GENERATING FUNCTIONS FOR JACOBI AND
LAGUERRE POLYNOMIALS
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Let v be a function of ¢ defined by
1) v = (1 + o)t 2(0) = 0.

Then it follows from Lagrange’s expansion formula [6, Vol. I, p. 126,
Ex. 212] that
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Making use of the formula (2), Carlitz [2] has proved that the
Laguerre polynomial L&t (x), where
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satisfies a generating relation in the form
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where v is given by (1) and @, b are arbitrary complex numbers. Note
that the special case of (4) when b is an arbitrary integer was proved
earlier by Brown [1].

In terms of the generalized hypergeometric function
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where
©6) Ma=2Q0+DA+2)---AF+n—-1), =1, N)o=1,
the generating relation (4) assumes the form
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In (7) if we replace x by xz, multiply both sides by z*~! and take their
Laplace transforms with respect to the variable z, we shall readily
obtain
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where the binomial (1+xv)™ may be written as an 1 F.
The form of (8) suggests the existence of the general formula
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where p, ¢ are nonnegative integers, the &'s and @, b take general
values, real or complex, and

(10) Bi =0, —1,—=2,- -+, j=1,2---,¢.

The derivation of (9) from (7) and (8) by the principle of multi-
dimensional mathematical induction would require the Laplace and
inverse Laplace transform techniques illustrated, for instance, by the
author [7].

For a direct proof without using (7) and (8) we notice that, in view
of the definition (5),
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by (2), and the formula (9) follows immediateiy. We can easily at-
tribute a direct proof to the formula (8) which obviously corresponds
to the special case p=1, ¢=0 of (9).
A similar generalization of Carlitz’s formula [2, p. 827, Equation
(16) ] has the form
x:l A4
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where, for convenience,
(12) B, b) = — f:((b U ")f"—

a1\ 7 —1 n

and
(13) A(t, a,b) = _[_IM .

1+ 8B(t, b)

Indeed the formula (11) is obtainable from (9) by replacing ¢ by —a
and b by —(b+1).
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It may be of interest to remark that for 5=0 and b= —1 the for-
mula (9) yields Chaundy’s results (25) and (27) respectively (see
(4, p. 62]). For b= —4%, (9) reduces to the generating relation (7),
p. 264 of Brown’s recent paper.?

For the Jacobi polynomial defined by

RO ED:

it is easy to show from the identity (4.22.1) of [8, p. 63] that
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and therefore (8) gives us the elegant generating function
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where
an w =31 — 2)t(1 + w)t+,
Evidently (16) reduces to the known formula [3, p. 88]
18) TPV = [+ 3+ D + 3 — 1))

n=0

when b=0, and for b= —1 it leads us to Feldheim’s result [5, p.120]
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Now from the definition (14) we readily have [8, p. 61]
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whence it follows at once that

* J. W. Brown, New generating functions for classical polynomials, Proc. Amer.
Math. Soc. 20 (1969), 263-268.
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—n, 1+ a+B;
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Consequently, (8) gives us another class of generating functions for
the Jacobi polynomial in the form
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where v is defined by (1) and b, @, 8 are unrestricted, in general.
For b= —1, (22) leads us again to Feldheim's formula (19); when
b=0, it reduces to the generating relation

—a—f—1

(23) SPEP W = (= 0 [t = 3+ 1)1
n=0
also due to Feldheim [5, p. 120].

Finally, we remark that the special case b = — of our formula (22)
corresponds to

E P'(la—n/2,ﬂ-—n/2)(x) tn

(249) .5

= [1+ 0] 1+ 3] 1 — 3@ — Du] 7,
where
(25) u(t) = 3t 4+ v (@ + 4)].

The formula (24) appears in Brown'’s recent paper referred to earlier.

ADDED IN PROOF. In a private communication to the author,
Professor L. Carlitz suggests that following the method of proof of
the formula (9) one can readily obtain its straightforward generaliza-
tion in the form
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where the ¢; are arbitrary constants and v is defined by (1). It seems
worthwhile to remark here that further extensions of () form the
subject-matter of our discussion in a forthcoming paper.
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