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Abstract 

We generalize the well-known identities of Abel and Gould in the context of Riordan arrays. 
This allows us to prove analogous formulas for Stirling numbers of both kinds and also for 
other quantities. 

1. Introduction 

Recently, Shapiro et al. [S] have formally introduced the concept of a 
Riordan group; it corresponds to a set of infinite, low-triangular arrays charac- 
terized by two analytic functions: the first is invertible and the second has 
a compositional inverse. Even though the concept can be traced back to a paper by 
Rogers [6] on renewal arrays, the authors give a clear formulation of the theory of 
Riordan arrays and relate it to the l-umbra1 calculus, as described, for instance, by 
Roman [7]. 

We believe that Riordan arrays are particularly important not only theoretically 
but also because they constitute a practical device for solving combinatorial sums by 
means of generating functions. These arrays are precisely the class of objects that 
allow us to translate a sum CiZo dn,kfk into a suitable transformation of the generating 
functionf(t)=B,{fk)tEN= 9 { f,} of the sequence { fk}fe N. In [9] we tried to give an 
accurate description of this fact. 

Moreover, the concept of Riordan group is strictly related to the Lagrange inver- 
sion formula (LIF) which, in turn, is the natural device for inverting the elements in the 
group. In particular, many traditional applications of the LIF can be approached 
from a Riordan array point of view. In this paper, we focus our attention on the 
following two identities of Abel and Gould, respectively: 

(1.1) 
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(1.2) 

We show that they are special cases of a general theorem within the theory of 
Riordan arrays and this theorem allows us to prove similar formulas for other 
quantities, such as Stirling numbers of both kinds. 

In Section 2 we introduce the concept of the Lagrange group, whose properties are 
pre-requisite to the introduction of the Riordan group. In Section 3 we give our 
formulation of the Riordan array concept (which is slightly different from Shapiro’s) 
and prove our main theorem on sums. The rest of the paper is devoted to the 
applications of this theorem. 

As far as our notations are concerned, we write [f(y) ( y = g(t)] instead of the more 
traditionalf(y)(,,,(,,, because the latter can become rather cumbersome when g(t) is 
not simple. For example, we give the associative law explicitly: 

Cf~Y~IY=C~~~~I~=~~~~ll=ECf~Y~IY=~~~~lI~=~~~~l 

in which both expression equalf(g(h(t))). 

2. The Lagrange group 

Let 9 be the set of the formal power series on some indeterminate t, i.e. 9= R[t]. 
Even though the set Iw of real numbers can be substituted by any field F with 
0 characteristics, here we are mainly interested in formal power series with real 
coefficients. The order o(f(t)) of a formal power seriesf(t)EP is the smallest integer 
k for which the coefficientf, of tk is different from 0. So we have w(O)=co. If 9,‘ denotes 
the set of formal power series of order k, it is well known that a seriesf(t) is invertible if 
and only iff(t)EPo. 

Two operations are defined in 9: the sum, denoted by +, and the convolution or 
Cauchy product, denoted by - or the simple juxtaposition. With these operations, B is 
an integrity domain (9, +,.). If f(t)eF,,, then the convolution f(t)g(t)=h(t) is 
invertible in the sense that knowing h(t), we can go back to g(t). In fact, by multiplying 
both sides byf(t)-‘, we obtain g(t)=f(t)-‘h(t). In particular, (PO,*) is a group. 

Let us now introduce the following operation, which we call Lagrange product: 

f(t) @ g(G=_f(Og(t_f(t))f (2.1) 

This product is associative: 

f(t) @(g(t) 0 h@))=f(t) @ g(M(4J(~))=f(M~f(~)M_f(M~f(~))) 

=(f(Mtf(0)) 0 40=(f(t) @ g(t)) @ h(t); 

it has an identity: 

f(t) 8 1 =f(t) = 1 @f(t) 
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and can be distributed to the terms of a sum: 

J-(t) 0 (s(t)+h(t))=f(t)(g(tf(t))+h(tf(t))) 

=f(t)g(tf(t))+f(t)h(tf(t))=f(t) 0 s@)+fO) 0 W’ 
Again, (9, +, 8) is an integrity domain and iff(t)EFO, the Lagrange product can 

be inverted and we obtain 

f(t) C3 s(~)=~(~)=f(M~f(O)> 

s(tf(Q)=“f(t)- ‘h(t). 

By now setting Y = tf(t), we find 

g(y)=Cf(t)-‘h(t)It=yf(t)-‘l. 
Whenf(t)EF,,, the hypotheses of the LIF are satisfied, so g(t) exists and is uniquely 
determined. In particular, (F,,, 0) is a group called the Lagrange group. The inverse of 
a seriesf’(t)Eq,, is denoted by 

f(Y)=C.f(VIt=Yf(V’l. (2.2) 

Some examples are now in order. First, let us consider f(t)=(l -t)-‘, and deter- 
mine f(y) by setting y=t/(l -t), i.e. t=y/(l +y). Hence we have J(y)= [l --t ) t= 

y/( 1 + y)] = l/( 1 + y). A more complex example isf(t) = l/m; in this case, too, we 
can find an explicit form for t, i.e., t=yJiGp-2y 2, from which we have 
T(t)= dm--2y. Finally, let us consider f(t)=e-‘; by (2.2) 

f(y)=[e’lt=ye’] 

and by a simple application of the LIF, 

f.=[y”][e’lt=ye’]=~[t”‘](De’)e” 

=; [yl] e~“+l~~=t’;~~:;ll=‘~+~i”-’ . 

Sincefo=f;’ = 1, this formula is valid for every n~fV, and hence: 

J(t)= f @+lI”-’ t”=&J(t). 
n=O n. 

This is a rather complicated expression and, as far as I know, it cannot be expressed in 
terms of elementary functions. 

It is not difficult to establish a number of elementary properties of the Lagrange 
product, and, therefore, of the Lagrange group, too. For example (CCEIR): 

M @f(t)=@-(at), f(t) 0 tk =(rf(r))kf(t) 3 

f(t) 0 (s(t)h(t))=f(t)_‘(f(t) 0 swKm 60 W) 
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and so on. However, it seems to us that the most important properties of the Lagrange 
product are its two identities, which we are now going to prove. Forf(t)E9,,, let us 
introduce the following notation: 

&/,(r)=Cg(Y)IY=V(Y)-‘l. 

Note thatf;&)=f(t)- ‘. Whenf(r) is fixed, the subscript (f) is understood. We now 
have 

&&f(O)= Kg(y) I Y =rf(~)-‘I I ~=cf(Ol 

=Cs(v)l~=~f(r)f(y)-‘l=Cg(y)Iyf(y)=rf(r)l=g(r) 
since when f(r) is invertible, i.e. f(r)&F,,, yf(y) = rf(r) implies y = r. We also find 

s(tf(r))=Cs(z)lZ=rCf(Y)-1Iy=rf(y)-111 

=CC~~~~I~=~f~~~f~~~~‘lI~=~f~~~-11=C~~~~I~=~f~~~-1l=~o,~~~. 

Consequently, we can state formally the following result. 

Theorem 2.1. Iff(r) is invertible, in particular iff(r) and g(r) belong to the Lagrange 
group, then the two identities hold: 

&.&f(r)) =g(r) (2.3) 

As a simple example, let us consider g(r) = e’ andf(r) = e-‘; as we have already seen, 
f(r)=&(r)=&-,(r)=[eYIy=ret]. Hence, we have 

&(re-‘)=e’ exp(r&(r))= 6(r). 

3. The Riordan group 

The set 9 of formal power series can be identified with the set of sequences 
Y={ {fn}nEN} of real numbers. If {f,),,N ~9, the corresponding formal power series 

f(r)r# isf(r)=J-$,f,r”, and{(r) is called the generatingfunction of the sequence. We 
writef(O=%{fnJnaN =B{f”}, when there can be no confusion on the binding of n 
and r. 

Let Y be the set of linear operators on 9’. If AEY, A can be represented by an 
infinite, bidimensional array A={u”,~ I n, keN}, such that every row only contains 
a finite number of elements different from 0. IffeY, i.e.,f= {fn}neN,fis represented as 
a column vector, and if Af=g, then we have g. =CFzO a,,+&, but the sum is actually 
finite. The product of two linear operators A and B is denoted by AB or A * B and is 
defined by (AB)f= A(Bf), for everyfos. In the array representation, AB corresponds 
to the usual row-by-column product of the two arrays A and B. Hence, the product is 



R. Sprugnoli/ Discrete Mathematics 142 (1995) 213-233 211 

associative and has the identity operator I as the only identity; moreover, the product 
can be distributed to the terms of a sum A + B, and some operators AEY have an 
inverse A- ’ such that AA- 1 = A- ‘A = I. Since for some A, BE 9 and different from 0, 
we can have AB=O, we conclude that (2, +, *) is a ring with zero divisors. 

An operator A = {Q ) n, kE N} can also be represented by its bivariate generating 
function A(t, w)=&~ ~,,~t”wI’, and we often refer to its column generating functions 

(C,?==,%k tn}kEN. An important class of linear operators is defined in terms of Column 

generating functions. Let d(r),h(t) be two invertible formal power series, i.e., 
d(t),h(t)~~e. A Riordan array is an array D=(d(t),h(t))={d,,,(n,k~N}, whose kth 
column generating function is defined as d(t)(th(t))k. By this definition, it can be easily 
seen that D is a low-triangular bidimensional array and, therefore, it is a linear 
operator in 2. The following is a simple example, based on the Riordan array 
D=((l -t)-I,(1 -t)-‘); the element dnqk is defined as the nth coefficient in the kth 
column generating function for D, i.e. 

1 tk 
dn,k=[t”l 1_t I_t =[t”-k] (l+k+l 

( ) 

Hence D is the Pascal triangle. 
A basic property of Riordan arrays is the following one: let D=(d(t),h(t)) be 

a Riordan array and let f(t)=%{ f.} be the generating function of any sequence 
{fn)ncN ~9. We then have 

~d~,,f,=~C~“ld(~)(~~(t))‘[y’lf(y) 

= CW(O~ C~~lf(~)(th(t))~=Ct”ld(t)f(ch(t)). 
k 

(3.1) 

This means that the sum Ck dnvkfk can be reduced to the extraction of the coefficient of 
t” from the function d(t)f(th(t)), which is a simple transformation of the generating 
functionf(t) and the two functions defining the Riordan array. For example 

is the well-known Euler transformation. In [9] we illustrated many applications of this 
result about Riordan arrays. 

Formula (3.1) can also be written as 

and the same argument can be extended to every array F whose column generating 
functionsf&)=xn f&” are known. In fact, we obtain 

(d(t), h(t)) *f(r, w)=~4Mo~(0)wk 
k 
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and this corresponds to the row-by-column product D * F= DF. When F is a Riordan 
array, say F = (u(t), b(t)), we have fk(t) = a(t)(tb(~))~ and therefore 

(40, W) * (4th b(t))= f 40 C4Y)(YUYNk I Y = w01 Wk 
k=O 

= 2 d(t)u(th(t))(th(t)b(th(t))) kWk=(d(t)u(th(t)), h(t)b(th(t))). 
k=O 

This is the proof that the product of two Riordan arrays is a Riordan array. 
Furthermore, since I=(l, 1) is a Riordan array, we obtain that the identity I is in the 
set R of Riordan arrays, and from: 

(d(t), h(t)) *(a(r), b(t)) =(4r)4&)), Nr)b(th(O)) =(I, 1) 3 

we find that 

in the notations of the Lagrange group. Therefore, (d(t), h(t)) has an inverse and (W, *) 
is a group, called the Riordun group. Many properties of the Riordan group are 
described in [8,9]. In the present paper, we are primarily interested in the following 
result, which we call the Abel-Gould identity. 

Theorem 3.1. Let D=(d(t), h(t)) be a Riordun array and let f(t) be the generating 
fin_ction ofu sequence {fn}neNE9. Zf{i},,N is the sequence, whose generating function 
isJs(t)=[f(t)I t=yh(t)-‘1, then: 

2 dnd=~f’]d(%f(~). 
k=O 

(3.2) 

Proof. By means of the elementary properties of the Riordan and Lagrange groups 
(see formulas (3.1) and (2.3)) we immediately find 

: d,,klt = Ct”ld(r)f;,,(th(O)= Cc”1 &)f(r). 
k=O 

The most common example of this is the Abel identity. Let D be the Riordan array 
(e”, e@) and let f(t) = e”, with p, q, rE (w. Then we have 

dn,k = [t”] e”(teqr)k= [tnmk] e(P+qkjr = (P+4k)"-k 
(n-k)! ’ 

r (r-qk)‘-’ (r-qk)k-l 
=k (k-l)! =r k! ’ 
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The theorem now gives 

f b+4Wk r(r-4k)k-1=Ct.,eFe”=(P+r)” 
kZO (n-k)! k! n! ’ 

which is usually written as 

k-l(p+qk)“_k=(p+r)“. (3.3) 

It is now sufficient to set r=u, q=-1, p=b+n to obtain (1.1). 

4. The Abel identity 

Identities (2.1) and (3.3) are special cases of a more general identity. Let us 
re-examine the Riordan array D = (em, e@), with p, q E R, and let f(t) = Pe”. For k # 0, 
k 2 s, we have 

s (r-qk)‘-’ r(k-s) (r-qk)‘-’ r-qs (r-qk)k-s 
=k (k-s)! +k(r-qk) (k-s)! =- r-qk (k-s)! f 

For k=O we use the formula (see [4, p. 171): 

(4.1) 

When S-CO we find 

which coincides with the previous expression for Fk having k =O. Theorem 3.1 now 
gives 

m (p+qk)“-k r-qs (r-qk)k-‘=(p+r)n-s 
kzS (n-k)! r-qk (k-s)! (n-s)! 

and this can be written as 

(4.2) 
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Obviously, formula (3.3) is obtained by setting s=O, and the constant r-qs can also 
be moved to the right-hand side. Form (4.2) is usually preferred, because it emphasizes 
the fact that the right-hand member does not depend on q, and this may seem rather 
surprising. 

If we start with (4.2) and specialize the values of p,q,r and s, a great number of 
familiar identities can be obtained. For example, by setting p = 0, q = - 1, r = x, s = 0, 
we have 

which is in [S, p. 971. Analogously, for p= n + 1, q= -1, r=O, s= 1, we obtain 

kk-2(n-k+l)“_L(,+l)“-1. 

However, since (“,I:)=(i)k/n, by multiplying both members by n we find 

kk-‘(n-k+ l)“-k=n(n+ l)“-i 

and this is Problem 1 in [S, p. 1161. A third example, also taken from [S, p. 1171 is 
obtained for p=n, q=O, r=l, s=l: 

n-k_ n - kn”-k-l=(n+l)“-‘. 

It is worth noting that r=2 gives the second identity in the same problem. The 
inverse relations are obtained for p = 0, q = - 1, r = 1, s = 0: 

(-l)n+kkn-k(k+ l)k-’ = 1, 

while for p=O, q=-1, r=2, s=O: 

Formula (4.2) generalizes these identities to every value of r. 
Another couple of inverse relations [S, p. 1191 are obtained for p = n, q = 0, r = - 1, 

s= 1 and p=O, q= 1, r=l, s=O: 

(-l)‘-‘n”-k (-l)k-lkn”-k-1=(,-1)“-‘, 
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The following two examples are taken from [2, Exercises 2.4.2.~ and 2.4.2.a]. By 
setting p = x + n, q = - 1, r = c(, s = 0 and performing the transformation k-n - k, we 
have 

m 

zo k=O 

L a(a+n-k)“-k-l(x+k)k=(x+n+a)n. 

By isolating the term for k = n, which evaluates at (x + n)“, and by moving it to the 
right-hand member, we eventually find 

(a+n_k)“-k-l(x+k)k=(X+n+a)“-(x+n)”~ 

a 

Analogously, for p= n, q = -1, r=O, s= 1, we obtain 

We can now observe that (“,I:)=(“;‘)k/(n-k) except when k=n. By isolating the 
corresponding term and moving it to the right-hand member, we eventually obtain 
the identity desired: 

The applications of (4.2) are not always so direct. For instance, let us consider the 
Csorgo-Bhaskaranada identity (/.? #n): 

which is Exercise 2.4.2.b in [2]. By setting s =0 and n = n + 1, formula (4.2) becomes 

By isolating the term for k=n+ 1 and by moving it to the right-hand member, we 
observe that ( .;:!k)=(E)(n+l)/(n-k+l) except for k=n+l, and the identity he- 
comes 

n n c() F 
~(‘_~k)k-l(p+qk)“+l-k=(p+l)ltl~~((r_q--qn)”. 

kc0 k n-k+1 

We can now perform the substitution k-m-k and set q=- 1: 

r”+‘-r(r+l+n)” 
k+l(l+n-k)“-kml(p-n+k)k+l=(p’ ) 

n+l 
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Finally, we set a = p - n, B = r + n, and obtain 

(yfo (kn)& (,+k)k+l(p+n-k-l _(a+B)“‘L;jP: l)“(b-4. 
(4.3) 

By using formula (4.2) again with s=O, q = -1, we find 

The substitution k-m-k now gives 

n 

+ k=O 

l r(r+n-k)“-k-l(p-n+k)k=(p+r)” 

and by setting a=p-n, B=r+n again, we obtain 

(@)jo (3 
(a+k)k(j?-k)n-k-l=(a+/I)n. 

At this point, we substract this formula from (4.3), perform all possible simplifications 
and eventually obtain the Csorgo-Bhaskaranada identity. 

From the basic relation (4.2), we can obtain some other interesting identities. For 
example, let us call S, the sum in (4.2); then we have 

II-1 

(n-s)S,_1= c (n-s) 
k=s 

=(n-s)(p+r)“-“-I. 

We can now observe that 

(n-s) 
(n-s)! 

=(n-k)!(k-s)!= 

which is also valid for k = n. So we can extend the sum in (n - s)S,_ 1 to k = n and sum 
that quantity to, or substract it from S,: 

=(p+r)“-“-‘(p+r+(n-s)). (4.4) 

Here we give two applications of formula (4.4). We first examine the case having 
p=O, q=l, r=n, s=O and the sign+: 
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which is the identity in [2, Exercise 2.4.2~~1: 

Again, by setting p = n + 1, q = - 1, r =O, s = 1 and by considering the - sign in (4.4), 
we find 

However, since (“,I:) =(;) k/n, we immediately have 

n 

z. k=l 
; (n-k+ l)“-k-‘kk-’ =2n(n+ l).-2, 

which is an identity that Egorychev [2] ascribes to Renyi. 
Another result strictly connected to the Abel identity can be obtained from The- 

orem 3.1 by using the Riordan array D =(epf,eqr) again, but in connection with the 
function f(t) = err/( 1 + qt). In fact: 

reW-qk)t qe(r-qk)t 
~____ 

1 +w (1 +4y12 

=~(~$l~_q)k-j-lr(r-~k)j k-1 

J-0 j! 
j~o(-q)k~'~I(ki)q~) 

=t~~~(-q)*-j-l(r-qk+~)~ 

’ =k( ‘$’ (_q)k-j- 1 (r-qk)‘+’ 
j-0 j! 

_~$~(_q)k-j(r-qk)i 
(j- l)! 

=~(~~l(_q)k-j-L(r-qk)j+l 

j-0 j! 

_r~~(-_q)k-j-l(r-q')j+l 

j! ) 

Theorem 3.1 now gives 

,zo (n-k)! --ii--= 
” (p+qk)“-k (r-qk)k Ct”3 c= i (p+r)k (_q)"-k 

l+qt k=,, k! 

(p+r)k(-q)“~k(n-k)!=(P+r+n:(-4))”, 
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in which we use the notation of umbra1 calculus: 

(a(-q))k=cf~(-q)=(-q)kk!. 

Finally, by taking n! to the right-hand member, we obtain the identity 
00 

zo k=O 

; (r-qk)k(P+qk)))-k=(p+r+~(-q)))n. 

By setting p=y+n, q=-1, r=x, a=a(l), we find 

m 

CJ 
; (x+Nk(y+ n-k)“_k=(x+y+n+a)“, 

k=O 

which is the case (0,O) in Table 1.2 of [S]. 

5. Gould identities 

From the mid-fifties to the mid-seventies, Gould found a considerable amount of 
combinatorial identities, among which we believe (1.2) to be particularly significant 
(also see [S]). If we examine the Riordan array D=((l +~rt)~,(l+ at)q), the generic 
element d,,k is clearly: 

in which p, qE R. Let f(t) = tS(l + at)‘, then for k # 0, k 2 s we have 

~=[tk][ys(l+ay)‘~y=t(l+ay)~q]=~[yk~’](~y’(l+ay)‘)(l+ay)~qk 

=d [yk-‘](sy”-‘(1 +ay)‘+ary”(l +ay)‘-‘)(l +ay)-qk 

When k =O, we use formula (4.1), which gives, for s ~0, 
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This expression coincides with the previous one for i having k =O. Finally, we find 

Consequently, Theorem 3.1 gives the identity 

(5.1) 

which reduces to (1.2) when we set s = 0. 
We could now specialize the values of p, q, r, s and obtain a number of well-known 

identities, as we previously did for Abel’s identity. At this point, however, this would 
not be very meaningful, so we just observe that when q divides r, a term in the sum 
(5.1) becomes ((r-qs)/O)(t!?S)(“,‘_ik). This term can be changed into a manageable 
form by using the rule (l/m)(t)=(l/h)(y1:), except when h = 0. We can also consider 
the expression (1 /O)(z) as the limit of t(i) when x-0. When k ~0, we have: 

=lim(x-l)~~~(x-k+l)_(-l)k-‘~ 
X-r0 k! k 

The reader can easily verify that this position is correct; for example, by setting p= n, 
q= 1, r=n and s=O in (5.1), we obtain the identity 

and this is true only if we set (n/0)(:)(:)=(-l)“-’ for k = n. In other words, we have 

Another identity found by Gould is obtained by using the Riordan array 
D=((1+t)P,(1+t)-4) and the functionf(t)=(l+t)‘+‘/(l-(q-1)t). The array’s gen- 
eric element is dn,k = (“.I$‘) and we can find jk in the following way: 

(q_l~k-j-l+~k~(‘fqk”)o_j)k_l)lil 
j-0 j 
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We now write r+ 1 as I +qk+ 1 -qk and obtain 

$,=kkf(r+qk+l) (q-l)k-j-l_~~$l ,qq- l)k-j-1 
j-0 J 0 

) 
k(q_l)k-j-r_~~$l r+:k+l 

( ) 
j(q - l)k_’ . 

J-0 

When we simplify, the terms of the first and fourth sums are annulled and only leave 
the terms for j= k and j=O and the latter is zero. We can now use the recurrence 
relation for binomial coefficients: 

(q- l)k-j- 1 

The second and third sums are simplified and by performing the transformation 
j+j+ 1, we get 

Hence, Theorem 3.1 gives the identity 

(5.2) 

The last coefficient is 

and the Gould identity is usually given with one of these two sums as the right-hand 
member. When the parameters p, q, r are appropriately chosen, we can obtain a closed 
form as in the following case: 

~o~-~~k(~)(Y~k)=~o ( -x-,,,nr+l,k)(,-zl)k). 

This is the left-hand member of (5.2) if we set p = x, q = m + 1, r = -x - 1. We therefore 
have 
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We conclude this section by giving a formula involving the harmonic numbers 
Hn=Cz= r l/k. The following is a well-known generating functioning: 

(see [3]). Let us take the Riordan array 

( 1 1 1 
D= (l_r)P+lfn l-r’(l-r)P 

) ’ 

whose generic element is 

dn.k=[fn] 
1 1 1 1 

(1 _r)~+’ In l_t =[t”-kl(l_t)p+qk+llnl_- 

. 

Let f(t) = P(l -t)-‘; we therefore have 

=f [yk-“](l _yj-r+q’L+; [yk-“-‘](l _y)-r+qk-l 

k-s-l =- 

When k =O, we use formula (4.1), which gives for s < 0: 

s 

-- _h=CtOl (1_t)’ CO (1 it). 

=(::r;- -4( 

-q(l -p-l 
(1 -t)4 

S -r-l 
_s_l (-1)-“-l ) 

This expression coincides with the previous one for jk having k=O. Therem 3.1 now 
gives 

jS(H --H,+&) ( p+n+(q-l)k 

r-s-l-(q-1)k 
k-s > 

tS 1 
=I?1 (l_t)P+,+llnl_t=(Hp+,+,-, -Hp+J (“+;;;-“). 
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It is worth noting case s=O: 

=wp+,+n-Hp+r) p+:+n 3 ( > 
and the identity obtained when p = n, q = 2, r = n: 

6. Stirling numbers 

Since 

Ctkl (In j&r=; [j (Stirling numbers of the 1st kind), 

[tk] (er- l)=$ {i] (Stirling numbers of the 2nd kind), 

it is possible to consider the two Riordan arrays: 

whose generic elements can be easily expressed in terms of the Stirling numbers as 
follows: 

(p+qk)! 
[ 

n+p+(q-1)k 
=(n+p+(q- l)k)! 1 p+qk ' 
d;,,=[t"] ~~~(t~~~)l=Ctn+p+d-"k,(e'_l)p+q* 

(p+qW 
=(n+p+(q--l)k)! 
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Let us now consider the function f(t) =( 1 /t) In (l/( 1 - t)))’ and the Riordan array D’: 

=f [yk-l+r-qk] & r-l-qk 
_ Lyk+r-qk] (In &)“*) . 

Here we observe that by differentiating: 

D(ln+--)n+l=E($+-)I, 

and since [tk]Df(t)=(k+ l)[tk+l]f(t) we immediately find 

We can now go on with our computations by using the recurrence for the Stirling 
numbers of the first kind: 

k+r-qk 

[ 1 

(r-qk)! 
r-qk -(k+r-qk)! 

r (r-qk)! 

=k(r-(q-l)k)! 

r (r-qk)! 
=- 

r-qk (r-(q- l)k)! 

At this point, Theorem 3.1, gives the identity 

i 
(P+qW n+p+(q-l)k r 1 _ (r-N! kq,(n+p+(q--l)k)! P+& r-qk (r-(q- l)k)! 

[r-!y;:)k] 

(p+r)! n+p+r 

=(n+p+r)! p+r [ 1 . (6.1) 

We can now multiply and divide by k!(n- k)! so that by using the notation [:I for 
(i)-l [i] we obtain the more concise form: 
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An analogous formula can be obtained for the Stirling numbers of the second kind. 
This time we use the functionf(t)=((e’- 1)/t)’ and obtain 

f?k=[tk] y=tyq(eY- 1)-q 1 
+yk-l] r(eY-;,‘-ley_r(e;;;)’ (ey- I)-qkyqk 

r-l-(q-1)k r-l-(q-1)k 
r-qk r-1-qk 

_ (r-d+ r 

r-qk (r-(q- l)k)! 

In the next-to-last passage we used the recurrence relation for Stirling numbers of the 
second kind. By Theorem 3.1, our result is very similar to the one found for Stirling 
numbers of the first kind: 

i 
(P+qW 

k=,-, (n+p-t(q- l)k)! r-qk(r-(q-l)k)! 
~;(l;kl)kj 

’ (6.2) 

By using the notation {{i}} for (I)-’ {i} we obtain the more concise form 

As usual, we can specialize the values for p, q, r and obtain a series of identities. For 
example, by setting p = 0, q = 1, r = n + 1, we find 
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More in general, for p = 0, 4 = 1, we find for r > n: 

(6.3) 

(6.4) 

The value r = n is to be excluded because a problem arises in formulas (6.1) and (6.2) 
when q divides r and r d qn. In that case, in fact, we have a factor 

which cannot be computed directly. In order to evaluate this factor, we can proceed in 
the following way. We take the Stirling polynomials a,(x) (see [3]): 

a,(x) = 
X 

[ 1 1 
x-n x(x- l)...(x-n) ’ 

and observe that we can define 

a [:]=!z [,1,]&=,. hm x(x- l)...(x-n+l)a,(x). 

The last limit is well defined and equal to n!o,(n). The problem is reduced to find 
the value of o,(n), and this can be done by means of the generating function given 
in [3]: 

te’ x ( ) O3 ___ e’- 1 = “ZO XGW” . 

For x=n, we immediately obtain 

no,(n)=[t”] & . 
( 1 

” 

We can now apply the LIF in the well-known form which gives the generating 
function of a sequence (see [4]): f i c,=[t”]F(t)~#~(t)” then 9{c,}=C(t)=F(w) 

(1 -G’(w))_ l, where w= w(t) is the solution of w= t&w) such that w(O)=O. In our 
case, we have F(t)= 1 and by solving the equation w=twew/(ew- l), we easily find 
w = -ln(l -t). By performing the remaining computations we eventually find 
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This is the exponential generating function of the Cauchy numbers C(t) (see Cl, p. 
293]), and we then find 

f f =(n- l)!no.(n)=~; [I 
the identity obtained for p=O, q= 1, r=n is analogous to (6.3). It can be written as 

In a similar way, we can observe that with the substitution Y=x- n, we obtain 

1 y+n 

--II 1 Y+n Y 
=(y+n- l)..*(y+ l)ya,(y+n). 

However, since [Ii! = { 2) (see [3]), we have 

1 n 
00 iI 

= lim (n-l +y)..(l +y)ya,(y)=(-l)“n!a,(O). 
y-‘-n 

This time we use the generating function 

from which we obtain 

1 
-na,(O)=[t"] f In - 

( ) 

-” 

l-t . 

We can now apply the LIF (see also [3, formula (6.101)]) finding w=(e’- 1)/e’, and 
eventually 

This is the exponential generating function of the Bernoulli numbers and 

f ; +l)“(n-l)!no”(0)=(-l)~-l~~. 
iI 

The expression obtained for p=O, q= 1, r =n: 

is similar to (6.4) and quite interesting. 
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