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Abstract 

The concept of a Riordan array is used in a constructive way to find the generating function 
of many combinatorial sums. The generating function can then help us to obtain the closed 
form of the sum or its asymptotic value. Some examples of sums involving binomial coefficients 
and Stirling numbers are examined, together with an application of Riordan arrays to some 
walk problems. 

Introduction 

In 1978 Rogers [IS] introduced the concept of renewal array as a generalization of 

the Pascal, Catalan and Motzkin triangles, and Kettle [14] used it to study other 

types of combinatorial triangles, especially those found in walk problems. More 

recently, Shapiro et al. [22] have examined and further generalized the same concept 

under the name of Riordan array, and have pointed out its connection with the 

l-umbra1 calculus, as described in Roman [19] and others. 

It is apparent, however, that the importance of the connection between Riordan 

arrays and combinatorial sums has been underestimated. As a result, our aim is to 

show how Riordan arrays allow us to find the generating function of many combina- 

torial sums. In turn, a generating function can be used either for finding a closed form 

for the sum or for determining its asymptotic value. The method is a constructive one 

in the sense that we do not have to know the value V of a sum C, fk in advance to 

prove that ‘& fk= V and given the sum, we can find out V, if it exists. 

The traditional methods used for solving combinatorial sums (see, e.g., Riordan 

[17] or Comtet [6]) are nicely demonstrated by Knuth [lS] and Graham et al. [lo], 

where the authors show how to use the rules of binomial coefficients, Stirling 

numbers, and so on, in a skillful way. 
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In 1978, Gosper [9] discovered a general method for solving many combinatorial 

sums. His approach is excellent, but it is very difficult to perform it manually; it has 

been embodied in some systems of Computer Algebra, such as MACSYMA and 

MAPLE. The reader is also referred to Karr [12] for related concepts. 

An approach using hypergeometric series was widely studied for sums only involv- 

ing powers and factorials (and hence binomial coefficients). Andrews [l] and Ranjan 

Roy [16] made some important contributions on the subject, but final success was 

obtained by Zeilberger [26] and Wilf and Zeilberger [25] thanks to their concept of 

WZ-pair. This is a non-constructive method which certiJes that an identity 1, fk = V 

is valid. An impressive quantity of combinatorial identities was proved in this way. 

In an earlier work, Wilf [23] had proposed what he calls the “snake oil” method, 

a constructive technique for proving combinatorial identities involving sums. 

Basically, the method is a generating function approach to the problem, and consists 

in expressing the generating function of a sum as a sum of sums. By inverting the order 

of summation, it is often possible to obtain a simpler expression from which a closed 

form of the original sum can be deduced. 

The “snake oil” method implies the transformation of generating functions. A some- 

what similar approach was developed by Egorychev [7] with his “integral representa- 

tion” of sums. In the present paper we try to combine the work of Rogers, Shapiro, 

Wilf and Egorychev (with a constant eye to Knuth) to answer the following question: 

what are the conditions under which a combinatorial sum can be solved by transforming 

the generating functions? The concept of a Riordan array seems to be an adequate 

answer to the problem. 

We follow the structure of Rogers’ paper [lS] and begin with some general 

properties of Riordan arrays. In Sections 2 and 3 we study Riordan arrays related to 

binomial coefficients. In Section 4, we give a rather general theory of coloured walks 

on the line; finally, in Section 5, we propose some applications of the Riordan array 

concept to Stirling numbers. 

1. Riordan arrays 

Let %= R[t] be the ring of the formal power series with real coefficients in some 

indeterminate t. Iff(t)E%,f(t)=Ckm_O fktk, the order o(f(t)) off(t) is the smallest 

integer k for which fk #O. %, is the set of exactly r order formal power series. As is 

well-known, an f (t)E% is invertible if and only iff (t)E%o. If { fk}kEp$J is a sequence of 

real numbers, the formal power series f (t) =C,“=, fktk is called the generatingfunction 
of the sequence, and we write f (t)=%,{ fk)kGN = 3{ f,}. A Riordan array is a couple 

D =(d(t), h(t)), in which d(t), h(t)E%; if h(t)E%O, the Riordan array is called proper. We 

are mainly interested in the sequence of functions {dk(t))kCN iteratively defined by 

d,(t) = d(t), 

d,&)=d(t)(th(t))k. 
(1.1) 
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These functions define an infinite triangle {LI,,~ 1 k, HEN, k<n}, in which 

dn,k=[tn]dk(t) and therefore the functions dk(t) are called the column generating 

functions of the Riordan array, which is usually identified by the triangle. Another way 

of characterizing the Riordan array is to consider the bivariate generating function of 

the triangle: 

d(t, w)= f d(t)(th(t))kwk= 1 _;(&). 
k=O 

(1.2) 

A common example of a Riordan array is the Pascal triangle for which we have 

d(t)=h(t)= l/(1 -t). By (1.2) we find the well-known bivariate generating function 

d(t,w)=(l-t-wt)-‘. 

From our point of view, the most relevant property is the fact that the sums 

involving the rows of a Riordan array can be performed by operating a suitable 

transformation on a generating function and by then extracting a coefficient from the 

resulting function. In fact, if D =(d(t), h(t)) is a Riordan array andf(t) is the generating 

function of the sequence { 1;:};,, then we have 

f dn,kSk= f [t"ldk(t)[Yklf(Y)=[t"l 2 4NWt))kCyklfb) 
k=O k=O k=O 

= Ct”l40 : Cyklf(y)(Wt))k= CWW-(th(t)). 
k=O 

Because of its importance, this property is stated as the following theorem. 

Theorem 1.1. Let D =(d(t), h(t)) be a Riordan array and let f(t) be the generating 
function of the sequence { f;:>i,,. Then we have 

f b_h. = [t”] d(t)f(th(t)). 
k=O 

(1.3) 

In the case of the Pascal triangle, the relation (1.3) is known as “Euler transforma- 

tion” and reads C (i)fk = (1 - t)- ‘f( t (I- t)- ’ ). Considering the generating functions 

~{l}=(1-t)~‘,~{(-l)~k}=(1+t)~1and9{k)=t(l-t)~2,weimmediatelyobtain: 

(row sums), 

I(- l)kd,, k = [t”] dO 
1 + th(t) 

(alternating row sums), 

c kd,,k = [t”] (ltd(:‘,:i;;2 (weighted row sums). 
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Moreover, by observing that 6 = (d(t), [h(t)) is a Riordan array, whose rows are the 

diagonals of D, we have 

1 ~&_~,~=[t”] I _df’:)h(r) (diagonal sums). 

Obviously, this last observation can be generalized to find the generating function of 

any sum C Lsk,k for every s 2 1. We obtain well-known results for the Pascal triangle. 

In particular, if F, is the nth Fibonacci number, for the diagonal sums we have 

=[t”] l 
l-t-t2 

Another general result can be obtained by means of two sequences { fk}kE~, { gk)kEN 

and their generating functions f(t),g(t). For p= 1,2, . . . the general element of the 

Riordan array (f(t), tP- ‘) is 

Hence, by Theorem 1.1, we have 

k$oh-pkgk= CamCdY) I Y =t”l= C~“1f@k?(~“)~ 

This can be called the rule of generalized convolution since it reduces to the usual 

convolution rule for p = 1. Suppose, for example, that we wish to sum one out of every 

three powers of 2, starting with 2” and going down to the lowest integer exponent > 0, 

we have 

k=O 

we actually have S,=L2”+3/7 J. 

In a sense, Theorem 1.1 is a characterization of Riordan arrays and we can also 

prove a sort of inverse property. 

Theorem 1.2. Let {d.,k 1 n, keN, k< n} be an infinite triangle such that for every 

sequence {fk}k& we have ‘?{ ~d,,,f,}=d(t)f(th(t)), where f(t) is the generating 

function of the sequence and d(t), h(t) are two formal power series not depending on f (t). 

The triangle defined by the Riordan array (d(t), h(t)) coincides with {dn,k}. 

Proof. For any kEN, take the sequence which is 0 everywhere except in the kth 

element fk= 1. The corresponding generating function is f(t)= tk and we have 

C,!‘?, d,,ifi=dn,k. Hence, according to the theorem’s hypotheses, we find 

%t{dn,k}nEN =dk(t)=d(t)(th(t))k, and this corresponds to (l.l)for every k= 1,2, . . . . [? 
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Proper Riordan arrays play a very important role in this approach. Let us consider 

a Riordan array D = (d(t), h(t)), which is not proper. Since h(0) = 0, an s > 0 exists such 

that h(t)=h,tS+h,+ItS”+... and h,#O. If we define h^(t)=h,+h,+lt+..., then 

h^(t)~fl and c(O) = h, # 0. Consequently, the Riordan array 6 = (d(t), @t(t)) is proper and 

the rows of D can be seen as the s-diagonals {d^,_,, 1 k 2 0} of 6. Fortunately, for proper 

Riordan arrays, Rogers [ 181 has found an important characterization: every element 

d “+ l,k+ 1, n, HEN, can be expressed as a linear combination of the elements in the 

preceding row, i.e., 

m 

d,+l,k+~=aodn,~+aldn,k+l+~2dn,k+z+...= C ajd,,k+j. 
j=O 

(1.4) 

The sum is actually finite and the sequence A={ujjjEN is fixed. It is called the 

A-sequence of the Riordan array and, as Rogers has shown, it only depends on h(t): 

(1.5) 

if A(t) is the generating function of the sequence A. By using the Lagrange inversion 

formula, Rogers [18] has also shown that the A-sequence determines an infinite 

triangle as a proper Riordan array in the following way. 

Theorem 1.3. Let {dn,k) k,neN, k<n} be un infinite triangle such that d,,,#O, VnEN, 

and for which the relation (1.4) holds true for some sequence A = {aj}jcN) a0 # 0. Then 

D is a Riordan array (d(t), h(t)), where d(t) is the generating function of the sequence 

{d,,o),,N, and h(t) is the unique solution of h(t)= A(th(t)) with h(O)E[W\{O}. 

The A-sequence of the Pascal triangle is the solution A(y) of the functional equation 

l/( 1 - t) = A(t/( 1 - t)). The simple substitution y = t( 1 - t)- ’ gives A(y) = 1 + y, corres- 

ponding to the well-known recurrence (i’+:)=(i) +(k: i). At this point, we realize 

that we could have started with this recurrence relation and directly found 

A(y) = 1 + y. h(t) is defined by (1.5) as the solution of h(t)= 1 + th(t), and this immedi- 

ately gives h(t)=(l -t)-‘. Furthermore, since the first column is { 1, l,l, . ..}. the 

Pascal triangle corresponds to the Riordan array ((1 - t)- ‘, (1 - t)- ‘). 

Finally, it is possible to consider improper Riordan arrays (d(t), h(t)), for which (1.1) 

is changed to: 

do(t) = 4th 
d,(t) = 4NW))k. 

If h(O)#O, the improper Riordan arrays correspond to quadrangular arrays and 

Theorem 1.1 remains valid under more restrictive conditions, such as when the 

sequence { fkJkGN is actually finite and hence f (t) reduces to a polynomial. 
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2. Binomial coefficients of the form (lt$) 

Let us consider the binomial coefficient ( i:$), where a,b are two parameters and 

k is a non-negative integer variable. Depending if we consider n a variable and 

m a parameter, or vice versa, we have two different infinite arrays: {c&} of {&,,k}, 

whose elements depend on the parameters a, b, m or a, b, n, respectively. In either case 

we have two Riordan arrays and therefore, we can apply Theorem 1.2 to find the value 

of many sums. 

Theorem 2.1. Let dn,k and d,,,, be as above. If b > a and b-a is an integer, then 
D = {dn,k} is a Riordan array. If b <0 is an integer then 6= {&,,,} is a Riordan array. 
We have 

D= ( (1 _:,,+I m >g$), 6=(u+t):&). 

Proof. By using well-known properties of binomial coefficients, we find 

H 

-n-ak+n-m+ak-bk-1 

= n-m+ak-bk > 
(- l)n-m+ak-bk 

> 

1 
(-l)n-m+ak-bk=~t”-m+nk-bkl(l_t)~+~+bk 

tm 
=[t”1(,_,)m+1 

The theorem now directly follows from (1.1). 0 

For m = a = 0 and b = 1 we again find the Riordan array of the Pascal triangle. For 

b=a, &,k is an improper Riordan array, and so &,,k is for b =O. In such cases, 

Theorem 1.1 can only be applied under the restrictions described at the end of 

Section 1. 

The sum (1.3) takes on two specific forms, which are worth being stated explicitly: 

b>a, (2.1) 
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fk=[tm](l+t)nf(t-b(l+t)a) b<-1. (2.2) 

If m and n are independent of each other, these relations can also be stated as 

generating function identities. The binomial coefficient (z’+$) is so general that a large 

number of combinatorial sums can be solved by means of formulas (2.1) and (2.2). 

Some examples follow in which we use the notation [f(y) 1 y=g(t)] as a linearization 

of the more common onef(y)lY=s(t, to denote substitutionf(g(t)). 

Let us begin with a very simple case. By Theorem 2.1, the binomial coefficient (“i”) 

corresponds to the Riordan array (t”/( 1 - t)m+l, l), therefore, by the formula concern- 

ing the row sums, we have 

x( 1 n;k =c~“l~l_~~~+,~=Ct”-“l~l_~~~+~= n+l 
( ) m+l 

. (2.3) 

The sum 1 (m”+‘,“,)(“,“)(- ljk/(k+ 1) is a more interesting example. From the 

generating function of the Catalan numbers, we immediately have 

Hence, 

In the sum 1 (2Zk++11)(Z~~~k)22k+1 we use the bisection formulas for series (see, for 

example Riordan [17]). Since the generating function for (‘:I) 2k is (1 + 2t)‘+ l, we 

have 

By now applying formula (2.2) we find 

= [t”] (1 + t)’ 
[ 

(1 +2JL)z+‘-_(1 -2&)s+i 

2JL 1 Y =&I 
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=[t”](l +t)=+’ 
(1 +t+2&y+‘-(1 +t-2&+1 

2&l +ty+’ 

!2 [tZ"+l](l +t)Zz+2= ;;I; ( > 
in which we used the bisection rule backwards in ( * ), since (1 + t f 2fi),+ l= 

(1 *J++? 
If (i} denotes a Stirling number of the second kind, the corresponding generating 

function is cm/( 1 - t)( 1 - 2t) .. . (1 - mt). Hence, by applying formula (2. l), we find 

tm 

l-t(l-t)“(l-t/(1-t))..*(l-mt/(l-t)) 

We solve the following sum by using (2.2): 

q2z)(kn) (-2)L=Ct”l(l+f)‘“[(l--2y)“15Y=~] 

=[t”](l +t)2” (l+::~~~~~2~)‘=Ct”l(l+t’)“= m;2 
( > 

in which the binomial coefficient is to be taken as zero for m odd. 
In thesumC(“:k)(~)k(-l)k-l we havef(t)=Y((;)k(- l)k-‘} =nt(l -t)“-l, and 

( “lk) = (“i “). We apply formula (2.2) having b = 0. This means that the Riordan array 
is improper, but since the generating functionf(t) is a polynomial, our rule is still 
applicable: 

fik)(kn) k(-l)k-l=[tn](l+t)n[ny(l-y)“-‘(y=l+t] 

=n[t”](l+t)“+‘(-rt)“-I=(-l)“_‘n[t’](l+r)”+’ 

=(-l)“_‘n(n+l). 

The examples are almost infinite and can become very complicated. It is worth 
examining at least one case in which we do not obtain a closed form but whose 
generating function allows us to find the asymptotic value of the sum. The following is 
a typical example. Let us determine the asymptotic value of the sum: 

n ’ 
S.=C k pkq”-“=[t”](l +pt)“(l+qt)“, 

0 

or, more in general, the coefficient [t”] (1 + crt + /It’)“, where p, q, ct, /3 may also be 
complex. Given the obvious fact that [t”]f(at)=a”[t”]f(t), we use the rules of 
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convolution and (2.1) and obtain 

s.=z (.n,),~-~(;)Pk=ct~l~[~l+PY)~~P=~] 

= [t”] 
(1 +(P-q4)v 

(1 _qt)“+ 1 =c ~;~;)q”-*(;)(P-d* 
Now we observe that ( 2”._k)(;)=(2”;k)(2;:;k); b y writing h for n-k and by using 

(2.1) again: 

=[t”] l 1 

[ 1 t 

(1 -_(P--4)t) Jiz$ y=u -_(P--4)t)* 1 
= [t”] 

1 

Jl-2(p+q)t+(p-qq)*t* 

=[t”](l -(&+J;;)*t)-I’*(1 -(&-&)*t)-1’2. 

The last two expressions do not depend on n and therefore they represent the 

generating function of S,. The very last expression can be used to determine the 

asymptotic value of S, by means of Darboux’s method. Let us suppose that 

(&+,I?-” h as a smaller modulus than (A-A)-‘; then the second factor is 

analytic in t=(&+&)-” and can be developed in a Taylor series around this 

point. By extracting the coefficient oft” in the resulting expression, we eventually find, 

Obviously, if (A-&)-” h as a smaller modulus, then we would proceed in an 

analogous way by developing the first factor. 

Other Riordan arrays can be found by using Theorems 2.1 and 2.2 and the rule: 

~(~)=(~)i(~~:) (a#O, if - is considered). 

For example, by writing (“2+kk) as (t’:) we easily find 

$&+:>=(:~~)+(:t-~r-:)=(n~k)+(n-;;k)~ 
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Hence, by (2.1) we have 

l+t 

=py (l$ . ( ) (2.4) 

This proves that the infinite triangle of the elements &(“2+kk) is a proper Riordan 

array and many typical identities can be proved by means of (2.4). For example, 

=[t”](l+t)=6,0+6,1. 

The following is quite a different case. Let f(t)=%{(} and 

F(t)=% + = iis f (4 -fo dt 

7 

with F(0) = 0. Obviously, we have 

except for k = 0, when the left-hand side is 1 and the right-hand side is not defined. 

Hence, by (2.1) 

This formula gives an immediate proof of Hardy’s identity: 

Qgn;k) (-l)‘=[P,log+$ = CU (log&-log&J 

i 

(-1)“2/n, if 3\n, 

= (- l)“-l/n, else. 
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We also immediately obtain 

where C$ is the golden ratio and 6 = - $- ‘. The reader can generalize formula (2.5) by 

using the change of variable t -+pt and then he can prove some well-known formulas 

such as Riordan’s “very old identity” [17, p. 581 or a generalization of Hardy’s 

identity: 

g$(“;“) (a+b)“-2k(-aab)k=a”+b”, 

(X+~Fz)n+(X-J~)n g&k)x.-‘*(-l)*_ 2” . 

3. Binomial coefficients of the form ( y+?Gk) 

When m depends on n, the formulas of the previous section are no !onger appropri- 

ate and can only be applied in a few special cases. In this section we examine the 

binomial coefficients of the form ( 2nn++bakk), m w ic h’ h a and b are two integer parameters, 

and find out the values of a and b corresponding to Riordan arrays. In the latter case 

we also determine the explicit form of the couple (d(t),h(t)), and are therefore able to 

find the generating function relative to every sum I( yTAk)k)fk. 

In Section 2, we used a direct method for finding the Riordan array relative to the 

binomial coefficients considered. We now use the A-sequence to determine the form of 

the Riordan arrays regarding two particular cases which then help us generalize the 

result. 

We start out with a simple identity: 

If we set d”,k =(“Z_;t), it means that d,+ l,k = d,,,k- I+ 2d,,k + d,,,k + 1 and, by Theorem 

1.3, this proves that {dn,k) is a Riordan array, having an A-sequence (1,2,1) or 

A(t)= 1 +2t+t2. By (1.5), the function h(t) is the solution of h(t)= 1 +2th(t)+t2h2(t), 

with ~(O)E[W\{O}. Since for k=O, d,,o- - (“,“), the triangular array of the elements (n?k) 

is the proper Riordan array: 

(3.1) 
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Analogously, the following sum can be closed by formula (2.3): 

If we set ~&=(2nn_;l’), it means that d,+l,k=dn,k_l+dn,k+dn,k+l+.... Again, by 

Theorem 1.3, {dn,k} IS a Riordan array having an A-sequence (1, 1, 1, . ..). or 

A(t)=(l-_t)-‘. By (1.5), the function h(t) is the solution of h(t)=(l-th(t))-’ with 

h(O)#O, and we obtain the proper Riordan array 

(3.2) 

Let us now give two non-trivial examples. First, the identity of Ruskey [20] is 

proved by using (3.2) 

x( > 1 
‘,“I; (k+1)2k=[t”]J- ~ 

[ I 
- 

l-JiXt 

Jiz (1-2JY y- 2 1 

= (-4)“=(2n+l) ‘,” . 
0 

We then prove the identity of Van Ebbenhorst-Tengbergen (see Egorychev [7]) 

(3.3) 

by means of (3.1). First, we take a binomial coefficient out of the sum by using the 

identity 

We can now observe that ~((mk+_k~l)}=tm(l -r)-2m. Hence, 

After performing the substitution and simplifying, we find 
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The closed form of the sum is therefore (2m~1)(“~_1/)4”-“, and this is proved 

equivalent to (3.3) by using the r function to express the binomial coefficients. 

Many other identities can be proved, from a simple one like 1 (?1:)2k=4” to 

a more complicated one like C (,?k)/k=+(F)H,. Now, to come to the general 

problem, we begin with the binomial coefficients d,‘fi= (2:flk) and prove that every 

(d,$} is a proper Riordan array. Formulas (3.1) and (3.2) are two particular cases of 

this. We first obtain the following general result on Riordan arrays. 

Theorem 3.1. If D=(d(t), h(t)) is a Riordan array, the s-section array {L&} is the 
Riordan array 

DC”‘= {&Sk} =(d(t), tS-’ h”(t)) 

Proof. The array {d,,sk) is composed of one out of every s column in the Riordan 

array {dn,k}, i.e., {dn,&} contains the columns 

d(t) d(t)t”h”(t) d(t)tZSh2”(t) d(t)t3’h3”(t) . . . 

which can be written as 

d(t) d(t)t(t”-‘h”(t)) d(t)t2(tS-‘h”(t))2 d(t)t3(tS-‘h”(t))3 . . . 

and the theorem directly follows from definition (1.1). 0 

We can now observe that if { (“~+~“)} is a R’ d ior an array, then it is proper because 

the binomial coefficient is different from zero only for 06 k<n. If we consider 

the (a+ 1)-diagonals of the array, this new array consists of the elements 

d,-(,+l)k,k=(~~~IP,‘,:‘,“) and h ence it may be considered to be the (a +2)-section of the 

Riordan array defined by (‘,“-i). It is therefore a Riordan array and by Theorem 3.1 

and formula (3.2) we have 

Finally, we must “push up” each column k of this array (a + 1)k positions in order to 

obtain the elements of the array {d,$}, and this is done by dividing h(t) by ta+‘. This 

proves that the array is indeed a Riordan array and 

(3.4) 

In Table 1 we list a few cases corresponding to a= -3, -2, - l,O, 1,2. 
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Table 1 
A few cases of Riordan arrays 

{(‘Z)}=(+=& 1 -4t+2tZ-(1-2&/i=& 

2t4 ) 

{(yy+L, “‘-(:jl’)d=) 

{(*“k)}=(&l ‘-‘y=) 

{(:I”)]=(+=& l-F) 
{(‘:::“)i=(g=y) 
{(‘;I:“)]=(+&,l+yy 

As an example, let us now try to compute the sum C ( 2t+Ek)2k. By Table 1, we have 

=It~,(l-2~)J1-4f+l-4t+2f2-~3 

Jiz(2-12t+4t*-P) 

Because of this generating function, it is not very likely that the sum has a (simple) 

closed form. However, by solving the third-degree equation 2 - 12t + 4t * -t 3 = 0, we 

find that the generating function has a simple pole at 

which is the singularity of the smallest modulus. Hence, we have 

1 (‘:I:“) 2kz50.685792972794 x (5.6623865217)“. 

Finally, let us come to the general case ( 2nn++bakk). We distinguish several subcases. 

(1) Let ~30. Then: 

(a) if b ~0, then let us write ( “.“+‘,“,“) =( *nn_+pkk), and imagine the latter to be 
the (c- 1)-diagonals of the Riordan array of the binomial coefficient 

( 2n+(“n+_Zkc-2)k), which has the previously described standard form of formula 



(2) 
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(3.4). Hence, we have 

281 

(3.5) 

(b) if 0 < b < a, the array is not triangular and, at most, can be considered to be 

an improper Riordan array; 

(c) if b > a, by symmetry we have: ( y:ikk) =( n$?$.) and, since a-b < 0, we are 

reduced to case (la). 

If a ~0, the rule of symmetry is no longer applicable since (“‘P”“) is always 

defined except for a negative p. Hence, ( y:Ak), for a < 0 and b 3 0, is defined for 

every value of k and does not correspond to any triangular array, whereas 

(,,$‘~+$k) is only defined for k< n/(b -a). Consequently, for b ~0 we have the 

same result as in case (la). Note that ( yIzy) and (:I::) define two different 

Riordan arrays, even though they are identical as binomial coefficients. 

We conclude by applying (3.5) to the following alternating sum: 

l-f 1 2n ___ 
+2(1--r) =2 II 10 

(see [17, p. 861 for the non-alternating sum, which can be proved analogously). 

4. Coloured walks 

We now examine the combinatorial problem concerning the walks on the line. Let 

us define the discrete line as the set of the integer points on the real line [w. A walk on 

the line is a sequence of steps starting from the origin. There are three kinds of steps: 

(a) right steps, which go from the point x to the point x+ 1; 

(b) “sur-place” steps, which remain on the point x; 

(c) left steps, which go from the point x to the point x- 1. 

A coloured walk is a walk in which every kind of step can assume different colours; 

we denote by a, b, c (a > 0, b, c > 0) the number of colours the right, sur-place and left 

steps can be. We discuss complete coloured walks, i.e., walks without any restrictions, 

and positive coloured walks, i.e., walks that never go to the left of the origin, The length 

of a walk is the number of its steps, and we denote by dn,k the number of coloured 

walks which have length n and reach a distance k from the origin, i.e., the last step ends 

at position k on the discrete line. A coloured walk problem is any (counting) problem 

corresponding to coloured walks; a problem is called symmetric iff u=c. 

We want to point out that our considerations are by no means limited to the walks 

on the line. Many combinatorial problems can be proven to be equivalent to some 
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walk problems; bracketing problems are a typical example of this. Moreover, several 

kinds of walks on the integral bidimensional lattice Z2 can be reduced to walks on the 

line; right, left and sur-place steps are identified with east, north and diagonal steps, 

respectively, or other types of steps. In particular, positive walks correspond to the 

very important class of underdiagonal walks. A vast amount of literature exists on 

walk problems, and the reader is referred to Chapter 5 in Goulden and Jackson’s book 

[ll], while Barcucci et al. papers [4,3] are specifically related to the following 

considerations. 

Let us consider dn+l,k+l, i.e., the number of coloured walks of length n + 1 reaching 

the distance k + 1 from the origin. We can observe that each walk can be obtained in 

a unique way as: (i) a walk of length n reaching the distance k from the origin, followed 

by any of the a right steps; (ii) a walk of length n reaching the distance k + 1 from the 

origin, followed by any of the b sur-place steps; (iii) a walk of length n reaching the 

distance k+2 from the origin, followed by any of the c left steps. Hence we have: 

d n+~,k+~=ad,,,+bd,,,+,+cd,,k+~. This proves that A = (a, b, c) is the A-sequence of 

(dn,k} and therefore {dn,k) is a Riordan array and is proper since, d,,k=O for k>n and 

d_=a”, for every n. This significant fact can be stated as: 

Theorem 4.1. Let d,,, be the number of coloured walks of length n reaching a distance 

k from the origin; then the injinite triangle {dn,k} is a proper Riordan array. 

The Pascal, Catalan and Motzkin triangles define walking problems that have 

different values of a, b, c. When c = 0, it is easily proved that dn,k= (i)akb”-k and so we 

end up with the Pascal triangle. Consequently, we assume c > 0. For any given triple 

(a, b, c) we obtain one type of array from complete walks and another from positive 

ones. However, the function h(t), that only depends on the A-sequence, is the same in 

both cases, and we can find it by means of formula (1.5). In fact, A(t) = a + bt + ct 2 and 

h(t) is the solution of the equation h(t)=a+bth(t)+ct’h’(t), with h(O)#O: 

h(t) = 
l-bt-Jl-2bt+b2t2-4act2 

2ct2 
(4.1) 

The radicand l-2bt+(b2-4ac)t2=(1-(b+Z&)t)(l-(b-2&)t) is simply 

denoted by A. Obviously, h(t) has two algebraic singularities at t =(b +2&)-l and 

t=(b-2,/&-l, and since a, b,c are non-negative, the former has a smaller 
modulus. It is worth noting that this singularity takes on the value (b+2a)-’ in the 

symmetric case. 

Let us now focus our attention on positive walks. If we consider d,+ 1,0, we observe 

that every walk returning to the origin can only be obtained from another walk 

returning to the origin followed by any sur-place step or a walk ending at distance 

1 from the origin followed by any left step. Hence, we have d,+ 1,0 = bd,,o + cd,, 1 and 

in the column generating functions this corresponds to d(t)- 1 = btd(t)+ctd(t)h(t). 
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From this relation we easily find d(t)=(l/a)h(t), and therefore by (4.1) the Riordan 

array of positive coloured walks is: 

1 -bt-Jd 1 -bt-Jd (d.d=( ?&,z 3 

> 2ct2 . 
(4.2) 

In current literature, major importance is usually given to the following three 

quantities: 

(i) the number of walks returning to the origin; this is d,= [t”]d(t), for every n; 

(ii) the total number of walks of length n; this is an=C dn,k, i.e., the value of the row 

sums of the Riordan array; 

(iii) the average distance from the origin of all the walks of length n; this is 

&=C kd,,k, which is the weighted row sums of the Riordan array, divided by CC,. 

For (i) we could find a complete asymptotic development for d,, but we only give 

the main term here. By using Theorem 4 in Bender [S], we find 

d,=[t”]d(t)- - 
,/l -(b-2&)t 

- 2ac It=b+2~]lr”+21~l-(b+2~)t 

=&/b~$(‘:I:)(h+2&+‘+2 

With regard to points (ii) and (iii) above, the formulas for the row sums and the 

weighted row sums given in Section 1 allow us to find the generating functions a(t) of 

the total number cc,, of positive walks of length n, and b(t) of the total distance 6, of 

these walks from the origin 

a(t$_ l-(b+24t-Jd 
2at (a+b+c)r-1 ’ (4.3) 

(4.4) 

The asymptotic value of CI, and 6, can be evaluated easily. However, we would like 

to point out an aspect of the dominating singularity of the two generating functions. 

Besides the algebraic singularities t =(b + 2fi)- ’ and t =(b - 2 fi)- I, we 

now possibly have a simple pole at t=(a + b +c)-‘. From (&-A)” 20, we have 

a+c>2,/& or (a+b+c)-‘<(b+2,,&-‘. S ur p risingly enough, the numerator of 

d(t) annihilates for t = (a + b + c)- ‘, but this pole dominates in u(t), unless a = c (for 
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more details, see Barcucci et al. [3]). In the symmetric case, formulas (4.3) and (4.4) 

simplify as follows: 

s(t)=i 
( 

l-bt -/E). 
2at 1 -(b+2a)t 

The alternating row sums and the diagonal sums sometimes have some combina- 

torial significance as well, and so they can be treated in the same way (see, for example, 

Barcucci et al. [2]). 

The study of complete walks follows the same lines and tie only have to derive the 

form of the corresponding Riordan array, which is 

1 l-b+,/ 
&.d=(-$, zCt2 ). (4.6) 

The proof is as follows. Since a complete walk can go to the left of the origin, the 

array (d.,k 1 n, ke N, k d n} is only the right part of an infinite triangle, in which k can 

also assume the negative values. By following the logic of the proof of Theorem 4.1 we 

see that the generating function of the nth row is ((c/w)+ b +a~)“, and therefore, the 

bivariate generating function of the extended triangle is 

If we expand this expression by partial fractions, we obtain 

d(t, w)=L 1 1 

Jd l_l-bt-J;lw-l_l-bt+~ 

2ct 2ct w 

1 +l-bt-fi 1 1 

l_l-bt-fi 2at W 

2ct w 

I_l-bt-,/i 1 ’ 

2at W I 

The first term represents the right part of the extended triangle and this corresponds 

to k 3 0, whereas the second term corresponds to the left part (k CO). We are interested 
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in the right part, and the expression can be written as, 

1 1 
=p 

l-l-bt-&iw Jd 

l-b&&i kwk 

> 2ct ’ 

2ct 

which by (1.1) is equivalent to (4.6). 

5. Stirling numbers 

Given any two analytic functions or formal power series d(t) and h(t), we can obtain 

a Riordan array (d(t),h(t)), and therefore the number of possibilities is infinite. In 

general, the arbitrary choice of d(t) and h(t) (or A(t)) is limited by combinatorial 

considerations. In this final section, we describe some simple applications of the 

Riordan array concept to Stirling numbers. This is particularly important because 

identities involving Stirling numbers cannot be treated by methods related to hyper- 

geometric functions, such as Gosper’s algorithm or WZ-pairs. 

Properly, neither kind of the Stirling number triangles (see also Kemeny [13]) 

constitutes a Riordan array but two well-known related quantities produce proper 

Riordan arrays. In accordance with Graham et al. [lo] and Wilf [24], we have the 

following generating functions: 

By definition (l.l), these functions correspond to proper Riordan arrays: 

Stirling numbers of the first kind (I,flog+J, (5.1) 

Stirling numbers of the second kind (5.2) 

The two fundamental properties of Stirling numbers follow: 

=(-l)“$[t”] (e-y-l)ml~=log& . [ 1 
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and 1 (i} [i](-l)n-k=&m. A n apparently less-known identity on Stirling 
numbers is 

As one can see in Table 337 in Graham et al. [lo], formulas (5.1) and (5.2) are by no 

means the only Riordan arrays related to Stirling numbers. Strangely enough, the 

functions t/(1 -e-I) and t/log(l +t) turn out to be the A-sequences of the Riordan 

arrays (5.1) and (5.2). In fact, if we apply relation (1.5) to the h-function of (5.1), we have 

flog&A lo& . 
( > 

Bysettingy=log(l-t)-’ ort=(ey-l)/ey,wehaveA(y)=yey/(ey-l)=y/(l-e-y). 

In a similar way, we start out from t-’ f (e - l)=A(e’- 1) and by setting y=e’- 1 or 

t=log(l +y), we find A(y)=y/log(l +y). 

Two typical results concern the row sums of the Stirling triangles; by using 

s{l/k!}=e’, we have 

c [;]=n! Egg;= [ n![t”] eYly=log& ] =n![YJ&=n!, 

c {;)=n1 z;{;};= n![t”][eyly=e’-l]=n![t”]exp(e’-1)=9”, 

in which $9” is the nth Bell number, whose exponential generating function is just 

exp(e’- 1). In fact, the Bell numbers .c@,,, the ordered Bell numbers 0, and the 

Bernoulli numbers B, are strictly related to the Stirling numbers because of their 

generating functions, all of which involve the exponential or the logarithmic functions. 

The ordered Bell numbers 0, are defined as the total number of ordered partitions of 

the integers 1 through n, and hence 0, =C {i} k!. The exponential generating function 

of the 0, is easily found by using the formula for row sums presented in Section 1: 

From the generating function we obtain the asymptotic value LOn-$n! Lnf2, in 

which L = log, e (see Wilf [24]). The following identity is worth observing: 
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=n! [It”] 
1 

2-1/(1-t) 
=n!C++ n!(2”-2”-‘)=n!2”-‘. 

For 1 [S] 49k we cannot find a closed form, but we have 

4 L Bk=n! $[;]2=n![rn][exp(eY-l)lp=log&] 

=n![t”]exp&(An! C (;I :);=I (;: ;)$ 

Note that the first expression in the second line is thought to be the result of 

applying (1.3) both to e’ and the Riordan array {d+} = (1, l/(1 -t)). The value of c&,~ is 

found by means of (1 .l): 

tk 
&,k=[t”l(l= 

from this equality (*) follows immediately. It is possible to derive the asymptotic 

value (see Bender [S] or Flajolet et al. [S]) from the generating function exp(t/(l -t)): 

A simple property is 

=n![t’]&=&. 

A more complex result is 

_m! Bm-p+l 1 

p!(m-p+l)! m+l 
4,-p+ I 
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Knuth [15, III] calls the following identity “curious”: 

41 ;: k!(-2)-k= 
2&+,(1-2”+‘) 

(n+l) ’ 

i.e., 

=2n![t”l&=2n![t”3 ~-- 
( 

1 1 

e’-1 e*‘-1 > 

B 
=2n! n+l 

-y+1 B PI+1 

(n+l)! 

On the contrary, we believe that it is not so curious from the point of view of 

Riordan arrays. 

Another identity involving the Bernoulli numbers is 

=n! 
(n-l)! --- 

n+l . 

The Stirling numbers of the second kind have entirely different implications: 

=n! [t”] 
e’-1 

exp(e’- l)- 1’ 

This function’s dominating singularities are simple poles at t =i log( 1 + 47~~) &- 

iarctg(2n). Salvy [21] computed the asymptotic value of the sum S, using A@ (see 

Flajolet et al. [S]): 
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The relation defining the ordered Bell numbers can be amplified in various ways. 

For example, 

cii ; (k+l)!=n!g ; .i I (k+l)=n![r’][&~y=e’-l] 

=n![t”] & ( 1 
2 

Ok On-k 

=“Ql(n-k)!= 
z() 

; ukCO”_k=8n. 

The numbers 6, are related to the sum of binomial coefficient inverses; Comtet 

[6, p. 2941 gives the values of 8, up to n = 10, but the last three values are wrong. Since 

the generating function (2 -et)- ’ has a double pole at t = log 2, we can easily find the 

asymptotic value: 

6 .-an!(n+1+log2)L”+2 (L=log,e). 

In a similar way we find 

?.=I 
ii 

i (k-l)!=n![t”] log [ &iy=e’-l]=n![r”]log&. 

By using the rule [t”]f(t)=(l/n)[t”-‘If’(t) and observing that et/(2 -et) has 

a simple pole at t=log2, we obtain 

&=(n-l)![r”-1]2~e 7-(n-1)!L” (L=log2e). 
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