (λ) =δn,0 and G(α)

0 (x;λ) = G(α)
0 (λ) = δα,0 (n ∈ N0; α ∈ C),

(2.1)

where δn,k denotes the Kronecker symbol.

Property 2. Summation formulas for the Apostol-Genocchi polynomials of order α:

G(α)
n (x;λ) =

n∑
k=0

(
n

k

)
G(α)
k (λ) xn−k (2.2)

and

G(α)
n (x;λ) =

n∑
k=0

(
n

k

)
G(α−1)
n−k (λ)Gk(x;λ). (2.3)

Property 3. Difference equation:

λG(α)
n (x+ 1;λ) + G(α)

n (x;λ) = 2n G(α−1)
n−1 (x;λ) (n ∈ N). (2.4)
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Property 4. Differential relations:

∂

∂x

{
G(α)
n (x;λ)

}
= nG(α)

n−1(x;λ) (n ∈ N) (2.5)

and
∂p

∂xp

{
G(α)
n (x;λ)

}
=

n!

(n− p)!
G(α)
n−p(x;λ), (n, p ∈ N0; 0 5 p 5 n). (2.6)

Property 5. Integral formulas:

∫ b

a

G(α)
n (x;λ)up dx =

G(α)
n+1(b;λ)− G(α)

n+1(a;λ)

n+ 1
(2.7)

and ∫ b

a

G(α)
n (x;λ)up dx =

n∑
k=0

1

n− k + 1

(
n

k

)
G(α)
k (λ) (bn−k+1 − an−k+1). (2.8)

Property 6. Addition theorem of the argument:

G(α+β)
n (x+ y;λ) =

n∑
k=0

(
n

k

)
G(α)
k (x;λ)G(β)

n−k(y;λ). (2.9)

Property 7. Complementary addition theorems:

G(α)
n (α− x;λ) =

(−1)n+α

λα
G(α)
n (x;λ−1) (2.10)

and

G(α)
n (α+ x;λ) =

(−1)n+α

λα
G(α)
n (−x;λ−1). (2.11)

Property 8. Recursion formulas:

(n− α) G(α)
n (x;λ) = nx G(α)

n−1(x;λ)−
αλ

2
G(α+1)
n (x+ 1;λ) (2.12)

and
α

2
G(α+1)
n (x;λ) = n(α− x) G(α)

n−1(x;λ) + (n− α) G(α)
n (x;λ). (2.13)

When we set α = 1, λ = 1 and α = λ = 1 in the formulas (2.1) to (2.13), we
get the corresponding formulas for the Apostol-Genocchi polynomials Gn(x;λ), the gen-
eralized Genocchi polynomials G(α)

n (x) and the classical Genocchi polynomials Gn(x),
respectively.
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3 Explicit Representations Involving the Gaussian Hypergeometric
Function

By using Definition 4 in conjunction with the generating function (1.3), we have

∞∑
n=0

G(l)
n (x;λ)

zn

n!
= e−x log λ

(
2(z + log λ)

ez+log λ + 1

)l (
z

z + log λ

)l

ex(z+log λ)

= e−x log λ
∞∑
k=0

G
(l)
k (x)

(z + log λ)
k−l

zl

k!

= e−x log λ
∞∑
k=0

G
(l)
k (x)

k∑
n=0

(
k − l

n− l

)
zn (log λ)

k−n

k!

= e−x log λ
∞∑

n=0

zn

n!

∞∑
k=0

(
n+ k − l

k

)(
n+ k

k

)−1

G
(l)
n+k (x)

(log λ)
k

k!
,

which yields Lemma 1 below asserting a relationship between the Apostol-Genocchi poly-
nomials G(l)

n (x;λ) of order l ∈ N0 and the Genocchi polynomials G(l)
n (x) of order l ∈ N0.

Lemma 1. The following relationship holds true:

G(l)
n (x;λ) = e−x log λ

∞∑
k=0

(
n+ k − l

k

)(
n+ k

k

)−1

G
(l)
n+k (x)

(log λ)
k

k!
(3.1)

(n, l ∈ N0; λ ∈ C) .

By (1.12) and (1.18) (with α = l ∈ N0), we readily obtain Lemma 2 below.

Lemma 2. The following relationship holds true:

G(l)
n (x;λ) = {n}l E(l)

n−l (x;λ) =
n!

(n− l)!
E(l)
n−l (x;λ) (n, l ∈ N0; 0 5 l 5 n; λ ∈ C)

(3.2)
or, equivalently,

E(l)
n (x;λ) =

1

{n+ l}l
G(l)
n+l (x;λ) =

n!

(n+ l)!
G(l)
n+l (x;λ) (n, l ∈ N0; λ ∈ C)

(3.3)
between the Apostol-Genocchi polynomial of order l and the Apostol-Euler polynomial of
order n− l.

Moreover, since the parameter λ ∈ C, by comparing Definition 4 with our Definition,
we are led easily to Lemma 3 below.

Lemma 3. The following relationship holds true:

G(α)
n (x;λ) = (−2)

α B(α)
n (x;−λ) (α, λ ∈ C; 1α := 1) (3.4)
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or, equivalently,

B(α)
n (x;λ) =

1

(−2)
α G(α)

n (x;−λ) (α ∈ C; 1α := 1) (3.5)

between the Apostol-Genocchi polynomials G(α)
n (x;λ) and the Apostol-Bernoulli polyno-

mials B(α)
n (x;λ).

Lemma 4 below follows easily from Lemma 2 and Lemma 3.

Lemma 4. The following relationship holds true:

B(l)
n (x;λ) =

n!

(n− l)!(−2)l
E(l)
n−l (x;−λ) (n, l ∈ N0; 0 5 l 5 n; λ ∈ C) (3.6)

or, equivalently,

E(l)
n (x;λ) =

n!(−2)l

(n+ l)!
B(l)
n+l (x;−λ) (n, l ∈ N0; λ ∈ C) (3.7)

between the Apostol-Bernoulli polynomial of order l and Apostol-Euler polynomial of order
l.

In order to prove the main assertions in this section, we recall each of the following
known results (see also the earlier investigations on the subject of explicit hypergeometric
representations by Todorov [77] and Srivastava and Todorov [76]).

Lemma 5 (Luo and Srivastava [52, p. 293, Lemma 1 (13)]). The Apostol-Euler polynomi-
als E(α)

n (x;λ) of order α are represented by

E(α)
n (x;λ) = e−x log λ

∞∑
k=0

E
(α)
n+k (x)

(log λ)
k

k!
(n ∈ N0; λ, α ∈ C) (3.8)

in terms of the Euler polynomials of order α.

Theorem A (Luo [45, p. 920, Theorem 1]). Each of the following explicit series represen-
tations holds true:

E(α)
n (x;λ) = 2α

n∑
k=0

(
n

k

)(
α+ k − 1

k

)
λk

(λ+ 1)α+k

k∑
j=0

(−1)j
(
k

j

)

· jk(x+ j)n−k
2F1

(
k − n, k; k + 1;

j

x+ j

)
(3.9)(

n ∈ N0; α ∈ C; λ ∈ C \ {−1}
)

and

E(α)
n (x;λ) = e−x log λ

∞∑
k=0

(log λ)
k

k!

n+k∑
r=0

1

2r

(
n+ k

r

)(
α+ r − 1

r

)

·
r∑

j=0

(−1)j
(
r

j

)
jr(x+ j)n+k−r

2F1

(
r − n− k, r; r + 1;

j

x+ j

)
(3.10)
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(n ∈ N0; α, λ ∈ C),

where 2F1(a, b; c; z) denotes the Gaussian hypergeometric function defined by (cf., e.g.,
[1, p. 556 et seq.])

2F1 (a, b; c; z) = 2F1 (b, a; c; z) :=
∞∑

n=0

(a)n (b)n
(c)n

zn

n!

(
a, b ∈ C; c ∈ C \ Z−

0 ; |z| < 1; z = 1, and R (c− a− b) > 0;

z = −1, and R (c− a− b) > −1
)
.

We now state the main result in this section as Theorem 1 below.

Theorem 1. The following explicit series representations hold true:

G(l)
n (x;λ) = 2l l!

(
n

l

) n−l∑
k=0

(
n− l

k

)(
l + k − 1

k

)
λk

(λ+ 1)
l+k

k∑
j=0

(−1)
j

(
k

j

)

· jk (x+ j)
n−k−l

2F1

(
l + k − n, k; k + 1;

j

x+ j

)
(3.11)

(n, l ∈ N0; λ ∈ C \ {−1})

and

G(l)
n (x;λ) = e−x log λ

∞∑
k=0

(
n+ k − l

k

)(
n+ k

k

)−1(
n+ k

l

)
l! (log λ)

k

k!

·
n+k−l∑
r=0

1

2r

(
n+ k − l

r

)(
l + r − 1

r

) r∑
j=0

(−1)
j

(
r

j

)

· jr (x+ j)
n+k−r−l

2F1

(
r + l − n− k, r; r + 1;

j

x+ j

)
(3.12)

(n, l ∈ N0; λ ∈ C),

where 2F1 (a, b; c; z) denotes the Gaussian hypergeometric function defined by (??).

Proof. We make use of the relationship (3.2) in conjunction with (3.9) and (3.10) with, of
course,

α = l and n 7−→ n− l (n, l ∈ N0; 0 5 l 5 n).

We thus readily obtain the assertions (3.11) and (3.12) of Theorem 1.
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Corollary 1. The following explicit formula for the Apostol-Genocchi polynomials
G(α)
n (x;λ) involving the Stirling numbers S(n, k) of the second kind holds true:

G(l)
n (x;λ) = 2l l!

n∑
k=0

(
n

k

)(
k

l

) k−l∑
j=0

(
l + j − 1

j

)
j! (−λ)

j

(λ+ 1)
j+l

S (k − l, j)xn−k (3.13)

(n, l ∈ N0; λ ∈ C \ {−1}).

Further, by setting λ = 1 in (3.13), we obtain the following explicit formula for the gen-
eralized Genocchi polynomials G(l)

n (x) (l ∈ N0) involving the Stirling numbers S(n, k)
of the second kind:

G(l)
n (x) =

n∑
k=0

(
n

k

)(
k

l

) k−l∑
j=0

(
l + j − 1

j

)
l! j!

(
−1

2

)j

S(k − l, j)xn−k (n, l ∈ N0).

(3.14)

By setting λ = 1 in (3.11), we obtain an explicit formula for the Genocchi polynomials
G

(l)
n (x) of order l ∈ N0 in terms of the Gaussian hypergeometric function.

Corollary 2. The following series representation holds true:

G(l)
n (x) = l!

(
n

l

) n−l∑
k=0

1

2k

(
n− l

k

)(
l + k − 1

k

) k∑
j=0

(−1)
j

(
k

j

)

· jk (x+ j)
n−k−l

2F1

(
k + l − n, k; k + 1;

j

x+ j

)
(n, l ∈ N0). (3.15)

By setting x = 0 in (3.11), we obtain the explicit series representation given by Corol-
lary 3 below.

Corollary 3. The following explicit series representation holds true:

G(l)
n (λ) =

2l n!

(n− l)!

n−l∑
k=0

(
l + k − 1

k

)
k! (−λ)

k

(λ+ 1)
k+l

S (n− l, k) , (3.16)

(
n, l ∈ N0; λ ∈ C \ {−1}

)
.

If we set λ = 1 in (3.16), then we obtain the following formula for the Genocchi
numbers G(l)

n of order l ∈ N0 involving the Stirling numbers of the second kind:

G(l)
n =

n!

(n− l)!

n−l∑
k=0

(
l + k − 1

k

)
k!

(
−1

2

)k

S (n− l, k)
(
n, l ∈ N0

)
. (3.17)
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Corollary 4. The following explicit series representation holds true for the Apostol-
Genocchi polynomials Gn (x;λ):

Gn (x;λ) = 2n
n−1∑
k=0

(
n− 1

k

)
λk

(λ+ 1)
k+1

k∑
j=0

(−1)
j

(
k

j

)
jk (x+ j)

n−k−1

· 2F1

(
k − n+ 1, k; k + 1;

j

x+ j

)
,
(
n ∈ N0; λ ∈ C \ {−1}

)
.

(3.18)

Finally, we calculate a few values of the Apostol-Genocchi numbers Gn(λ) by applying
the formula (3.16) (with l = 1) as follows:

G0(λ) = 0, G1(λ) =
2

λ+ 1
, G2(λ) = − 4λ

(λ+ 1)2
, G3(λ) =

6λ(λ− 1)

(λ+ 1)3
,

G4(λ) = −8λ(λ2 − 4λ+ 1)

(λ+ 1)4
, G5(λ) =

10λ(λ3 − 11λ2 + 11λ− 1)

(λ+ 1)5
,

G6(λ) = −12λ(λ4 − 26λ3 + 66λ2 − 26λ+ 1)

(λ+ 1)6
,

(3.19)

and so on.
By applying (3.3) (with l = 1 and x = 0) in conjunction with (3.19), we have the

corresponding values of the Apostol-Euler numbers En(λ) given by

E0(λ) =
2

λ+ 1
, E1(λ) = − 2λ

(λ+ 1)2
, E2(λ) =

2λ(λ− 1)

(λ+ 1)3
,

E3(λ) = −2λ(λ2 − 4λ+ 1)

(λ+ 1)4
, E4(λ) =

2λ(λ3 − 11λ2 + 11λ− 1)

(λ+ 1)5
,

E5(λ) = −2λ(λ4 − 26λ3 + 66λ2 − 26λ+ 1)

(λ+ 1)6
,

(3.20)

and so on.

4 Relationships Involving the Apostol-Genocchi Polynomials
G(α)
n (x;λ) of Order α

In this section, we prove an interesting relationship between the generalized Apostol-
Genocchi polynomials G(α)

n (x;λ) and the Apostol-Bernoulli polynomials Bn (x;λ).

Theorem 2. The following relationship holds true:

G(α)
n (x+ y;λ) =

n∑
k=0

2

k + 1

(
n

k

)[
(k + 1)G(α−1)

k (y;λ)− G(α)
k+1(y;λ)

]
Bn−k(x;λ)

(4.1)
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α, λ ∈ C; n ∈ N0

)
between the generalized Apostol-Genocchi polynomials and the Apostol-Bernoulli polyno-
mials.

Proof. By applying an analogous method (see the proof given by Luo and Srivastava [53, p.
636, Theorem 1]), we can obtain the explicit formula (4.1) asserted by Theorem 2. The
details involved are being omitted here.

In terms of the generalized Apostol-Genocchi numbers
{
G(α)
n (λ)

}∞

n=0
, by setting

y = 0 in Theorem 2, we obtain the following explicit relationship between the generalized
Apostol-Genocchi polynomials G(α)

n (x;λ) of order α and the Apostol-Bernoulli polyno-
mials Bk(x;λ).

Corollary 5. The following relationship holds true:

G(α)
n (x;λ) =

n∑
k=0

2

k + 1

(
n

k

)[
(k + 1)G(α−1)

k (λ)− G(α)
k+1(λ)

]
Bn−k(x;λ) (4.2)

(
α, λ ∈ C; n ∈ N0

)
between the Apostol-Genocchi polynomials of order α and the Apostol-Bernoulli polyno-
mials.

By noting that
G(0)
n (y;λ) = yn

(
n ∈ N0; λ ∈ C

)
and using the assertion (4.1) (with α = 1), we deduce Corollary 6 below.

Corollary 6. The following relationship holds true:

Gn(x+ y;λ) =
n∑

k=0

2

k + 1

(
n

k

)[
(k + 1)yk − Gk+1(y;λ)

]
Bn−k(x;λ). (4.3)

(
n ∈ N0; λ ∈ C

)
between the Apostol-Genocchi polynomials and the Apostol-Bernoulli polynomials.

By taking y = 0 in (4.3), and in view of the fact that

G1(y;λ) = G1(λ) =
2

λ+ 1
,

we get the following relationship:

Gn(x;λ) = −
n∑

k=1

2

k + 1

(
n

k

)
Gk+1(λ)Bn−k(x;λ) + 2

(
λ− 1

λ+ 1

)
Bn(x;λ) (4.4)

(λ ∈ C \ {−1}; n ∈ N).
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By setting λ = 1 in the formula (4.4), we obtain the following relationship between the
classical Genocchi numbers and the classical Bernoulli polynomials:

Gn(x) = −
n∑

k=1

2

k + 1

(
n

k

)
Gk+1Bn−k(x) (n ∈ N), (4.5)

which, in its further special case when x = 0, yields the following relationship between the
classical Genocchi numbers and the classical Bernoulli numbers:

Gn = −
n∑

k=1

2

k + 1

(
n

k

)
Gk+1Bn−k (n ∈ N). (4.6)

By setting λ = 1 in (4.1), we obtain an addition theorem for the Genocchi polynomials
of order α given by Corollary 7 below.

Corollary 7. The following relationship holds true:

G(α)
n (x+ y) =

n∑
k=0

2

k + 1

(
n

k

)[
(k + 1)G

(α−1)
k (y)−G

(α)
k+1(y)

]
Bn−k(x) (4.7)

(α ∈ C; n ∈ N0).

Letting y = 0 in (4.7), we get the following relationship between the Genocchi poly-
nomials of order α and the classical Bernoulli polynomials:

G(α)
n (x) =

n∑
k=0

2

k + 1

(
n

k

)[
(k + 1)G

(α−1)
k −G

(α)
k+1

]
Bn−k(x) (α ∈ C; n ∈ N0).

(4.8)

We next recall a potentially useful result due to Luo and Srivastava [53, p. 638, Theorem
2].

Theorem B (Luo and Srivastava [53, p. 638, Theorem 2]). The following relationship
holds true:

E(α)
n (x+ y;λ) =

n∑
k=0

2

k + 1

(
n

k

)[
E(α−1)
k+1 (y;λ)− E(α)

k+1(y;λ)
]
Bn−k(x;λ) (4.9)

+

(
λ− 1

n+ 1

)(
2

λ+ 1

)α

Bn+1(x;λ)
(
α ∈ C; λ ∈ C \ {−1}; n ∈ N0

)
(4.10)

between the generalized Apostol-Euler polynomials and the Apostol-Bernoulli polynomi-
als.

Remark 3. The following additional term in (4.9):(
λ− 1

n+ 1

)(
2

λ+ 1

)α

Bn+1(x;λ),

was first found by Wang et al. (see [78, Corollary 2.6 (2.13)]).
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In terms of the generalized Apostol-Euler numbers
{
E(α)
n (λ)

}∞

n=0
, by setting y = 0 in

Theorem B, we obtain the following explicit relationship between the generalized Apostol-
Euler polynomials and the Apostol-Bernoulli polynomials.

Corollary 8. The following relationship holds true:

E(α)
n (x;λ) =

n∑
k=0

2

k + 1

(
n

k

)[
E(α−1)
k+1 (λ)− E(α)

k+1(λ)
]
Bn−k(x;λ)

+

(
λ− 1

n+ 1

)(
2

λ+ 1

)α

Bn+1(x;λ)
(
α ∈ C; λ ∈ C \ {−1}; n ∈ N0

)
(4.11)

between the generalized Apostol-Euler polynomials and the Apostol-Bernoulli polynomi-
als.

Corollary 9 below provides the corrected version of each of the five known formulas
due to Luo and Srivastava [53, pp. 638–639, Eqs. (56), (57), (60), (63) and (64)].

Corollary 9. Each of the following relationships holds true:

En(x+ y;λ) =

n∑
k=0

2

k + 1

(
n

k

)[
yk+1 − Ek+1(y;λ)

]
Bn−k(x;λ)

+

(
λ− 1

n+ 1

)(
2

λ+ 1

)
Bn+1(x;λ), (4.12)

En(x;λ) = −
n∑

k=0

2

k + 1

(
n

k

)
Ek+1(0;λ)Bn−k(x;λ) +

(
λ− 1

n+ 1

)(
2

λ+ 1

)
Bn+1(x;λ),

(4.13)

En−2(x;λ) = 2

(
n

2

)−1 n−2∑
k=0

(
n

k

)[
2n−kBn−k(λ

2)− Bn−k(λ)
]
Bk(x;λ)

+

(
λ− 1

n+ 1

)(
2

λ+ 1

)
Bn+1(x;λ), (4.14)

E(α)
n (x;λ) =

n∑
k=0

2

k + 1

(
n

k

)[
E(α−1)
k+1 (x;λ)− E(α)

k+1(x;λ)
]
Bn−k(λ)

+

(
λ− 1

n+ 1

)(
2

λ+ 1

)α

Bn+1(λ) (4.15)

and

E(α)
n (λ) =

n∑
k=0

2n−k

k + 1

(
n

k

)[
2k+1E(α−1)

k+1

(α
2
;λ
)
− E(α)

k+1(λ)
]
Bn−k(λ)

+

(
λ− 1

n+ 1

)(
2

λ+ 1

)α

Bn+1(λ) (4.16)(
α ∈ C; λ ∈ C \ {−1}; n ∈ N0

)
.
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5 Explicit Representations Involving the Hurwitz (or Generalized)
Zeta Function ζ(s, a)

The Hurwitz-Lerch zeta function Φ(z, s, a) defined by (see, for example, [68, p. 121 et
seq.])

Φ(z, s, a) :=
∞∑

n=0

zn

(n+ a)s
(5.1)

(
a ∈ C \ Z−

0 ; s ∈ C when |z| < 1 ; ℜ(s) > 1 when |z| = 1
)
,

which can indeed be continued meromorphically to the whole complex s-plane, except for
a simple pole at s = 1 with its residue 1, contains (as its special cases) not only the Hurwitz
(or generalized) zeta function ζ(s, a) defined by (1.20) and the Riemann zeta function ζ(s)

defined by (1.21), but also such other important functions of Analytic Number Theory as
(for example) the Lipschitz-Lerch zeta function ϕ(ξ, a, s) or L (ξ, s, a) defined by (cf. [68,
p. 122, Eq. 2.5 (11)]):

ϕ(ξ, a, s) :=
∞∑

n=0

e2nπiξ

(n+ a)s
= Φ

(
e2πiξ, s, a

)
=: L (ξ, s, a) (5.2)

(
a ∈ C \ Z−

0 ; R(s) > 0 when ξ ∈ R \Z; R(s) > 1 when ξ ∈ Z
)

which was first studied by Rudolf Lipschitz (1832-1903) and Matyáš Lerch (1860-1922)
in connection with Dirichlet’s famous theorem on primes in arithmetic progressions. For
various extensions and generalizations of the Hurwitz-Lerch zeta function Φ(z, s, a) de-
fined by (5.1), the interested reader may be referred to several recent works including (for
example) [19], [41] and [75] and the references cited in each of these works (see also [13]
and [67]).

Precisely one decade ago, Srivastava [66] made use of Lerch’s functional equation:

ϕ(ξ, a, 1− s) =
Γ(s)

(2π)s

{
exp

[(
1

2
s− 2aξ

)
πi

]
ϕ (−a, ξ, s)

+ exp

[(
−1

2
s+ 2a(1− ξ)

)
πi

]
ϕ(a, 1− ξ, s)

}
(s ∈ C; 0 < ξ < 1)

(5.3)

in conjunction with Apostol’s formula [2, p. 164]:

ϕ(ξ, a, 1− n) = Φ(e2πiξ, 1− n, a) = −
Bn

(
a; e2πiξ

)
n

(n ∈ N) , (5.4)

in order to obtain an elegant formula for the Apostol-Bernoulli polynomials Bn(x;λ),
which we recall here as Theorem C below.
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Theorem C (Srivastava’s formula [66, p. 84, Eq. (4.6)]). The Apostol-Bernoulli polyno-
mials Bn (x;λ) at rational arguments are given by

Bn

(
p

q
; e2πiξ

)
= − n!

(2qπ)n

{
q∑

j=1

ζ

(
n,

ξ + j − 1

q

)

× exp

[(
n

2
− 2(ξ + j − 1)p

q

)
πi

]
+

q∑
j=1

ζ

(
n,

j − ξ

q

)
(5.5)

exp

[(
−n

2
+

2(j − ξ)p

q

)
πi

]}
,(

n ∈ N \ {1} ; p ∈ Z; q ∈ N; ξ ∈ R
)
,

in terms of the Hurwitz (or generalized) zeta function ζ(s, a).

Two analogous formulas for the Apostol-Euler polynomials En(x;λ) and the Apostol-
Genocchi polynomials Gn(x;λ) at rational arguments are asserted by Theorem 3 and The-
orem 4, respectively.

Theorem 3. The following representation of the Apostol-Euler polynomials at rational
arguments holds true:

En
(
p

q
; e2πiξ

)
=

2 · n!
(2qπ)n+1

{
q∑

j=1

ζ

(
n+ 1,

2ξ + 2j − 1

2q

)

× exp

[(
n+ 1

2
− (2ξ + 2j − 1)p

q

)
πi

]
+

q∑
j=1

ζ

(
n+ 1,

2j − 2ξ − 1

2q

)
(5.6)

× exp

[(
−n+ 1

2
+

(2j − 2ξ − 1)p

q

)
πi

]}
(
n, q ∈ N; p ∈ Z; ξ ∈ R

)
in terms of the Hurwitz (or generalized) zeta function ζ(s, a).

Proof. First of all, we recall a useful relationship between the Apostol-Euler polynomials
and the Apostol-Bernoulli polynomials given by (see [53, p. 636, Eq. (38)])

En−1(x;λ) =
2

n

[
Bn(x;λ)− 2nBn

(x
2
;λ2
)]

(n ∈ N) (5.7)

or, equivalently, by

En(x;λ) =
2

n+ 1

[
Bn+1(x;λ)− 2n+1Bn+1

(x
2
;λ2
)]

(n ∈ N0). (5.8)

Taking
x =

p

q
and λ = e2πiξ

(
p ∈ Z; q ∈ N; ξ ∈ R

)
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in the last formula (5.8), we find from Srivastava’s formula (??) with

n 7→ n+ 1, q 7→ 2q and ξ 7→ 2ξ

that

En
(
p

q
; e2πiξ

)

=
2

n+ 1

{
− (n+ 1)!

(2qπ)n+1

 q∑
j=1

ζ

(
n+ 1,

ξ + j − 1

q

)
exp

[(
n+ 1

2
− 2(ξ + j − 1)p

q

)
πi

]

+

q∑
j=1

ζ

(
n+ 1,

j − ξ

q

)
exp

[(
−n+ 1

2
+

2(j − ξ)p

q

)
πi

]
+ 2n+1 · (n+ 1)!

(4qπ)n+1

 2q∑
j=1

ζ

(
n+ 1,

2ξ + j − 1

2q

)
exp

[(
n+ 1

2
− (2ξ + j − 1)p

q

)
πi

]

+

2q∑
j=1

ζ

(
n+ 1,

j − 2ξ

2q

)
exp

[(
−n+ 1

2
+

(j − 2ξ)p

q

)
πi

]}

=
2 · n!

(2qπ)n+1


2q∑
j=1

ζ

(
n+ 1,

2ξ + j − 1

2q

)
exp

[(
n+ 1

2
− (2ξ + j − 1)p

q

)
πi

]

−
q∑

j=1

ζ

(
n+ 1,

ξ + j − 1

q

)
exp

[(
n+ 1

2
− 2(ξ + j − 1)p

q

)
πi

]

+

2q∑
j=1

ζ

(
n+ 1,

j − 2ξ

2q

)
exp

[(
−n+ 1

2
+

(j − 2ξ)p

q

)
πi

]

−
q∑

j=1

ζ

(
n+ 1,

j − ξ

q

)
exp

[(
−n+ 1

2
+

2(j − ξ)p

q

)
πi

] . (5.9)

The first sum in (5.9) can obviously be rewritten the following form:

2q∑
j=1

ζ

(
n+ 1,

2ξ + j − 1

2q

)
exp

[(
n+ 1

2
− (2ξ + j − 1)p

q

)
πi

]

=

q∑
j=1

ζ

(
n+ 1,

ξ + j − 1

q

)
exp

[(
n+ 1

2
− 2(ξ + j − 1)p

q

)
πi

]

+

q∑
j=1

ζ

(
n+ 1,

2ξ + 2j − 1

2q

)
exp

[(
n+ 1

2
− (2ξ + 2j − 1)p

q

)
πi

]
.

(5.10)



Some Generalizations and Basic (or q-) Extensions of the Bernoulli, ... 409

The third sum in (5.9) can also be rewritten the following form:

2q∑
j=1

ζ

(
n+ 1,

j − 2ξ

2q

)
exp

[(
−n+ 1

2
+

(j − 2ξ)p

q

)
πi

]

=

q∑
j=1

ζ

(
n+ 1,

2j − 2ξ − 1

2q

)
exp

[(
−n+ 1

2
+

(2j − 2ξ − 1)p

q

)
πi

]

+

q∑
j=1

ζ

(
n+ 1,

j − ξ

q

)
exp

[(
−n+ 1

2
+

2(j − ξ)p

q

)
πi

]
. (5.11)

Upon first separating the even and odd terms in (5.10) and (5.11), and then substituting
from (5.10) and (5.11) into (5.9), we are led eventually to the formula (??) asserted by
Theorem 3.

Theorem 4. The following representation of the Apostol-Genocchi polynomials at rational
arguments holds true:

Gn

(
p

q
; e2πiξ

)
=

2 · n!
(2qπ)n

{
q∑

j=1

ζ

(
n,

2ξ + 2j − 1

2q

)
exp

[(
n

2
− (2ξ + 2j − 1)p

q

)
πi

]

+

q∑
j=1

ζ

(
n,

2j − 2ξ − 1

2q

)
exp

[(
−n

2
+

(2j − 2ξ − 1)p

q

)
πi

]}
(5.12)

(
n ∈ N \ {1}; p ∈ Z; q ∈ N; ξ ∈ R

)
in terms of the Hurwitz (or generalized) zeta function ζ(s, a).

Proof. We apply the relationship:

Gn (x;λ) = n En−1 (x;λ) (5.13)

with, of course,

x =
p

q
and λ = e2πiξ

(
p ∈ Z; q ∈ N; ξ ∈ R

)
in conjunction with the formula (??). We thus obtain the assertion (5.12) of Theorem 4.

For ξ ∈ Z, the formula (??) can easily be shown to reduce to the following known
result given earlier by Cvijović and Klinowski [16, p. 1529, Theorem B] (see also [66, p.
78, Theorem B]).

Corollary 10. The following representation of the classical Euler polynomials holds true:

En

(
p

q

)
=

4 · n!
(2qπ)n+1

q∑
j=1

ζ

(
n+ 1,

2j − 1

2q

)
sin

(
(2j − 1)pπ

q
− nπ

2

)
, (n, q ∈ N; p ∈ Z)

(5.14)
in terms of the Hurwitz (or generalized) zeta function ζ(s, a).
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A special case for the formula (5.12) when ξ ∈ Z is stated here as Corollary 10 below.

Corollary 11. The following representation of the classical Genocchi polynomials holds
true: Gn

(
p
q

)
= 4·n!

(2qπ)n

∑q
j=1 ζ

(
n, 2j−1

2q

)
× cos

(
(2j−1)pπ

q − nπ
2

)
(
n ∈ N \ {1}; p ∈ Z; q ∈ N

)
in terms of the Hurwitz (or generalized) zeta function ζ(s, a).

The following formula for the Apostol-Bernoulli polynomials B(α)
n (x;λ) of order α

was proven by Luo and Srivastava [52].

Theorem D (Luo and Srivastava [52, p. 300, Theorem 2]). The Apostol-Bernoulli polyno-
mials B(α)

n (x;λ) of order α at rational arguments are given by

B(α)
n

(
p

q
; e2πiξ

)
= n

(
e2πiξ − 1

)−1 B(α−1)
n−1

(
e2πiξ

)
−

n∑
k=2

k!

(2qπ)
k

(
n

k

)
B(α−1)
n−k

(
e2πiξ

)
·


q∑

j=1

ζ

(
k,

ξ + j − 1

q

)
exp

[(
k

2
− 2 (ξ + j − 1) p

q

)
πi

]

+

q∑
j=1

ζ

(
k,

j − ξ

q

)
exp

[(
−k

2
+

2 (j − ξ) p

q

)
πi

]
(5.15)(

n ∈ N \ {1} ; p ∈ Z; q ∈ N; ξ ∈ R \ Z; α ∈ C
)

holds true in terms of the Hurwitz (or generalized) zeta function ζ(s, a).

For α = 1, the formula (5.15) reduces to Srivastava’s formula (??). When ξ ∈ Z in
(??), Srivastava’s formula (5.15) can easily be shown to reduce to a known result given
earlier by Cvijović and Klinowski [16, p. 1529, Theorem A] (see also [66, p. 78, Theorem
A]):

Bn

(
p

q

)
= − 2 · n!

(2qπ)n

q∑
j=1

ζ

(
n,

j

q

)
cos
(
2jpπ

q
− nπ

2

)
, (n ∈ N \ {1} ; p ∈ Z; q ∈ N) .

(5.16)
The following formula is a complement of (5.15) (when ξ ∈ Z):

B(α)
n

(
p

q

)
= B(α−1)

n + n

(
p

q
− 1

2

)
B

(α−1)
n−1

−
n∑

k=2

2 · k!
(2qπ)k

(
n

k

)
B

(α−1)
n−k

q∑
j=1

ζ

(
k,

j

q

)
cos
(
2jpπ

q
− kπ

2

)
(5.17)
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(n ∈ N \ {1} ; p ∈ Z; q ∈ N; α ∈ C) .

By applying (??) and (5.12), we now derive the following represenation formulas for
the Apostol-Euler polynomials of order α and the Apostol-Genocchi polynomials of order
α, respectively.

Theorem 5. The following representation of the Apostol-Euler polynomials of order α

holds true:

E(α)
n

(
p

q
; e2πiξ

)
=

2

e2πiξ + 1
E(α−1)
n (e2πiξ) +

n∑
k=1

2 · k!
(2qπ)k+1

(
n

k

)
E(α−1)
n−k (e2πiξ)

·

{
q∑

j=1

ζ

(
k + 1,

2ξ + 2j − 1

2q

)
exp

[(
k + 1

2
− (2ξ + 2j − 1)p

q

)
πi

]

+

q∑
j=1

ζ

(
k + 1,

2j − 2ξ − 1

2q

)
exp

[(
−k + 1

2
+

(2j − 2ξ − 1)p

q

)
πi

]}
(5.18)(

n, q ∈ N; p ∈ Z; ξ ∈ R \ Λ
(
Λ :=

{
k +

1

2
: k ∈ Z

})
; α ∈ C

)
in terms of the Hurwitz (or generalized) zeta function ζ(s, a).

Proof. We apply the known result [45, p. 919, Eq. (9) with α 7→ α− 1 and β = 1]:

E(α)
n (x;λ) =

n∑
k=0

(
n

k

)
E(α−1)
n−k (λ)Ek(x;λ)

and the special values of En(x;λ) given by

E0(x;λ) = E0(λ) =
2

λ+ 1
.

Upon separating the k = 0 term in conjunction with the formula (??), the representation
formula (5.18) follows readily.

Theorem 6. The following representation of the Apostol-Genocchi polynomials of order α
at rational arguments holds true:

G(α)
n

(
p

q
; e2πiξ

)
=

2n

e2πiξ + 1
G(α−1)
n−1

(
e2πiξ

)
+

n∑
k=2

2 · k!
(2qπ)k

(
n

k

)
G(α−1)
n−k (e2πiξ)

·

{
q∑

j=1

ζ

(
k,

2ξ + 2j − 1

2q

)
exp

[(
k

2
− (2ξ + 2j − 1)p

q

)
πi

]

+

q∑
j=1

ζ

(
k,

2j − 2ξ − 1

2q

)
exp

[(
−k

2
+

(2j − 2ξ − 1)p

q

)
πi

]}
(5.19)
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n ∈ N \ {1}; p ∈ Z; q ∈ N; ξ ∈ R \ Λ

(
Λ :=

{
k +

1

2
: k ∈ Z

})
; α ∈ C

)
in terms of the Hurwitz (or generalized) zeta function ζ(s, a).

Proof. We apply the formula (2.3) and note that

G0(x;λ) = G0(λ) = 0 and G1(x;λ) = G1(λ) =
2

λ+ 1
. (5.20)

Upon first separating the k = 0 and k = 2 terms, and then using the formula (5.12), we
arrive at the representation (5.19) asserted by Theorem 6.

In their special cases when ξ ∈ Z, Theorems 5 and 6 readily yield Corollaries 12 and
13, respectively, which provide the corresponding representations of the Euler polynomials
of order α and the Genocchi polynomials of order α at rational arguments.

Corollary 12. The following representation of the generalized Euler polynomials at ratio-
nal arguments holds true:

E(α)
n

(
p

q

)
= E(α−1)

n +

n∑
k=1

4 · k!
(2qπ)k+1

(
n

k

)
E

(α−1)
n−k

q∑
j=1

ζ

(
k + 1,

2j − 1

2q

)

· sin
(
(2j − 1)pπ

q
− kπ

2

)
,
(
n, q ∈ N; p ∈ Z; α ∈ C

)
(5.21)

in terms of the Hurwitz (or generalized) zeta function ζ(s, a).

Corollary 13. The following representation of the generalized Genocchi polynomials at
rational arguments holds true:

G(α)
n

(
p

q

)
= nG

(α−1)
n−1 +

n∑
k=2

4 · k!
(2qπ)k

(
n

k

)
G

(α−1)
n−k

q∑
j=1

ζ

(
k,

2j − 1

2q

)
cos

(
(2j − 1)pπ

q
− kπ

2

)
(5.22)(

n ∈ N \ {1}; p ∈ Z; q ∈ N; α ∈ C
)

in terms of the Hurwitz (or generalized) zeta function ζ(s, a).

Clearly, by setting α = 1 in (5.21) and (5.22), we again obtain the formulas (5.14) and
(11), respectively. On the other hand, if we apply the formulas (3.4) of Lemma 3 and (3.7)
of Lemma 4 in conjunction with the assertion (5.15) of Theorem D of Luo and Srivastava
[52], we obtain the series representations of G(α)

n (x;λ) and E(α)
n (x;λ), respectively, which

are given by Theorems 7 and 8 below.



Some Generalizations and Basic (or q-) Extensions of the Bernoulli, ... 413

Theorem 7. The following series representation holds true for the Apostol-Genocchi poly-
nomials of reder α:

G(α)
n

(
p

q
; e2πi

)
= − n (−2)α

e2πiξ + 1
B(α−1)
n−1

(
−e2πiξ)

)
−

n∑
k=2

k!

(2qπ)
k

(
n

k

)
B(α−1)
n−k

(
−e2πiξ

)
·


q∑

j=1

ζ

(
k,

2ξ + 2j − 1

2q

)
exp

[(
k

2
− (2ξ + 2j − 1) p

q

)
πi

]

+

q∑
j=1

ζ

(
k,

2j − 2ξ − 1

2q

)
exp

[(
−k

2
+

(2j − 2ξ − 1) p

q

)
πi

]
(5.23)

(
n ∈ N \ {1}; p ∈ Z; q ∈ N; ξ ∈ R \ Λ

(
Λ :=

{
k +

1

2
: k ∈ Z

})
; α ∈ C

)

in terms of the Hurwitz (or generalized) zeta function.

Theorem 8. The following series representation holds true for the Apostol-Euler polyno-
mials of order l:

E(l)
n

(
p

q
; e2πiξ

)
= − n! (−2)l

(n+ l − 1)!(e2πiξ + 1)
B(l−1)
n+l−1

(
−e2πiξ)

)
−

n+l∑
k=2

k!

(2qπ)
k

(
n+ l

k

)

·B(l−1)
n+l−k

(
−e2πiξ

)
q∑

j=1

ζ

(
k,

2ξ + 2j − 1

2q

)
exp

[(
k

2
− (2ξ + 2j − 1) p

q

)
πi

]

+

q∑
j=1

ζ

(
k,

2j − 2ξ − 1

2q

)
exp

[(
−k

2
+

(2j − 2ξ − 1) p

q

)
πi

]
(5.24)

(
n ∈ N \ {1}; p ∈ Z; l, q ∈ N; ξ ∈ R \ Λ

(
Λ :=

{
k +

1

2
: k ∈ Z

}))

in terms of the Hurwitz (or generalized) zeta function.

Remark 4. It is not difficult to apply the relationships (3.5) of Lemma 3 and (3.6) of
Lemma 4 in conjunction with the above formulas (5.19) and (5.18), respectively, in order
to obtain the corresponding series representations for the Apostol-Bernoulli polynomials
B(α)
n (x;λ) of order α ∈ C..
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6 The λ-Stirling Numbers of the Second Kind and Their Elementary
Properties

In this section, we first introduce an analogue of the familiar Stirling numbers S(n, k)
of the second kind, which we choose to call the λ-Stirling numbers of the second kind. We
then derive several elementary properties including recurrence relations for them. We also
pose two open problems relevant to our present investigation.
Definition 5. The λ-Stirling numbers S(n, k;λ) of the second kind is defined by means of
the following generating function:

(λez − 1)k

k!
=

∞∑
n=0

S(n, k;λ) zn

n!
(k ∈ N0; λ ∈ C), (6.1)

so that, obviously,
S(n, k) := S(n, k; 1)

for the Stirling numbers S(n, k) of the second kind defined by (1.8) (see [15, p. 206,
Theorem A]).

Theorem 9. The λ-Stirling numbers S(n, k;λ) of the second kind can also be defined as
follows:

λx xn =
∞∑
k=0

(
x

k

)
k! S(n, k;λ) (k ∈ N0; λ ∈ C). (6.2)

Proof. By using (6.1) and the binomial theorem, we easily obtain the assertion (6.2) of
Theorem 7.

Theorem 10. The following explicit representation formulas hold true:

S(n, k;λ) = 1

k!

k∑
j=0

(−1)k−j

(
k

j

)
λjjn (n, k ∈ N0; λ ∈ C) (6.3)

and

S(n, k;λ) = 1

k!

k∑
j=0

(−1)j
(
k

j

)
λk−j(k − j)n (n, k ∈ N0; λ ∈ C). (6.4)

Proof. Just as in our demonstration of Theorem 7, we can easily derive (6.3) and (6.4) by
using (6.1) and the binomial theorem.

Theorem 11. The λ-Stirling numbers S(n, k;λ) of the second kind satisfy the following
triangular and vertical recurrence relations:

S(n, k;λ) = S(n− 1, k − 1;λ) + k S(n− 1, k;λ) (n, k ∈ N) (6.5)
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and

S(n, k;λ) =
n−1∑
j=0

(
n− 1

j

)
λn−j−1 S(j, k − 1;λ) (n, k ∈ N), (6.6)

respectively.

Proof. By differentiating both sides of (6.1) with respect to the variable z, we readily arrive
at the recursion formulas (6.5) and (6.6) asserted by Theorem 9.

Theorem 12. The following explicit relationships hold true:

S(n, k;λ) = n!

∞∑
j=n

(
j

n

)
(log λ)j−n

j!
S(j, k) (n, k ∈ N0; λ ∈ C) (6.7)

and

S(n, k;λ) =
k∑

j=0

λj(λ− 1)k−j

(k − j)!
S(n, j) (n, k ∈ N0; λ ∈ C) (6.8)

between the λ-Stirling numbers S(n, k;λ) of the second kind and the Stirling numbers
S(n, k) of the second kind.

Proof. By applying (6.1), it is failrly straightforward to derive the formulas (6.7) and (6.8).

By means of the formula (6.3) or (6.8) in conjunction with (6.1), we can compute
several values of S(n, k;λ) given by

S(0, 0;λ) = 1, S(1, 0;λ) = 0, S(1, 1;λ) = λ, S(2, 0;λ) = 0, S(2, 1;λ) = λ,

S(2, 2;λ) = λ(2λ− 1), S(3, 0;λ) = 0, S(3, 1;λ) = λ,

S(3, 2;λ) = λ(4λ− 1), S(3, 3;λ) = 1

2
λ(9λ2 − 8λ+ 1),

S(4, 0;λ) = 0, S(4, 1;λ) = λ, S(4, 2;λ) = λ(8λ− 1),

S(4, 3;λ) = 1

2
λ(27λ2 − 16λ+ 1), S(4, 4;λ) = 1

6
λ(64λ3 − 81λ2 + 24λ− 1),

S(5, 0;λ) = 0, S(5, 1;λ) = λ, S(5, 2;λ) = λ(16λ− 1),

S(5, 3;λ) = 1

2
λ(81λ2 − 32λ+ 1), S(5, 4;λ) = 1

6
λ(256λ3 − 243λ2 + 48λ− 1),

S(5, 5;λ) = 1

24
λ(625λ5 − 1024λ3 + 486λ2 − 64λ+ 1),

(6.9)

and

S(0, k;λ) = (λ− 1)k

k!
, S(n, 0;λ) = δn,0 and S(n, 1;λ) = λ (n, k ∈ N0),

(6.10)
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and so on, δm,n being the Kronecker symbol.
When λ = 1, (6.1) and (6.2) become the corresponding (rather familiar) definitions for

the Stirling numbers S(n, k) of the second kind (see, for details, [15, p. 206, Theorem A;
p. 207 Theorem B]). Similarly, in their special case when λ = 1, the formulas (6.3), (6.4),
(6.5) and (6.6) would yield the corresponding well-known results for the Stirling numbers
S(n, k) of the second kind (see, for details, [15, p. 204, Theorem A; p. 208, Theorem A;
p. 209, Theorem B]).

Each of the following special values of S(n, k) is known (see [15, pp. 226–227, Ex.
16] and [60, p. 231]):

S(n, n) = 1, S(n, n− 1) =

(
n

2

)
,

S(n, n− 2) =
1

4

(
n

3

)
(3n− 5) and S(n, n− 3) =

1

2

(
n

4

)
(n2 − 5n+ 6),

(6.11)

so that, if we make use of the formula (6.3) (with λ = 1) in conjunction with these special
values of S(n, k), we obtain the following interesting summation formulas:

n∑
j=0

(−1)j
(
n

j

)
jn = (−1)n n!, (6.12)

n∑
j=0

(−1)j
(
n

j

)
jn+1 = (−1)n(n+ 1)! · n

2
, (6.13)

n∑
j=0

(−1)j
(
n

j

)
jn+2 =

(−1)n(n+ 2)!

2
· n(3n+ 1)

12
(6.14)

and
n∑

j=0

(−1)j
(
n

j

)
jn+3 =

(−1)n(n+ 3)!

6
· n

2(n+ 1)

8
. (6.15)

More generally, we have the following formula recorded by Gould [18, p. 3, Entry (1.17)]:

n∑
j=0

(−1)j
(
n

j

)
jn+k = (−1)n (n+ k)!

k∑
j=0

(
k − n

k − j

)(
n

j

)
1

(k + j)!
S(k + j, j). (6.16)

Open Problem 1. Does there exist an analogue of the sum given below?

n∑
j=0

(−1)j
(
n

j

)
λj jn+k (n ∈ N; k ∈ N0; λ ∈ C).

Open Problem 2. Can we find a rational generating function for the λ-Stiling numbers
S(n, k;λ) of the second kind analogous to a known result [15, p. 207, Theorem C]?
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7 Applications of the λ-Stirling Numbers S(n, k;λ) of the Second
Kind to the Family of the Apostol Type Polynomials

In the section, we give some applications of the λ-Stirling numbers S(n, k;λ) of the
second kind to the Apostol type polynomials and Apostol type numbers. We obtain some
interesting series representations for the Apostol-Genocchi polynomials involving the λ-
Stirling numbers S(n, k;λ) of the second kind and the Hurwitz (or generalized) zeta func-
tion ζ(s, a). We begin by recalling that Wang et al. [78] gave the following results for
the Apostol-Euler polynomials of order α using the λ-Stirling numbers S(n, k;λ) of the
second kind defined by (6.1).

E(α)
n (x+ y;λ) =

n∑
l=−j

n−l∑
k=0

n!j!

k!(l + j)!(n− k − l)!

· S(l + j, j;λ)E(α)
n−k−l(y;λ)B

(j)
k (x;λ) (n, j ∈ N0; α, λ ∈ C) (7.1)

and

xn =

n∑
l=−j

n!j!

(l + j)!(n− l)!
S(l + j, j;λ)B(j)

n−l(x;λ) (n, j ∈ N0; λ ∈ C). (7.2)

Application 1. First of all, we give some recurrence relationships for the Apostol-Bernoulli
numbers of order l (l ∈ N) by using the λ-Stirling numbers of the second kind.

Theorem 13. Let S(n, k;λ) denote the λ-Stirling numbers of the second kind defined by
(6.1). Then

n+l∑
k=0

(
n+ l

k

)
S(n+ l − k, l;λ)B(l)

k (λ) = 0 (n, l ∈ N; λ ∈ C). (7.3)

Proof. By applying (1.10) (with α = l ∈ N and x = 0) and (6.1), we find that

1 = z−l(λez − 1)l
∞∑

n=0

B(l)
n (λ)

zn

n!

= z−l l!
∞∑

n=0

S(n, l;λ) zn

n!
·

∞∑
n=0

B(l)
n (λ)

zn

n!

=
∞∑

n=0

[(
n+ l

l

)−1 n+l∑
k=0

(
n+ l

k

)
S(n+ l − k, l;λ)B(l)

k (λ)

]
zn

n!
. (7.4)

Now, by comparing the coefficients of zn (n ∈ N) on both sides of (7.4), we easily obtain
the assertion (7.3) of Theorem 11.
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Remark 5. By setting λ = 1 in (7.3) and observing that

n+l∑
k=0

=

n∑
k=0

+

n+l∑
k=n+1

and S(n+ l − k, l) = 0 (n+ 1 5 k 5 n+ l),

we have the following recurrence relation for the Bernoulli numbers of order l (or, equiva-
lently, the Nörlund numbers [56]):

B(l)
n = −

(
n+ l

n

)−1 n−1∑
k=0

(
n+ l

k

)
S(n+ l − k, l)B

(l)
k . (7.5)

Remark 6. When λ ̸= 1 in (7.3), if we apply the following values for the λ-Stirling
numbers S(n, k;λ):

S(0, k;λ) = (λ− 1)k

k!
and S(n, 1;λ) = λ (n, k ∈ N0) (7.6)

in conjunction with (7.3), we have the following recurrence relation for the Apostol-
Bernoulli numbers of order l (or, equivalently, the generalized Nörlund numbers [56]):

B(l)
n+l(λ) = − l!

(λ− 1)l

n+l−1∑
k=0

(
n+ l

k

)
S(n+ l − k, l;λ)B(l)

k (λ). (7.7)

Remark 7. By setting l = 1 in (7.5) and noting that S(n, 1) = 1, we deduce the following
familiar recurrence relations for the classical Bernoulli numbers Bn:

B0 = 1 and Bn = − 1

n+ 1

n−1∑
k=0

(
n+ 1

k

)
Bk (n ∈ N). (7.8)

Remark 8. By setting l = 1 in (7.7) and noting that S(n, 1;λ) = λ, we deduce the
following known recurrence relations for the Apostol-Bernoulli numbers Bn(λ):

B0(λ) = 0, B1(λ) =
1

λ− 1
and Bn(λ) =

λ

1− λ

n−1∑
k=0

(
n

k

)
Bk(λ) (n ∈ N \ {1}).

(7.9)

Application 2. If we take α = −l (l ∈ N) in (1.10), then Definition 2 assumes the
following form: (

λez − 1

z

)l

· exz =
∞∑

n=0

B(−l)
n (x;λ)

zn

n!
. (7.10)
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By (7.10) and (6.1), we thus have

∞∑
n=0

B(−l)
n (x;λ)

zn

n!
= z−l (λez − 1)

l · exz

= z−l l!

∞∑
n=0

S(n, l;λ) zn

n!
·

∞∑
n=0

(zx)n

n!

=
∞∑

n=0

[(
n+ l

l

)−1 n+l∑
k=0

(
n+ l

k

)
S(k, l;λ)xn+l−k

]
zn

n!
, (7.11)

which leads us to Theorem 12 below.

Theorem 14. The following relationship holds true:

B(−l)
n (x;λ) =

(
n+ l

l

)−1 n+l∑
k=0

(
n+ l

k

)
S(k, l;λ)xn+l−k (n, l ∈ N) (7.12)

between the generalized Apostol-Bernoulli polynomials of order −l (l ∈ N) and the λ-
Stirling numbers of the second kind.

Remark 9. Taking λ = 1 in (7.12), we have

B(−l)
n (x) =

(
n+ l

l

)−1 n+l∑
k=0

(
n+ l

k

)
S(k, l)xn+l−k, (7.13)

which upon setting l = n, yields

B(−n)
n (x) =

(n!)2

(2n)!

2n∑
k=0

(
2n

k

)
S(k, n)x2n−k (7.14)

or, equivalently,

B(−n)
n (x) =

(n!)2

(2n)!

n∑
k=0

(
2n

n+ k

)
S(n+ k, n)xn−k. (7.15)

Remark 10. Putting x = 0 in (7.12), we have

B(−l)
n (λ) =

(
n+ l

l

)−1

S(n+ l, l;λ). (7.16)

Further, upon letting λ = 1 in (7.16) or setting x = 0 in (7.13), we obtain

B(−l)
n =

(
n+ l

l

)−1

S(n+ l, l), (7.17)

which, for l = n, yields

B(−n)
n =

(
2n

n

)−1

S(2n, n), (7.18)
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or, equivalently,

B(−n)
n =

(n!)2

(2n)!
S(2n, n). (7.19)

Applying the recursion formula (7.19) and the known formulas in [56, p. 146]), we can
calculate the first five values of B(−n)

n and B
(n)
n (n ∈ N) as given below:

B
(−1)
1 =

1

2
, B

(−2)
2 =

7

6
, B

(−3)
3 =

9

2
, B

(−4)
4 =

243

10
, B

(−5)
5 =

6075

36
,

B
(1)
1 = −1

2
, B

(2)
2 =

5

6
, B

(3)
3 = −9

4
, B

(4)
4 =

251

30
and B

(5)
5 =

475

12

B
(1)
1 = −1

2
, B

(2)
2 =

5

6
, B

(3)
3 = −9

4
, B

(4)
4 =

251

30
and B

(5)
5 =

475

12
.

(7.20)

Next, by applying (1.10) (with α = l ∈ N) and (6.1), we have

∞∑
n=0

xn zn+l

n!
= (λez − 1)

l ·
∞∑

n=0

B(l)
n (x;λ)

zn

n!

= l!

∞∑
n=0

S(n, l;λ) zn

n!
·

∞∑
n=0

B(l)
n (x;λ)

zn

n!

=

∞∑
n=0

[
l!

n∑
k=0

(
n

k

)
S(k, l;λ)B(l)

n−k(x;λ)

]
zn

n!
, (7.21)

which leads us to an equivalent version of (7.2) given by Theorem 13 below.

Theorem 15. The following expansion formula holds true:

xn−l =

(
n

l

)−1 n∑
k=0

(
n

k

)
S(k, l;λ)B(l)

n−k(x;λ) (n, l ∈ N0; n = l). (7.22)

Remark 11. When λ = 1 in (7.22), we have

xn−l =

(
n

l

)−1 n∑
k=0

(
n

k

)
S(k, l)B

(l)
n−k(x) (n, l ∈ N0; n = l). (7.23)

Remark 12. Upon setting l = 1 in (7.22), if we apply (6.10), we deduce the following
known difference equation:

nxn−1 = λBn(x+ 1;λ)− Bn(x;λ), (7.24)

which, in the further special case when λ = 1, is a well-known (rather classical) result.

Application 3. We here obtain some series representations of the Apostol-Genocchi poly-
nomials of higher order by applying the λ-Stirling numbers of the second kind. Indeed, by
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using (1.10), (1.18) and (6.1), we obtain

∞∑
n=0

G(l)
n (x;λ)

zn

n!
=

(
2z

λ2e2z − 1

)l

· exz · (λez − 1)l

=
∞∑

n=0

B(l)
n

(x
2
;λ2
) (2z)n

n!
· l!

∞∑
n=0

S(n, l;λ)z
n

n!

=
∞∑

n=0

[
l!

n∑
r=0

(
n

r

)
2rS(n− r, l;λ)B(l)

r

(x
2
;λ2
)] zn

n!
, (7.25)

which leads us to the following lemma.

Lemma 6. The following relationship holds true:

G(l)
n (x;λ) = l!

n∑
r=0

(
n

r

)
2rS(n− r, l;λ)B(l)

r

(x
2
;λ2
)

(n, l ∈ N0; λ ∈ C) (7.26)

between the generalized Apostol-Genocchi polynomials and the λ-Stirling numbers of the
second kind.

By applying (5.15) and (7.26), we easily obtain the following series representation for
the generalized Genocchi polynomials G(l)

n (x).

Theorem 16. The Apostol-Genocchi polynomials G(l)
n (x;λ) of order l at rational argu-

ments are given by

G(l)
n

(
p

q
; e2πiξ

)
=

n∑
r=2

r · l! · 2r

e4πiξ − 1

(
n

r

)
B(l−1)
r−1

(
e4πiξ

)
S
(
n− r, l; e2πiξ

)
−

n∑
r=2

r∑
k=2

k! · l! · 2r

(4qπ)
k

(
n

r

)(
r

k

)
B(l−1)
r−k

(
e4πiξ

)
S(n− r, l; e2πiξ)

·


2q∑
j=1

ζ

(
k,

2ξ + j − 1

2q

)
exp

[(
k

2
− (2ξ + j − 1) p

q

)
πi

]

+

2q∑
j=1

ζ

(
k,

j − 2ξ

2q

)
exp

[(
−k

2
+

(j − 2ξ) p

q

)
πi

]
(7.27)(

n, l ∈ N \ {1}; p ∈ Z; q ∈ N; ξ ∈ R \ Λ
(
Λ :=

{
k

2
: k ∈ Z

}))
in terms of the λ-Stirling numbers S(n, k;λ) of the second kind and the Hurwitz (or gen-
eralized) zeta function ζ(s, a).
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By applying (7.26) (with λ = 1) and (5.17), we can obtain the following series repre-
sentation for the generalized Genocchi polynomials G

(l)
n (x), which is actually a comple-

ment of (7.27) for ξ ∈ Z.

Corollary 14. The generalized Genocchi polynomials G
(l)
n (x) of rational arguments are

given by

G(l)
n

(
p

q

)
= l! · S(n, l) + n · l! · S(n− 1, l)

(
p

q
− l

)
+

n∑
r=2

(
n

r

)
2r · S(n− r, l)

[
B(l−1)

r + r

(
p

2q
− 1

2

)
B

(l−1)
r−1

]

−
n∑

r=2

r∑
k=2

2r+1 · k!
(4qπ)k

(
n

r

)(
r

k

)
B

(l−1)
r−k S(n− r, l)

2q∑
j=1

ζ

(
k,

j

2q

)
cos

(
jpπ

q
− kπ

2

)
(7.28)

(n ∈ N \ {1}; q, l ∈ N; p ∈ Z)

in terms of the Stirling numbers S(n, k) of the second kind and the Hurwitz (or generalized)
zeta function ζ(s, a).

By letting l = 1 in (7.28), we obtain the following explicit series representation for the
classical Genocchi polynomials.

Corollary 15. The classical Genocchi polynomials Gn(x) at rational arguments are given
by

Gn

(
p

q

)
= 1 + n

(
p

q
− 1

)
−

n∑
k=2

2 · k!
(2qπ)k

(
n

k

) 2q∑
j=1

ζ

(
k,

j

2q

)
cos

(
jpπ

q
− kπ

2

)
(7.29)

(n ∈ N \ {1}; q, l ∈ N; p ∈ Z)

in terms of the Hurwitz (or generalized) zeta function ζ(s, a).

Remark 13. It is not difficult to derive the corresponding formulas for the Apostol-Euler
polynomials and the Apostol-Bernoulli polynomials at rational arguments by applying the
relationships (3.3) and (3.5) in conjunction with (7.27), (7.28) and (7.29). The details are
being omitted here.

8 Further Results and Observations

In this section, we apply Srivastava’s formula (Theorem C above) and some relation-
ships in order to obtain several different series representations for the Genocchi polynomi-
als of order α and the Euler polynomials of order α.
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We first rewrite the formulas (4.2) and (4.11) in convenient forms given by Lemmas 7
and 8, respectively.

Lemma 7. The following series representation holds true:

G(α)
n (x;λ) =

n∑
k=0

2

n− k + 1

(
n

k

)[
(n− k + 1)G(α−1)

n−k (λ)− G(α)
n−k+1(λ)

]
Bk(x;λ)

(8.1)

(
α, λ ∈ C; n ∈ N0

)
.

Lemma 8. The following series representation holds true:

E(α)
n (x;λ) =

n∑
k=0

2

n− k + 1

(
n

k

)[
E(α−1)
n−k+1(λ)− E(α)

n−k+1(λ)
]
Bk(x;λ)

+

(
λ− 1

n+ 1

)(
2

λ+ 1

)α

Bn+1(x;λ)
(
α, λ ∈ C; n ∈ N0

)
. (8.2)

Theorem 17. The Apostol-Genocchi polynomials G(α)
n (x;λ) of order α at rational argu-

ments are given by

G(α)
n

(
p

q
; e2πiξ

)
=

2

e2πiξ − 1

[
nG(α−1)

n−1 (e2πiξ)− G(α)
n (e2πiξ)

]
−

n∑
k=2

2

n− k + 1

k!

(2qπ)k

(
n

k

)
·
[
(n− k + 1)G(α−1)

n−k (e2πiξ)− G(α)
n−k+1(e

2πiξ)
]

·


q∑

j=1

ζ

(
k,

ξ + j − 1

q

)
exp

[(
k

2
− 2(ξ + j − 1)p

q

)
πi

]

+

q∑
j=1

ζ

(
k,

j − ξ

q

)
exp

[(
−k

2
+

2(j − ξ)p

q

)
πi

] (8.3)

(
n ∈ N \ {1}; q ∈ N; p ∈ Z; ξ ∈ R \ Z; α ∈ C

)
in terms of the Hurwitz (or generalized) zeta function ζ(s, a).

Proof. Upon separating the k = 0 and k = 1 terms in (8.1) and applying Srivastava’s
formula (??) (with n ∈ N \ {1}), if we note that

B0(x;λ) = B0(λ) = 0 and B1(x;λ) = B1(λ) =
1

λ− 1
, (8.4)

we arrive at the formula (8.3) asserted by Theorem 15.
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Theorem 18. The Apostol-Euler polynomials E(α)
n (x;λ) of order α at rational arguments

are given by

E(α)
n

(
p

q
; e2πiξ

)
=

2

e2πiξ − 1

[
E(α−1)
n (e2πiξ)− E(α)

n (e2πiξ)
]

−
n∑

k=2

2

n− k + 1

k!

(2qπ)k

(
n

k

)[
E(α−1)
n−k+1(e

2πiξ)− E(α)
n−k+1(e

2πiξ)
]

·


q∑

j=1

ζ

(
k,

ξ + j − 1

q

)
exp

[(
k

2
− 2(ξ + j − 1)p

q

)
πi

]

+

q∑
j=1

ζ

(
k,

j − ξ

q

)
exp

[(
−k

2
+

2(j − ξ)p

q

)
πi

]
− e2πiξ − 1

n+ 1

(n+ 1)!

(2qπ)n+1

(
2

e2πiξ + 1

)α


q∑
j=1

ζ

(
n+ 1,

ξ + j − 1

q

)

· exp
[(

n+ 1

2
− 2(ξ + j − 1)p

q

)
πi

]

+

q∑
j=1

ζ

(
n+ 1,

j − ξ

q

)
exp

[(
−n+ 1

2
+

2(j − ξ)p

q

)
πi

] (8.5)

(
n ∈ N \ {1}; q ∈ N; p ∈ Z; ξ ∈ R \ {Z ∪ Λ}

(
Λ :=

{
k +

1

2
: k ∈ Z

})
; α ∈ C

)
in terms of the Hurwitz (or generalized) zeta function ζ(s, a).

Proof. Just as in our demonstration of Theorem 16, the representation formula (8.5) can be
proven by applying (8.2) and (??).

By means of (8.1) (with λ = 1) and (8.2) (with λ = 1) in conjunction with the formula
(5.16), we can deduce Corollaries 16 and 17 below asserting series representations for the
Genocchi polynomials of order α and the Euler polynomials of order α, respectively.

Corollary 16. The generalized Genocchi polynomials G(α)
n (x) of order α at rational ar-

guments are given by

G(α)
n

(
p

q

)
=

2

n+ 1

[
(n+ 1)G(α−1)

n −G
(α)
n+1

]
+

(
2p

q
− 1

)[
nG

(α−1)
n−1 −G(α)

n

]
−

n∑
k=2

4

n− k + 1

k!

(2qπ)k

(
n

k

)[
(n− k + 1)G

(α−1)
n−k −G

(α)
n−k+1

]
·

q∑
j=1

ζ

(
k,

j

q

)
cos

(
2jpπ

q
− kπ

2

)
(n ∈ N \ {1}; q ∈ N; p ∈ Z; α ∈ C)

(8.6)
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in terms of the Hurwitz (or generalized) zeta function ζ(s, a).

Corollary 17. The generalized Euler polynomials E
(α)
n (x) of order α at rational argu-

ments are given by

E(α)
n

(
p

q

)
=

2

n+ 1

[
E

(α−1)
n+1 − E

(α)
n+1

]
+

(
2p

q
− 1

)[
E(α−1)

n − E(α)
n

]
−

n∑
k=2

4

n− k + 1

k!

(2qπ)k

(
n

k

)[
E

(α−1)
n−k+1 − E

(α)
n−k+1

]
·

q∑
j=1

ζ

(
k,

j

q

)
cos

(
2jpπ

q
− kπ

2

)
(n ∈ N \ {1}; q ∈ N; p ∈ Z; α ∈ C)

(8.7)

in terms of the Hurwitz (or generalized) zeta function ζ(s, a).

Remark 14. The series representation formulas (8.6) and (8.7) are, respectively, the com-
plement of (8.3) and (8.5) for ξ ∈ Z. Furthermore, by letting α = 1 in (8.6) and (8.7), we
obtain the following explicit series representations for the classical Genocchi polynomials
and the classical Euler polynomials, respectively.

Corollary 18. The classical Genocchi polynomials Gn(x) at rational arguments are given
by

Gn

(
p

q

)
= − 2

n+ 1
Gn+1 −

(
2p

q
− 1

)
Gn +

n−1∑
k=2

4Gn−k+1

n− k + 1

k!

(2qπ)k

(
n

k

)

·
q∑

j=1

ζ

(
k,

j

q

)
cos

(
2jpπ

q
− kπ

2

)
(n ∈ N \ {1}; q ∈ N; p ∈ Z) (8.8)

in terms of the Hurwitz (or generalized) zeta function ζ(s, a).

Corollary 19. The classical Euler polynomials En(x) at rational arguments are given by

En

(
p

q

)
= − 2

n+ 1
En+1 −

(
2p

q
− 1

)
En +

n∑
k=2

4En−k+1

n− k + 1

k!

(2qπ)k

(
n

k

)

·
q∑

j=1

ζ

(
k,

j

q

)
cos

(
2jpπ

q
− kπ

2

)
(n ∈ N \ {1}; q ∈ N; p ∈ Z) (8.9)

in terms of the Hurwitz (or generalized) zeta function ζ(s, a).

Remark 15. It is fairly easy to apply the relationships (3.5) of Lemma 3 and (3.6) of
Lemma 4 in conjunction with the above formulas (8.3) and (8.5), respectively, in order
to obtain the corresponding series representations for the Apostol-Bernoulli polynomials
B(α)
n (x;λ) of order α at rational arguments. The details involved are being left as an

exercise for the interested reader.
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We now separate the even and odd terms of the formula (8.9). By noting that

E2n = 0 and E2n−1 =
1

2n
G2n (n ∈ N),

we thus obtain

E2n−1

(
p

q

)
= −

(
2p

q
− 1

)
E2n−1 +

n∑
k=2

4 E2n−2k+1

2n− 2k + 1

(−1)k+1(2k − 1)!

(2qπ)2k−1

(
2n− 1

2k − 1

)

·
q∑

j=1

ζ

(
2k − 1,

j

q

)
sin

(
2jpπ

q

)
(n ∈ N \ {1}; q ∈ N; p ∈ Z) (8.10)

and

E2n

(
p

q

)
= −

(
2

2n+ 1

)
E2n+1 +

n∑
k=1

4 E2n−2k+1

2n− 2k + 1

(−1)k(2k)!

(2qπ)2k

(
2n

2k

)

·
q∑

j=1

ζ

(
2k,

j

q

)
cos

(
2jpπ

q

)
(n ∈ N \ {1}; q ∈ N; p ∈ Z). (8.11)

On the other hand, by separating the even and odd terms of the formula (5.14), we get
(see [16, p. 1529, Theorem B] and [66, p. 78, Theorem B]; see also Corollary 10 above)

E2n−1

(
p

q

)
= (−1)n

4(2n− 1)!

(2qπ)2n

q∑
j=1

ζ

(
2n,

2j − 1

2q

)
cos

(
(2j − 1)pπ

q

)
(8.12)

(n ∈ N \ {1}; q ∈ N; p ∈ Z)

and

E2n

(
p

q

)
= (−1)n

4(2n)!

(2qπ)2n+1

q∑
j=1

ζ

(
2n+ 1,

2j − 1

2q

)
sin

(
(2j − 1)pπ

q

)
(8.13)

(n ∈ N \ {1}; q ∈ N; p ∈ Z).

Finally, by comparing the formulas (8.12) and (8.10) and the formulas (8.13) and (8.11),
respectively, we obtain the following interesting relationships involving the even and odd
Hurwitz (or generalized) zeta functions:

n∑
k=2

(−1)k+1(2qπ)2n−2k+1

(2n− 2k + 1)!

q∑
j=1

ζ

(
2k − 1,

j

q

)
sin

(
2jpπ

q

)
E2n−2k+1 = (−1)n

q∑
j=1

ζ

×
(
2n,

2j − 1

2q

)
cos

(
(2j − 1)pπ

q

)
+

(2qπ)2n

2 · (2n− 1)!

(
p

q
− 1

2

)
E2n−1

(8.14)

(n ∈ N \ {1}; q ∈ N; p ∈ Z)
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and

n∑
k=1

(−1)k(2qπ)2n−2k+1

(2n− 2k + 1)!

q∑
j=1

ζ

(
2k,

j

q

)
cos

(
2jpπ

q

)
E2n−2k+1 = (−1)n

q∑
j=1

ζ

×
(
2n+ 1,

2j − 1

2q

)
sin

(
(2j − 1)pπ

q

)
+

(2qπ)2n+1

2 · (2n+ 1)!
E2n+1 (8.15)

(n ∈ N \ {1}; q ∈ N; p ∈ Z).

We now recall the following interesting integral representations for the Apostol-
Bernoulli polynomials and the Apostol-Euler polynomials, which were given recently by
Luo [46].

Lemma 9 (Luo [46, p. 2198, Theorem 3.1 (3.1); p. 2199, Theorem 3.2 (3.3)]). The
following integral representation holds true for the Apostol-Bernoulli polynomials:

Bn(z; e
2πiξ) = −∆n(z; ξ)− ne−2πizξ

·
∫ ∞

0

(
U(n; z, t) cosh(2πξt) + i V (n; z, t) sinh(2πξt)

cosh (2πt)− cos (2πx)

)
tn−1 up dt,

(8.16)(
n ∈ N; 0 5 ℜ(z) 5 1; |ξ| < 1 (ξ ∈ R)

)
,

where ∆n(z; ξ) is given by

∆n(z; ξ) =


0 (ξ = 0)

(−1)n n!

(2πiξ)n e2πizξ
(ξ ̸= 0),

U(n; z, t) =
[
cos
(
2πz − nπ

2

)
− cos

(nπ
2

)
e−2πt

]
and

V (n; z, t) =
[
sin
(
2πz − nπ

2

)
+ sin

(nπ
2

)
e−2πt

]
.

Furthermore, the following integral representation holds true for the Apostol-Euler
polynomials:

En(z; e2πiξ) = 2e−2πizξ (8.17)

×
∫ ∞

0

(
X(n;x, t) cosh(2πξt) + i Y (n; z, t) sinh(2πξt)

cosh (2πt)− cos (2πz)

)
tn upupdt

(
n ∈ N; 0 5 ℜ(z) 5 1; |ξ| < 1 (ξ ∈ R)

)
,
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where

X(n; z, t) =
[
e−πt sin

(
πz +

nπ

2

)
+ eπt sin

(
πz − nπ

2

)]
and

Y (n; z, t) =
[
e−πt cos

(
πz +

nπ

2

)
− eπt cos

(
πz − nπ

2

)]
.

We apply the relationships (3.2) of Lemma 2 and (3.4) of Lemma 3 in conjunction
with the above formulas (8.16) and (8.17), respectively. We thus obtain the corresponding
integral representations for the Apostol-Genocchi polynomials G(α)

n (z;λ).

Theorem 19. The following integral representation holds true for the Apostol-Genocchi
polynomials:

Gn(z; e
2πiξ) = 2ne−2πizξ (8.18)

×
∫ ∞

0

(
M(n; z, t) cosh(2πξt) + iN(n;x, t) sinh(2πξt)

cosh(2πt)− cos(2πz)

)
tn−1 up dt

(
n ∈ N; 0 5 ℜ(z) 5 1; |ξ| < 1

2
(ξ ∈ R)

)
,

where

M(n; z, t) =
[
eπt cos

(
πz − nπ

2

)
− e−πt cos

(
πz +

nπ

2

)]
and

N(n; z, t) =
[
eπt sin

(
πz − nπ

2

)
+ e−πt sin

(
πz +

nπ

2

)]
.

Remark 16. Upon letting ξ ∈ Z in (8.16) and (8.17), we easily deduce that

Bn(z) = −n

∫ ∞

0

(
cos
(
2πz − nπ

2

)
− e−2πt cos

(
nπ
2

)
cosh(2πt)− cos(2πz)

)
tn−1 up dt (8.19)

(
n ∈ N; 0 5 ℜ(z) 5 1

)
and

En(z) = 2

∫ ∞

0

(
eπt sin

(
πz − nπ

2

)
+ e−πt sin

(
πx+ nπ

2

)
cosh(2πt)− cos(2πz)

)
tn up dt (8.20)

(
n ∈ N; 0 5 ℜ(z) 5 1

)
for the classical Bernoulli polynomials and the classical Euler polynomials, respectively.
Moreover, by setting z =

p

q
in (8.19) and (8.20), and noting the formulas (5.16) and
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(5.14), we can get the following integral representations for the Hurwitz (or generalized)
zeta function ζ(s, a):

q∑
j=1

ζ

(
n,

j

q

)
cos
(
2jpπ

q
− nπ

2

)

=
(2qπ)n

2 · (n− 1)!

∫ ∞

0

cos
(

2pπ
q − nπ

2

)
− e−2πt cos

(
nπ
2

)
cosh(2πt)− cos

(
2pπ
q

)
 tn−1 up dt

(8.21)

(n ∈ N \ {1} ; p ∈ N0; q ∈ N, p 5 q)

and
q∑

j=1

ζ

(
n+ 1,

2j − 1

2q

)
sin

(
(2j − 1)pπ

q
− nπ

2

)

=
(2qπ)n+1

2 · n!

∫ ∞

0

eπt sin
(

pπ
q − nπ

2

)
+ e−πt sin

(
pπ
q + nπ

2

)
cosh(2πt)− cos

(
2pπ
q

)
 tn up dt,

(8.22)

(n ∈ N; p ∈ N0; q ∈ N, p 5 q) .

Remark 17. By letting n 7−→ 2n in (8.21) and (8.22), we obtain the following interesting
integral representations involving the even Hurwitz (or generalized) zeta function ζ(2n, a)

and the odd Hurwitz (or generalized) zeta function ζ(2n+ 1, a), respectively:

q∑
j=1

ζ

(
2n,

j

q

)
cos

(
2jpπ

q

)

=
(2qπ)2n

2 · (2n− 1)!

∫ ∞

0

 cos
(

2pπ
q

)
− e−2πt

cosh(2πt)− cos
(

2pπ
q

)
 t2n−1 up dt (8.23)

(n ∈ N \ {1} ; p ∈ N0; q ∈ N; p 5 q)

and
q∑

j=1

ζ

(
2n+ 1,

2j − 1

2q

)
sin

(
(2j − 1)pπ

q

)

=
(2qπ)2n+1 sin

(
pπ
q

)
(2n)!

∫ ∞

0

 cosh(πt)

cosh(2πt)− cos
(

2pπ
q

)
 t2n up dt (8.24)

(n ∈ N; p ∈ N0; q ∈ N; p 5 q) .
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Remark 18. The formulas (??), (??) and (5.12) lead us easily to the following repre-
sentations for the Apostol-Bernoulli polynomials, the Apostol-Euler polynomials and the
Apostol-Genocchi polynomials at rational arguments:

Bn

(
p

q
;−e2πiξ

)
= − n!

(2qπ)n


q∑

j=1

ζ

(
n,

2ξ + 2j − 1

2q

)

× exp

[(
n

2
− (2ξ + 2j − 1)p

q

)
πi

]
+

q∑
j=1

ζ

(
n,

2j − 2ξ − 1

2q

)

× exp

[(
−n

2
+

(2j − 2ξ − 1)p

q

)
πi

]}
(8.25)

(n ∈ N \ {1} ; p ∈ Z; q ∈ N; ξ ∈ R),

En
(
p

q
;−e2πiξ

)
=

2 · n!
(2qπ)n+1

{
q∑

j=1

ζ

(
n+ 1,

ξ + j

q

)
exp

[(
n+ 1

2
− 2(ξ + j)p

q

)
πi

]

+

q∑
j=1

ζ

(
n+ 1,

j − ξ − 1

q

)
exp

[(
−n+ 1

2
+

2(j − ξ − 1)p

q

)
πi

]}
(8.26)

(n, q ∈ N; p ∈ Z; ξ ∈ R)

and

Gn

(
p

q
;−e2πiξ

)
=

2 · n!
(2qπ)n

{
q∑

j=1

ζ

(
n,

ξ + j

q

)
exp

[(
n

2
− 2(ξ + j)p

q

)
πi

]

+

q∑
j=1

ζ

(
n,

j − ξ − 1

q

)
exp

[(
−n

2
+

2(j − ξ − 1)p

q

)
πi

]}
(8.27)

(n ∈ N \ {1}; p ∈ Z; q ∈ N; ξ ∈ R),

respectively.
By applying Lemma 2, Lemma 3 and Lemma 4 and the above formulas (??), (8.26) and

(8.27) in conjunction with the results of this paper and of the earlier works (see, for exam-
ple, [44], [52], [45], [53], [50], [46], [47], [48] and [49]), we can also derive a large number
of interesting formulas and relationships. For example, if we apply the relationships (3.2)
and (3.4) in conjunction with the known Fourier expansions of the Apostol-Bernoulli poly-
nomials and the Apostol-Euler polynomials (see, for details, [46, p. 2195, Theorem 2.1
(2.2) and (2.3); p. 2196, Theorem 2.2 (2.8) and Theorem 2.2 (2.9)]), we obtain the cor-
responding Fourier exponential series expansions for the Apostol-Genocchi polynomials
Gn (x;λ) as follows.
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Theorem 20. The following Fourier exponential series expansions hold true for the
Apostol-Genocchi polynomials Gn (x;λ):

Gn(x;λ) =
2 · n!
λx

k=∞∑
k=−∞

e(2k−1)πix

[(2k − 1)πi− log λ]
n =

(2 · n!)in

λx

×

( ∞∑
k=0

exp
[(

nπ
2 − (2k + 1)πx

)
i
]

[(2k + 1)πi+ log λ]
n +

exp
[(
−nπ

2 + (2k + 1)πx
)
i
]

[(2k + 1)πi− log λ]
n

)
(8.28)

(n ∈ N; 0 5 x 5 1; λ ∈ C \ {0,−1}).

9 Unified Presentations of the Generalized Apostol Type Polynomials

The mutual relationships among the families of the generalized Apostol-Bernoulli poly-
nomials, the generalized Apostol-Euler polynomials and the generalized Apostol-Genocchi
polynomials, which are already asserted by Lemmas Lemma 2, Lemma 3 and Lemma 4,
can be appropriately applied with a view to translating various formulas involving one fam-
ily of these generalized polynomials into the corresponding results involving each of the
other two families of these generalized polynomials. Nevertheless, we find it to be useful to
investigate properties and results involving these three families of generalized Apostol type
polynomials in a unified manner. In fact, the following interesting unification (and gen-
eralization) of the generating functions of the three families of Apostol type polynomials
was recently investigated rather systematically by Ozden et al. (cf. [58, p. 2779, Equation
(1.1)]):

21−κ zκ exz

βbez − ab
=

∞∑
n=0

Yn,β(x;κ, a, b)
zn

n!
(9.1)

(
|z| < 2π when β = a; |z| <

∣∣∣∣b log(β

a

)∣∣∣∣
when β ̸= a; 1α := 1; κ, β ∈ C; a, b ∈ C \ {0}

)
,

where we have not only suitably relaxed the constraints on the parameters κ, a and b, but
we have also strictly followed Remark 1 regarding the open disk in the complex z-plane
(centred at the origin z = 0) within which the generating function in (9.1) is analytic in
order to have the corresponding convergent Taylor-Maclaurin series expansion (about the
origin z = 0) occurring on the right-hand side (with a positive radius of convergence).

Here, in conclusion of our present investigation, we define the following unification
(and generalization) of the generating functions of the above-mentioned three families of
the generalized Apostol type polynomials.
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Definition 6. The generalized Apostol type polynomials

F (α)
n (x;λ;µ; ν) (α, λ, µ, ν ∈ C)

of (real or complex) order α are defined by means of the following generating function:(
2µ zν

λez + 1

)α

· exz =

∞∑
n=0

F (α)
n (x;λ;µ; ν)

zn

n!

(
|z| < |log(−λ)| ; 1α := 1

)
, (9.2)

so that, by comparing Definition 6 with Definitions 2, 3 and 4, we have

B(α)
n (x;λ) = (−1)α F (α)

n (x;−λ; 0; 1) , (9.3)

E(α)
n (x;λ) = F (α)

n (x;λ; 1; 0) (9.4)

and

G(α)
n (x;λ) = F (α)

n (x;λ; 1; 1) . (9.5)

Furthermore, if we compare the generating functions (9.1) and (9.2), we have

Yn,β(x;κ, a, b) = − 1

ab
F (1)

n

(
x;−

(
β

a

)b

; 1− κ;κ

)
. (9.6)

We thus see from the relationships (9.3), (9.4), (9.5) and (9.6) that the generating func-
tion of F (α)

n (x;λ;µ; ν) in (9.2) includes, as its special cases, not only the generating func-
tion of the polynomials Yn,β(x;κ, a, b) in (9.1) and the generating functions of all three
of the generalized Apostol type polynomials B(α)

n (x;λ), E(α)
n (x;λ) and G(α)

n (x;λ), but
indeed also the generating functions of their special cases B(α)

n (x), E(α)
n (x) and G

(α)
n (x).

The various interesting properties and results involving the new family of generalized
Apostol type polynomials F (α)

n (x;λ;µ; ν) can also be derived in a manner analogous to
that of our investigation in this presentation.

The following natural generalization and unification of the Apostol-Bernoulli polyno-
mials B(α)

n (x;λ) of order α as well as the generalized Bernoulli numbers Bn (a, b) studied
by Guo and Qi [20] and the generalized Bernoulli polynomials Bn (x; a, b) studied by
Luo et al. [51] was introduced and investigated recently by Srivastava et al. [69] (see also
Definition 2).

Definition 7 (cf. [69, p. 254, Equation (20)]). The generalized Apostol-Bernoulli type
polynomials B

(α)
n (x;λ; a, b, c) of order α ∈ C are defined by the following generating

function: (
z

λbz − az

)α

· cxz =
∞∑

n=0

B(α)
n (x;λ; a, b, c)

zn

n!
(9.7)
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|z| <

∣∣∣∣∣ log λ

log
(
b
a

) ∣∣∣∣∣ ; a ∈ C \ {0}; b, c ∈ R+; a ̸= b; 1α := 1

)
.

In a forthcoming sequel to the work by Srivastava et al. [69], a similar generalization of
each of the families of Euler and Genocchi polynomials were introduced and investigated
(see, for details, [70, Section 4]; see also Definitions 3 and 4).

Definition 8 (cf. [70, Section 2]). The generalized Apostol-Euler type polynomials
E
(α)
n (x;λ; a, b, c) of order α ∈ C are defined by the following generating function:(

2

λbz + az

)α

· cxz =
∞∑

n=0

E(α)
n (x;λ; a, b, c)

zn

n!
(9.8)

(
|z| <

∣∣∣∣∣ log(−λ)

log
(
b
a

) ∣∣∣∣∣ ; a ∈ C \ {0}; b, c ∈ R+; a ̸= b; 1α := 1

)
.

Definition 9 (cf. [70, Section 4]). The generalized Apostol-Genocchi type polynomials
G

(α)
n (x;λ; a, b, c) of order α ∈ C are defined by the following generating function:(

2z

λbz + az

)α

· cxz =
∞∑

n=0

G(α)
n (x;λ; a, b, c)

zn

n!
(9.9)

(
|z| <

∣∣∣∣∣ log(−λ)

log
(
b
a

) ∣∣∣∣∣ ; a ∈ C \ {0}; b, c ∈ R+; a ̸= b; 1α := 1

)
.

Remark 19. In their special case when

a = 1 and b = c = e,

the generalized Apostol-Bernoulli type polynomials B
(α)
n (x;λ; a, b, c) defined by (9.7),

the generalized Apostol-Euler type polynomials E(α)
n (x;λ; a, b, c) defined by (9.8) and the

generalized Apostol-Genocchi type polynomials G(α)
n (x;λ; a, b, c) defined by (9.9) would

reduce at once to the Apostol-Bernoulli polynomials B(α)
n (x;λ), the the Apostol-Euler

polynomials E(α)
n (x;λ) and the Apostol-Genocchi polynomials G(α)

n (x;λ), respectively
(see Definitions 2, 3 and 4).

Since the parameter λ ∈ C, by comparing Definitions 7, 8 and 9, we can easily deduce
the following potentially useful lemma (see also Lemmas 1, 2 and 3).

Lemma 10. The families of the generalized Apostol-Bernoulli type polynomials
B

(l)
n (x;λ; a, b, c) (l ∈ N0) and the generalized Apostol-Euler type polynomials

E
(l)
n (x;λ; a, b, c) (l ∈ N0) are related by

B(l)
n (x;λ; a, b, c) =

(
−1

2

)l
n!

(n− l)!
E
(l)
n−l (x;−λ; a, b, c) (n, l ∈ N0; n = l)

(9.10)
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or, equivalently, by

E(l)
n (x;λ; a, b, c) = (−2)l

n!

(n+ l)!
B

(l)
n+l (x;−λ; a, b, c) (n, l ∈ N0). (9.11)

Furthermore, the families of the generalized Apostol-Bernoulli type polynomials
B

(l)
n (x;λ; a, b, c) (l ∈ N0) and the generalized Apostol-Euler type polynomials

E
(l)
n (x;λ; a, b, c) (l ∈ N0) are related to the generalized Apostol-Genocchi type poly-

nomials G(l)
n (x;λ; a, b, c) (l ∈ N0) as follows:

G(α)
n (x;λ; a, b, c) = (−2)

α
B(α)

n (x;−λ; a, b, c) (α ∈ C; 1α := 1) (9.12)

and

G(l)
n (x;λ; a, b, c) = (−1)l (−n)l E

(l)
n−l (x;λ; a, b, c) =

n!

(n− l)!
E
(l)
n−l (x;λ; a, b, c)

(9.13)
(n, l ∈ N0; n = l; λ ∈ C) .

The inter-relationships asserted by Lemma 10 do aid in translating the various proper-
ties and results involving anyone of these three families of generalized Apostol type polyno-
mials in terms of the corresponding properties and results involving the other two families.
Nonetheless, it would occasionally seem to be more appropriately convenient to investigate
these three families in a unified manner by means of Definition 10 below.

Definition 10. A unification of the generalized Apostol-Bernoulli type polynomials
B

(α)
n (x;λ; a, b, c) , the generalized Apostol-Euler type polynomials E(α)

n (x;λ; a, b, c) and
the generalized Apostol-Genocchi type polynomials G

(α)
n (x;λ; a, b, c) of order α ∈ C is

defined by the following generating function:(
2µ zν

λbz + az

)α

· cxz =
∞∑

n=0

Z(α)
n (x;λ; a, b, c;µ; ν)

zn

n!
(9.14)

(
|z| <

∣∣∣∣∣ log(−λ)

log
(
b
a

) ∣∣∣∣∣ ; a ∈ C \ {0}; b, c ∈ R+; a ̸= b; α, λ, µ, ν ∈ C; 1α := 1

)
,

so that, by comparing Definition 10 with Definitions 6 to 9, we have

F (α)
n (x;λ;µ; ν) = Z(α)

n (x;λ; 1, e, e;µ; ν) , (9.15)

B(α)
n (x;λ; a, b, c) = (−1)α Z(α)

n (x;−λ; a, b.c; 0; 1) , (9.16)

E(α)
n (x;λ; a, b, c) = Z(α)

n (x;λ; a, b.c; 1; 0) (9.17)

and
G(α)

n (x;λ; a, b, c) = Z(α)
n (x;−λ; a, b.c; 1; 1) . (9.18)

Thus, clearly, Definitions 6 and 10 above provide us with remarkably powerful and ex-
tensive generalizations of the various families of the Apostol type polynomials and Apostol
type numbers. Properties and results involving ach of these generalizations deserve to be
investigated further (see also [55], [58], [69] and [70]).
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10 Basic (or q-) Extensions For q ∈ C (|q| < 1), the q-shifted factorial
(λ; q)µ is defined by (see, for example,

(λ; q)µ =
∞∏
j=0

(
1− λqj

1− λqµ+j

)
(q, λ, µ ∈ C; |q| < 1), (10.1)

so that

(λ; q)n =


1 (n = 0)

(1− λ)(1− λq) · · · (1− λqn−1) (n ∈ N),
(10.2)

(λ; q)∞ =
∞∏
j=0

(1− λqj) (10.3)

and

lim
q→1

{
(qλ; q)n
(qµ; q)n

}
=

(λ)n
(µ)n

(n ∈ N0; µ /∈ Z0 := {0,−1,−2, · · · }), (10.4)

where (λ)ν denotes the Pochammer symbol (or the shifted or rising factorial) defined, in
terms of the familiar Gamma function, by

(λ)ν =
Γ(λ+ ν)

Γ(λ)
=


1 (ν = 0; λ ∈ C \ {0})

λ(λ+ 1) · · · (λ+ n− 1) (ν = n ∈ N; λ ∈ C),
(10.5)

it being understood conventionally that (0)0 := 1.
The q-number [λ]q, the q-number factorial [λ]q! and the q-number shifted factorial

([λ]q)n are defined by

[0]q = 0 and [λ]q =
1− qλ

1− q
(q ̸= 1; λ ∈ C \ {0}), (10.6)

[0]q! = 1 and [n]q! = [1]q[2]q[3]q · · · [n]q (n ∈ N) (10.7)

and

([λ]q)n = [λ]q[λ+ 1]q · · · [λ+ n− 1]q (n ∈ N; λ ∈ C), (10.8)

respectively. Clearly, we have the following limit cases:
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lim
q→1

{[λ]q} = λ, lim
q→1

{[n]q!} = n! and lim
q→1

{([λ]q)n} = (λ)n, (10.9)

where the Pochhammer symbol (λ)n is given by (10.5).
Over seven decades ago, Leonard Carlitz (1907–1999) extended the classical Bernoulli

and Euler polynomials and numbers and introduced the q-Bernoulli and the q-Euler
polynomials as well as the q-Bernoulli and the q-Euler numbers (see [5], [6] and [7]).
There are numerous recent investigations on this subject by, among many other au-
thors, Cenki et al. ( [8], [9] and [10]), Choi et al. ( [11] and [12]), [14], Kim et al.
( [26], [27], [28], [29], [31], [32], [33], [34], [36] and [37]), Luo and Srivastava [54],
Ozden and Simsek [57], Ryoo et al. [61], Simsek ( [63], [64] and [65]) and Srivastava et
al. [74].

We choose to recall here the definitions of the q-Bernoulli and the q-Euler polynomials
of higher order as follows (see [5], [6], [7], [11], [12] and [54]).
Definition 11 (q-Bernoulli Polynomials of Order α). For q, α ∈ C (|q| < 1), the q-
Bernoulli polynomials B

(α)
n;q (x) of order α in qx are defined by means of the following

generating function:

(−z)α
∞∑

n=0

([α]q)n
[n]q!

qn+xez[n+x]q =
∞∑

n=0

B(α)
n;q (x)

zn

n!
. (10.10)

Obviously, we have (see Section 1 above)

lim
q→1

{
B(α)

n;q (x)
}
= B(α)

n (x) and lim
q→1

{
B(α)

n;q

}
= B(α)

n . (10.11)

We also write

Bn;q(x) := B(1)
n;q(x) (n ∈ N0) (10.12)

for the ordinary q-Bernoulli polynomials Bn;q(x).
Definition 12 (q-Bernoulli Numbers of Order α). For q, α ∈ C (|q| < 1), the q-Bernoulli
numbers B(α)

n;q of order α are defined by

B(α)
n;q := B(α)

n;q (0) . (10.13)

We also write

Bn;q := Bn;q(0) (n ∈ N0) (10.14)

for the ordinary q-Bernoulli numbers.
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Definition 13 (q-Euler Polynomials of Order α). For q, α ∈ C (|q| < 1), the q-Euler
polynomials E

(α)
n;q (x) of order α in qx are defined by means of the following generating

function:

2α
∞∑

n=0

([α]q)n
[n]q!

(−1)n qn+xez[n+x]q =

∞∑
n=0

E(α)
n;q (x)

zn

n!
. (10.15)

Obviously, we have (see Section 1 above)

lim
q→1

{
E(α)

n;q (x)
}
= E(α)

n (x) and lim
q→1

{
E(α)

n;q

}
= E(α)

n . (10.16)

We also write

En;q(x) := E(1)
n;q(x) (n ∈ N0) (10.17)

for the ordinary q-Euler polynomials En;q(x).
Definition 14 (q-Euler Numbers of Order α). For q, α ∈ C (|q| < 1), the q-Euler numbers
Ẽ

(α)
n;q of order α are defined by (see Remark 2)

Ẽ(α)
n;q := 2n E(α)

n;q

(α
2

)
. (10.18)

We also write

Ẽn;q := 2n En;q

(
1

2

)
(n ∈ N0) (10.19)

for the ordinary q-Euler numbers Ẽn;q.

In a similar manner, the q-Genocchi Polynomials G(α)
n;q(x) and the q-Genocchi Numbers

G̃
(α)
n;q of Order α can be introduced here as follows.

Definition 15 (q-Genocchi Polynomials of Order α). For q, α ∈ C (|q| < 1), the q-
Genocchi polynomials G

(α)
n;q(x) of order α in qx are defined by means of the following

generating function:

(2z)α
∞∑

n=0

([α]q)n
[n]q!

(−1)n qn+xez[n+x]q =
∞∑

n=0

G(α)
n;q(x)

zn

n!
. (10.20)

Obviously, we have (see Section 1 above)

lim
q→1

{
G(α)

n;q(x)
}
= G(α)

n (x) and lim
q→1

{
G(α)

n;q

}
= G(α)

n . (10.21)

We also write
Gn;q(x) := G(1)

n;q(x) (n ∈ N0) (10.22)

for the ordinary q-Genocchi polynomials Gn;q(x).
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Definition 16 (q-Genocchi Numbers of Order α). For q, α ∈ C (|q| < 1), the q-Genocchi
numbers G̃(α)

n;q of order α are defined by (see also Section 1)

G̃(α)
n;q := 2n G(α)

n;q

(α
2

)
. (10.23)

We also write

G̃n;q := 2n Gn;q

(
1

2

)
(n ∈ N0) (10.24)

for the ordinary q-Genocchi numbers G̃n;q.
In the existing literature on the subjects and topics, which we have touched upon in

our presentation here, one can find many different families of basic (or q-) extensions,
not only of some of the aforementioned Bernoulli, Euler and Genocchi polynomials and
numbers and their Apostol-type generalizations, but also of such other important functions
of Analytic Number Theory as (for example) the Riemann zeta function ζ(s), the Hurwitz
(or generalized) zeta function ζ(s, a) and the Hurwitz-Lerch zeta function Φ(z, s, a). Many
(but, by no means, all) of these readily accessible recent references are being cited here.
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[73] H. M. Srivastava and Á. Pintér, Remarks on some relationships between the Bernoulli
and Euler polynomials, Appl. Math. Lett. 17 (2004), 375–380.

[74] H. M. Srivastava, T. Kim and Y. Simsek, q-Bernoulli numbers and polynomials asso-
ciated with multiple q-Zeta functions and basic L-series, Russian J. Math. Phys. 12
(2005), 241–268.



444 H. M. Srivastava

[75] H. M. Srivastava, R. K. Saxena, T. K. Pogány and R. Saxena, Integral and computa-
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