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SOME IDENTITIES INVOLVING HARMONIC NUMBERS

JÜRGEN SPIEß

Abstract. Let Hn denote the nth harmonic number. Explicit formulas for
sums of the form ^ZakHk or ^ZakHkHn_k are derived, where the ak are
simple functions of k . These identities are generalized in a natural way by
means of generating functions.

1. Introduction and overview

In the analysis of algorithms, harmonic numbers frequently occur. Quite
often, sums of the form VJ kpHk or more complicated expressions have to be
manipulated. Knuth [4] dedicates one section to the study of these numbers
and gives some basic identities. Riordan [6] gives some identities but does not
collect these results for easy reference. Lafon [5] and Karr [2] mention the
existence of such summation formulas without giving any of them explicitly.

Typical situations where the ability to sum harmonic numbers and their gen-
eralizations is needed can be found in Kemp [3], Sedgewick [8] or Spieß [9].

The author felt that a more systematic investigation of identities involving
harmonic numbers would be helpful. The summation formulas presented here
are stated in very general terms. But to see that they are useful for summing
harmonic numbers, many examples are given. We present only the simplest
relations. Because identities with binomial coefficients can be transformed in
many different ways—e.g., by the use of inverse relations—it is impossible to
be exhaustive. Asymptotic representations of some of the quantities we deal
with are given by Knuth [4] and Roes [7].

Section 2 contains the basic definitions and introduces notation. Section
3 contains the main general summation formulas derived from a generating
function. Section 4 contains recursion formulas which may be used to derive
new identities and which may simplify calculations using a symbol manipula-
tion system. Section 5 contains structure theorems. They are useful to give a
quick orientation of the outcome of the summation. In the appendix special
summation formulas are assembled for ease of use.
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2. Definitions and known results

Let Z denote the integers and N denote the natural numbers, with 0 e N.
The generalized harmonic numbers are defined by

Hn] = Í2k '>        n>l,  reZ.
k=\

It is convenient to set H^ = 0 for n < 0. As usual, we write Hn instead
of H(x) : Hn = 1 + 1/2 + 1/3 + • • • + 1/n. For r < 0, H{nr) denotes a sum of
powers: H^] = « , H{~1) = «(« + l)/2, ....

Zave [10] gives the following series expansion: for all m, r eN

<» 77T^("*rb)' = gwi"-*L".-• «i"-*ö(*>'-.
where the polynomial /^(x,, ... , xr) is defined by P0 = 1 and

P,(x,, ... , xf) = (-l)ryr(-0!x,, -Ux2,... , -(r-l)\xr),

where Yr is the familiar Bell polynomial [6].
Some of the polynomials are

*\ix\) = x[ '

2(xx, x2)'■yi-^i ' x2> — "^1      X2 '

i il A,  ,  -A.-} ,  Ai I   — A, »J^,.A^  ""T" ¿.A--, ,

4 2 2
/\j(Xj , x2, Xj, x^) = Xj — 6X|X2 + 8X|Xj + 3X2 — 6X4.

This expansion obviously contains as a special case (r = 1, m = 0) the gener-
ating function of the harmonic numbers,

-log(l - z)     ^       kE",(1 -z)v ' k>0
kz

This, and the next more general form, is given by Knuth [4]:

-lOg(l-z)        V->,„        „   s(k\    k-m „
f^r^=£H>-HJUz   •    meN-

The special case r = 0 of Zave's result is the binomial theorem:

(l - z)m+l     '-^ \m^       L> k>m  v     '

Let X be an indeterminate; then, following Riordan [6], we write

(X)p = X(X-l)(X-2)---(X-p+l),        peN,

for the descending factorial function, with (X)0 = 1.
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It is convenient to extend this notation to negative-index values:
1

(2) (X)-p     (X+l)(X + 2)---(X + p)-
Then it is easy to see that

(3a) forall/>,<7€Z:    (X + p)p ■ (X)q = (X + p)p+q ,
(3b) forallpeZ:        (X)p +p ■ (X)p_x = (X + l)p.
If X stands for an element of Z, then these equations are interpreted as

(i) if both sides are defined, then they are equal, and
(ii) if the left-hand side is defined, so is the right-hand side.

Equation (3b) is a useful generalization of the basic identity of the binomial
coefficients: for p > 0, (3b) is equivalent to (x) + (pxx) = (*+'). With this
notation, the Stirling numbers of the first kind, s(p, k), are defined by

(4a) (*), = ¿s07,*)*\       peN.
k=0

The Stirling numbers of the second kind, S(p, k), are defined by

(4b) Xp = J2S(p,k)(X)k,        peN.
A:=0

These numbers may also be defined recursively by

s(p+l,k) = s(p,k- l)-p-s(p, k),
S(p + 1, k) = S(p, k - 1) + k ■ S(p, k),

with boundary values

for all «eN:     s(«,0) = s(0, «) = S(«, 0) = S(0, n) = Sn0,
where ô    is the Kronecker delta, Ô    = 1, ôpq = 0 forp^q. Tables of the
Stirling numbers can be found in Abramowitz and Stegun [1].

A very useful means to obtain new identities, starting from some known
ones, is the application of inverse relations. Riordan [6] gives many inverse
pairs which may be helpful. Here are the two simplest pairs:

(5a) if«n = E(f)V    then   ¿„ = £ (f)(-l)
A:=0 V   ' k=0 V   J

(5b) ÍK = £QV    then   bn = ±Q(-l)k+»

k+n
ak>

ak
k=n k=n

3. General summation formulas
Zave's result ( 1 ) can be exploited by standard combinatorial techniques. To

simplify notation, we introduce the symbol

(6) P(r,k,m) = Pr(H(X) - H¡?, ... , H^-H^),
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842 JÜRGEN SPIEß

so that Zave's result can be restated as

V1       Z> k>m  X     /

This expansion shows that for all k with r <k < m + r we have P(r, k, m) —
0.
Theorem 1. For all «, p, q, u, v e N

¿2Cl)(n~k)P(«,k,p)P(v,n-k:q)
(8) k=P w v   *   y

=C+^i)/,(m+"'"+i'/,+'+i)-
Proo/. Obviously,

(-log(l - z)f x (-log(l - z))v _ (-log(l - z))"+î;
(\-z)p+x (l-z)9+l (\ - z)p+q+nx   '

Use ( 1 ) on both sides. Equating coefficients gives the result.   D

In order to show the power of this theorem, we consider some special cases.

Example 1.  u = v = 0 gives the well-known identity

gcxvK::;.)-
This formula can be rewritten in a more symmetric form by introducing a new
integer parameter 5. Replace k by k + s. Then n-k = n+s-(s + k). Hence,

»    IKrxvK":;::)' —
Example 2.  w = 1, v — 0 gives
Corollary 2. For a// n, p, q eN and s e Z

Co» jg ('î*)(";%-c:;:i)î»—-^u«>.*>•
Proof. The parameter 5 has been introduced as above. The formula then is an
immediate consequence of (8) and (9).   D

Example 3.  u = 1, v = 1 gives
Corollary 3. For all «, p, q e N a«i/ s eZ

J^(Sp    )(%     )Hs+kHn-k

w«ev<? í = /? + q + 1 íz«¿ D = //      , - #(.
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Proof. Theorem 1 gives

k—p

=C+«+i)[(i/--ff.)2-<<,-»;2))]-
Isolation of the term HkHnk on the left side of this equation, using (10), (9),
and introduction of 5 gives the result.   D

The next theorem is also a simple consequence of (1).

Theorem 4. For all m, «, p, r e N with m>p

(12) D-1)/c©("^)/,(^«-^w) = (^p)^'"-^w-^-

Proof. Using (1), we can write

(-I0g(l-Z))r_    v     /    k    \ ^__x/-(m-P).

but this is the same as

c - 'f ■ (7,°g(';:,"' - É En»' (;) (¿W,. «i^-.
V1      zi k=0j>m V   /  \    /

Rearranging this sum and equating coefficients gives the result.   D

Remark. For /c > min(n-m, p) the terms in the sum vanish. So this theorem
is only interesting for « > m .

We give two applications of Theorem 4:

Example 1. For r — 0 we obtain the well-known identity

Example 2. For r = 1 we obtain: for all m, n, p e~N, m > p ,

Jt)(     «J    YHn-k-Hm)= \m-pE<-'>W:V~-'U-£:'>„-W
/t>0

This can be brought into a form which is easier to apply:

Corollary 5. .For a// m, «, p e N vw/i« «z > /?

<»> Ê<-<-X)*'=(-IKnK>-/r-+H")
We now investigate recurrence relations for the functions P(r, k, m).
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Lemma 6. For all r, k, m e N with k > m and r > 1

(14) P(r,k,m) = —!—P(r-l, k, m + 1) + P(r, k, m + 1).
m + 1

Proof. Zave derives his result from the fact

fl + -^-rV • (l + —Z—r) =y\p(r,m + k,m)z,V      m + l)      \      m + k)     ^r!v >/>

which means
1 — '—.P(r, m + k, m) =r!   v ' '    ' ,   ^ k.kyk/

m+l</cl<<:2< -Kk^m+k    '   z r

But such a sum can be evaluated by splitting it into two parts: kx = m+l and
/:1 > m + 1 . Thus,

-^P(r, m + k,m) = -^-^- P(r- I, m + k, m+l)

+ -P(r, m + k,m+l),

and substitution oí m + k hy k gives the result.   D

An immediate consequence is

Theorem 7. For all m, «, r G N wz'//z r > 1
n

(15) ^^•JP(r-l,m,rc) = P(r,m,0)-JP(r,r«,«).

Proof. Using (14), we have
n-l n-\
Y<YT7XPir-Um,k + l) = J2[Pir,m,k) - P(r, m,k+l)]
k=0 k=0

= P(r, m, 0)-P(r, m, «).

Changing the summation index in the left sum yields the result.   D

We consider two special cases:

Example 1.  m — 0, r = 1 gives J2"k=x { = Hn .

Example 2.  m = 0, r = 2 gives £Li ¿tf* = ^ + //f).
This formula is also given by Knuth [4].

Lemma 8. For all k, r, m e N with r > 1 and k >m

(16) k-(P(r,k, m)-P(r,k-l,m)) = r-P(r-l,k-l,m).
Proof. Apply the same technique as in the proof of Lemma 6, but this time
splitting into the two parts kr = m + k and kr < m + k .   D

The next theorem follows from Lemma 8.
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Theorem 9. For all r e N with r > 1

(17) (-log(l-z))r = ^2^.P(r-l,k-l,0)zk.
k>r

Proof. We have

(-log(l-z))'(-log(l-z)) =(l-z) (1-z)
k= (l-z)-Y,Pir,k,0)zk    (by(l))

fc>0

= ¿2(P{r, k,0)-P(r,k-l, 0))zk   (and using (15))
A:>0

r    _.       .    .      .    ..  t
D= ^bi(r-U-l,0)/.

k>r

The special cases r = 2 and r = 3 may be of interest:

2
k+l(-iog(i-z))2 = x; * ^/+i;

k>0

,3 _ v-^      3     zi/2       „(2k   k+l(-logd-z^^^^K-^V
*:>0

Theorem 9 can be used to get new identities:

Theorem 10. For all m, n, r e N w'i« r > 1 a«äf « > 1

Proo/. This is a direct consequence of the obvious identity

(-iog(i-z))^(i-zr^h^.
( 1     z)

Use of ( 17) and ( 1 ) gives the result.   D

By index transformation we get a simpler form equivalent to (18):

(19) ¿2{-Dk{mll)(" ~*V('.n~k>m)=rrSi/,(r"1'"~1_m'0)-
it>o v        ' v        '

We consider two examples:

Example 1.  r = 1 gives

fc>0 v 7   x '
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Then, using the identity Ek>o(-l)k(n-k)(mm) = ° for a11 w, « € N with
« > 0, which is derived from (1 - z)m+x • 1/(1 - z)m+x = 1, to simplify this
sum, we get:

Corollary 11. For all m, « € N with n > 1

■n"
m+k npo)     b-<_+¿)(":>~-

This may be recast into a simpler form:

Example 2.  r = 2 gives similarly

Corollary 12. For all m, « e N w/'i« « > 1

p» £M>'(:^)(m;VL»-o=<-i>i(»,-,+'u
But we can use Theorem 9 in other ways to obtain useful identities:

Theorem 13. For all «, r, 5 e N vv/i« r > 1, s > I, n> r + s - 1

(ZZJ k=r

= ^Pir + s-l,n,0).

Proof. Apply Theorem 9 to both sides of
(- log( 1 - z))r ■ (- log( 1 - z))s = (- log( 1 - z))r+s

and compare the coefficients of the power series.   D

Example 1.  r = 1 , 5 = 1 gives

(23) E J ' n-k+l = ~n~+lHn "
k=\

Example 2.  r = 2, s - 1 gives

fc=2

Example 3.  r = 2, 5 = 2 gives

<»)     t Ï ' ¡rrf+T"'-"«-* = STT^ - 3"»< + 2ff"''-
lt=2
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With the same proof technique we can combine ( 1 ) and (17) to obtain:

Theorem 14. For all «, m, r, s e N with s > 1 and n> m + r + s

(26)    E   (km)^Pir,k,m).P(s-l,n-k-l,0)=(n)p(r+s,n,m).
k=m+r x    '

Proof. Use the identity
(-iog(i-z)y- (-i0g(i-z)r

(i-zr+i (  g(   )]     (i-zr+i
and (1) and (17).   D

We give some examples:

Example 1.  r = 0, j = 1 gives
n-\

(">       ¿(ü)^-(:)«-*->•
k=m

Using the inverse relation (5b) we get
n-l

¿=i:'-«'"C)(:)"'.-''1)=tH)'"Q(;)(».-»1).
k=m k=m

but since T,Lm(-l)k+m(m){nk) = 0 for « > m , we get

UsingQ(;) = OG:3,weget
1 (-l)w+1

« - «J

Finally, if we replace « - m by « and k - m by /c, we obtain

(30) ¿(_i)*Q/ífc+m = _¿_,        „>m>0.

It is not hard to see that (30) holds also for « = m. The case m = 0 can be
found in Riordan [6].

Example 2.  r = 1, s = 1, after a simplification using (27), gives

o»   e(£)^*-(;)w*.-*.>-^+o.
/c=m

Example 3.  r = 0, 5 = 2 gives

<*>  E(*)^-=(:)^-^2-"i2)+^i-
Ar=m
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Example 4.  r = I, s = 2 gives

n-l

k=m

= (w) M» - "m? - 3(tf„ - "Jtfí ' - H{2)) + 2(H{2) - H{2))].

Using (32), one could derive a formula for YLTJm (™)(2/(" - k))HkHn_k_x
which is slightly simpler than (33).

By repeated integration of a power series J2 ak z    one gets a series of the
form Zkik)_qakzk. And from (1 - z)"1 T.k{k)_qakzk = E^E^L^z"
one can obtain interesting summation identities. The next theorem is one of
this type:

Theorem 15. For all q, r, « € N, <? > 1

A      P(r,fc,0) r!
\r+I

k- ^(k + q)---(k+l)     (g-i)\(q-\y

(„t,|.'.„ + 2)É7^|b^.»'.»).
Proof. We show this by induction on « .

1. « = 0 : For all r € N we have P(r, 0, 0) = r5r0 . For r = 0 the left-hand
side is (q\)~  , and the right-hand side is

1 111
(q-l)l(q-l)     q\   q-\      qV

For r > 0 the left-hand side is zero as is the right-hand side.
2. Assume the result is true for some « . To simplify notation, we introduce

a = --.,!'     ,^,,        b_x=0,        o,=(q-l)\(q-iy+l' ->        ' i     (q-l)r+X-J

and

PJ=P(j,n +1,0),        ie[0,r].

Then j • b¡ = (q — 1) • bjX, and with the notation introduced in (2) we may
restate the assertion as

S„ = Í2W-qP(r>k>V =«-(»+ 1)HE^-
ft:=0 7=0
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Then

Sn+x=Sn + (n + \)_qPr = a-(n + \)x„¿bjPj + (n + l)_qPr
j=0

= a-(n + l)x_qYjbjPj + (n + l)_qYá(q-l)bjP]
7=0 7=0

-(»+i)-€E(í-i)*/j
7=0

r r

= a-(n + 2),_, £>/,. - (« + l)_q J> - l)^.,^.,    (using (3b))
7=0 7=1

= a-(n + 2)x_qj^b]P]-(n + \)_qJ2jbJP]_x;
7=0 ;=0

but jPj_x = (n + 2)(P(j, n+ 2,0)- Pj) by Lemma 6, so that

Sn+x=a-(n + 2)x_qY2bJP}-(n + l)_q(n + 2)J2bJ(P(j,n + 2,0)-PJ).
7=0 7=0

By (3a) we have (« + 1)    (« + 2) = (« + 2)x_q . So we finally get
r

Sn+x=a-in + 2)x_qY,bjPU,n + 2,0).   u
7=0

To illustrate this result, we consider some examples:

Example 1.  r = 0 gives

¿-(fc + 9)...(fc+l)     9_iV(9-i)!     (n + q)...(n + 2))

Example 2.  r = 1 gives

Hk_        1       (      1 1 + 0?-!)"„+!(34)     £ (FT^(fc + ̂ .-.^+l)     (9_i)2 V(i-l)!     (» + i)-(n + 2)

Example 3.  r = 2 gives

" r/2        „(2)E"fc - nk
Q(k + q)---(k + l)

,w _L    I     2 2 + 2(g-l)//n+,+(g-l)2(//n2+1-//a)'
1    j      "(i-l)3Uff-l)! (n + q)---(n + 2)

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
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The case q = 1 had to be excluded from Theorem 15. But from Theorem 9
we obtain:

Theorem 16. For all «, r e N

,36) y* P(r,k,0) = P(r+1,« + 1,0)
^    ' ¿-'k+l r+l

k=0
Proof. Using (7) and Theorem 9, we have

±VP(r+1    H+l    Oszn+1 = _±_(-Io,(l-Z))r+X
r+l2^rV + l>n+l>u>z r+i (i-z)

n>0

P(r,k,0)  k+\     ^   ^P(r,k,0)\   n+\     „
Z       .     D

1     ^P(r,k,0)   fc+i_v- /y>

fc>0 «>0 U=0

Example. If r = 1, then

V^    Hk     _   l.r/2 „(2) .

)t=0

One would like to generalize these results to sums of the form

^P(r,k,0)
^   ik + p)nk=o   K      y'i

with p / q . But even for the simplest case E¡t=o ^(r > k » ®)lk > a cl°se<i f°rrn
cannot be found. This is a consequence of the fact that (-log(l-z))7¿ cannot
be integrated in closed form.

Theorem 7 looks promising but is of help only for r = 0 and r = 1 . For
all k e N we have P(0,k,0) = P(0,0,k) and P(l, k, 0) = -P(l,0,k).
Repeated application of (3b) in the form p • (k - l)_p_x = (k - l)_p - (k)
gives

1 1 1     A_1_ 1
(k+p)p+x~p\k    ^(p)p+x_.-(k + j)/

so that

H7Ï V Hk Hn+\ ~ ^n+l       V 1 y       ̂

The sums on the right-hand side can be evaluated by Theorem 15.
For an extension of this result, see Theorem 32.
The key for more general summation formulas is contained in the next two

lemmas.

Lemma 17. For n, p e N let
n       „ n rr

C/=yA-   and   V=  Y  j^-;p     ¿-' k+p p      ¿^  k-p
k=\        y k=p+\        y
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then

forp > 0:     Un+. = U„ - ^ + Hn+"    H" +      H"   , ,
J    y p+1       p      P P n+p + l'

forn>P:     V + x = V + "^ - ^L^!=ti -p+1      p    p+1 p+1 «-p
Proof. We prove only the relation for [/p

^Hk-Hk_x H " 1 //r/_C7    = y "fc   "fc-i_2»_= V_:_'-^—
p      P+\    L-,     k+p        «+p+l     ¿-'(k+p)-k    «+p+l

=ifi-_L+i-_^+.."U--^>)_**—p \l     p + 1     2     p + 2 «     p + nj     n+p+l

= ^»n-(Hn+p-Hp))-pv   "    v   n+P       p"     n+p + l

Hp     Hn+p-Hn Hn d
p p n+p + l'

The solution of these recurrence relations gives immediately:

Lemma 18. For «, p e N

l^k+p + l -2{H"-H" )-2{Hp+Hp ]
k=l

,  f HP~Hk-l   /f       1      „
k=1 Ar=l

and for p < «

t^- = i(^+<)+i(/7;+<)
it=p+i      ^

p   H - H P i
E-"p     -"¿-i     y        1        „«+ 1-A:      ¿^« + 1-Â:   ""
k=\ k=l

Another line of attack to get new identities and to rediscover old ones is the
next lemma which can be found in [4].

Lemma 19. Let
F(w,z) = J2E P(r,n,0)    r n—--w z

r.
r>0n>0

then F(w, z) = l/(l-z)w+x.
Proof. By (7) we have

r>0  \n>0 J K ' r>0

-exp(-w-log(l -z)) =-—7.
(1-z)      KV °" (1_Z)*
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Example 1.  F(w, z)-F(w, -z) = 1/(1 - z2)w+x = F(w, z2), which can be
written as an identity for the power series

(j»)   ¿B-otf(f-;;_y'0)-^^=7'('-.*.o)
j=0k=0 [        J)' J'

and
VVV   x]kPJr-J,2n+l-k,0)   P(j,k,0) =
^^ (r-y)! '        /!7=0 A:=0 \        J) J

The last equation is trivial because the terms in the sum cancel pairwise.
From the first equation we obtain, for r = 1,

2« .
(39) D-1)*flr* = 2H--

fe=0
Example 2.  F (to, z) -F(-w, z) = 1/(1 - z)2 = f(0, z)/(l - z), which is
equivalent to

uJ^P(r-j,n-k,0)   P(j,k,0) = f
0 for r > 0.

(40)  ¿H)'¿fc^.eiM = {"+
7=0 k=0 ^ Jl'

For r = 2, this means
n

T2 ir(2)sZ(Hk-Hn=ZHk"n-k-
k=0 k=0

Example 3.  F (I, z) = 1/(1 - z)   = E„>0(" + l)z" > wmcn means

(41) ^P(r,/i,0) =w + 1    forali„eN.
r>0

Only a finite number of terms in this sum do not vanish.

4. Recursion formulas

In this section we give recursion formulas for some sums. These are especially
useful when working with a formula manipulating system like REDUCE, which
allows recursive procedures.

In practical computations one often needs the values of T(r, k), which are
defined by

T(r, k) = !/>,(< , H(2), ... , H{kr)) = !/»(/■, k, 0).

Then, for all k, r e N,

r(r,fe + i) = r(r,fc)+r(rfc"+11>fc)
with boundary conditions T(0, k) = 1 and T(r, 0) = 0   (r > 0).

This is a simple consequence of Lemma 6.
The next lemma is helpful to obtain recursion formulas.
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Lemma 20. For all «, p € N, let X(p) - E£=i kpak and bk = ak - ak_x,
1 < k < « ;  then

(p + l)X(p) = (n+irxan-a0-y(P + l)x(j)-±kp+xbk.
7=0   V     J      ' fc=l

Proof. We have

p-i
^(p + U + ̂  + i^^ + X;^)1)^;)

7=0
p+1   /     ,   1\ 1        p+1   /     ,   1\=£p;W £<"£') y
7=0   V     J     7 fe=l        7=0  V    J     7

=¿(*+irv*=(«+iv+ia„+"¿(fc+ir1^
*=i fe=i

= (« + lV+1a„ + ¿^+Vi-«o

=(«+ir'fln+x(p+i)-x:^+i^
i=i

Comparing the first and last lines gives the result.   D

An immediate consequence of this lemma is:

Theorem 21. For all «, p e N, r e Z, let Q(p, r) = E¿=i k"Hk] ;  then

(42) (p+l)Qip,r) = («+ lV+1/ír) -flí'-'-1* -E (' + %(y, r).
7=0  ^    J     '

Proof. Set ak = fljr) ; then a0 = 0 and 6fc = H(kr) - H(kr)_x = k~r.   With
X(p) - QÍP > r), Lemma 20 gives the result.   D

Remarks. 1. The case r = 0 gives a well-known identity for sums of powers:

(p + 2)Q(p,0) = (n+ i)P+'«-¿ (P +. 1)q(J,0).
7=0  ^     J      '

2. The case p = 0 reduces to

(43) ±H{kr) = (n+l)H^-H^
A: = l

One can also sum the gfh powers of Hk .
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Theorem 22. For all «, q 6 N, p eZ, let Rip, q) = ELi kPHl > then for al1
P>-1 p_{

(p + l)R(p,q) = (« + l)p+XHl - ¿ (P ] * W «)
,_n   \      J      /

7=1

wAtre1 ô „ w i«e Kronecker delta.oq

Proof. Set ak = Hk ; then a0 = r50¡? and

+ E(-1);(y)^ + i->^-^')-a0?'

**=^ - K-i=^ - (^ - ¿) = -E(-i);(^r^ •
With X(p) = R(p, r), Lemma 20 gives the result.   D
Remarks. 1.   The case q = 0 gives a well-known recursion for the sum of
powers.

2. For q > 0 the terms R(p + I - j, q - j) in the second sum may produce
a negative first argument. But we know only R(-r, 0) = H„ for r > 0 and
R(-l, 1) = \(Hn +H„ ). So the theorem seems to be useful only for q <p + 3 .
Example. We have

n

Y^Hl = R(0, 3) = (« + l)H] - 3R(0, 2) + 3R(-l, 1) - R(-2, 0) ;
k=\

but since  R(0, 2)   =   (« + l)H2 - 2R(0, 1) + R(-l,0)   and  R(0, 1)   =
(«+ l)Hn - R(0, 0), we get

¿//¿ = (« + l)H] - \(2n + \)H2n + 3(2« + l)Hn- 6« + i#f .
it=i

Similarly, one could sum the qth powers of Hk   .

Theorem 23. For all «, p € N, r € Z, te K(p, r) = ELi k K-k ;  iA*w

(p+ l)K(p, r) = ((«+ DP+1 - l)Hi;)-J2(-l)j+p(P + l)(n+ l)jHf-p-l+j)
7=0 \    J     /

p-\

Eiryu.ry
7=0

Proof Set a¿ = H^k ; then we have a0 = fljr) and ofc = H¡¡lk - H^_k+l --
-(n-k+ l)~r, so that

n n

^^+\ = (-lV+1^[«+l-A:-(«+l)V+1.(n+l-fcr
lfc=lä=i *:=i
p+i

\Juir-p-i+j)

7=0
With A'(p) = R(p, r), Lemma 20 gives the result.   D
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The polynomials P(r, k, m) which have been introduced in §3 may be
summed along the same line:

Theorem 24. For all «, p, r e N,  r > 1, let Z(p, r) = ELi kpPir, k,0);
then

ip + l)Z(p, r) = (« + l)p+XP(r, n,0)-y(P+ l)z(j, r)
7=0  ^    J     '

+ YJ(-l)1~\r)jZ(p + l-j,r-j).
7>1

Proof. Set ak = P(r, k, 0) ; then, as r > 1, we have a0 = 0, and, by Lemma
8,

bk = ak - ak_x = P(r, k, 0) - P(r, k - I, 0) = ^P(r-I, k-1,0).

Let T(p,r) = -£"k=ikpbk; then
n

T(p,r) = r.ykpP(r-l,k-l,0)
k=\

= r-j^kpP(r-l,k,0)
fe=i

- r-j^kp(P(r - I,k,0) - P(r-I,k-1,0))
k=\

= r-Z(p,r-l)-r-T(p-l,r-l);

hence

T(p,r) = r-Z(p,r-l)-r-(r-l)Z(p-l,r-2) + ----
= J2(-l)i~l(r)jZ(p + i _/,,_;).

J>1

Lemma 20 then gives the result,   a

This theorem is useful to compute E£=i kP(^k ~~ ̂l ') recursively (r = 2).

5. Structure theorems
Quite often it is easy to solve a problem if one knows that a solution exists.

If one knows in advance what the solution of the problem will look like, one
can decide whether the solution will be simple enough for it to be worthwhile
working out the exact solution or just truncating it to obtain the dominant terms.

The results given here are a kind of existence theorems for closed form repre-
sentations of sums involving generalized harmonic numbers. The closed form of
a given sum can then be obtained either by interpolations—which means solv-
ing a system of linear equations—or better by application of the summation
formulas given in this section. The proofs given are all constructive.
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Example. Try to find a closed form representation of the sum
n

S(n) = y(2k + 3)H¡.
k=\

We have two obvious strategies to find a closed form representation of this sum:
( 1 ) By Theorem 30 below, the sum is of the form

2 2 2 2
S(n) - (a2n + axn + a0)Hn + (b2n + bxn + b0)Hn + (c2n +cxn + c0).

Evaluate S(0), S( 1 ),..., S($) and then solve this linear system for the
unknown coefficients ai, o;, c(   (/' = 0, 1, 2). This approach should
be used only if exact arithmetic (with rational numbers) can be used.
Otherwise, numerical difficulties will arise.

(2) Using Lemma 29 below, we write

««-¿(iGH*))*
and after some rearrangement we obtain

S(n) = (n + 1)(« + 3)H2n - (n  + 5« + 2)Hn + n(n + 9)/2.

The next theorem and its proof technique is fundamental for structure theo-
rems. This method of proof is also used by Knuth [4].

Theorem 25. For all r e Z, «, p e N

Proof. By definition of the Hk^ we have

¿CK-±tC)r =££®r
k=l  yy/ Jfc=l/=1   yy/ j=\ k=j  Xy/

k\        «    .-rtXik

r-k)

= £r£ ! -£7-£
7=1 k=\   yF/        7=1 k=\

= C:!K-£rt+1)
= (;:i)"r-^££*+..o/-'.

Interchanging the last sums gives the result.   D

Example 1. p = 0 gives

±H¡? = {« + l)H¡p-H!rl).
k=\

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



SOME IDENTITIES INVOLVING HARMONIC NUMBERS 857

Example 2.  r = 2 gives

+ --- + s(p + l,p+l)H(nX ">];

but s(p +1, 1 ) = (-1V -p! and the terms H{°\..., H(X~P) are all polynomials
of degree at most p of the parameter « . So we have

E(;)*M::>?-ëi*w>.
Corollary 26. For a// «, p € N

, VP7*   = U + l/""       P + l""
w«ew A (n) is a polynomial in « of degree p.

An immediate consequence of Theorem 25 is:

Theorem 27. For all «gN, reZ, if A(k) is a polynomial in k of degree q,
then

±A(k)H? = (n+l)B(n)H^ + f:ckHlk\
k=\ k=\

where B(n) is a polynomial in n of degree q.   The constants cx, ... , c   x
depend on the coefficients of A(k).
Proof. A(k) has a representation A(k) = J2l=0a (k). Application of (44) to
all terms of this sum gives

±A(k)HP = ±ap±(k)H?
k=l p=0     k=\ Ky/

p+i ■ -k)(n+l\     (r) _ y S(p + 1 , k)     (r-
\p+l)"n        £,     {p+l)]    "n

= E«,
p=0

With
U,    \         V^  (n\        1                           A                           A         S(P +  1 ,  rC)
P>in)=) -Tan       and      Clc  =  - >      ön^-TVT^

we obtain the stated result,   a

For r = 1 this theorem specializes to:

Corollary 28. If A(k) is a polynomial of degree q, then

YjA(k)Hk = (n+l)B(n)Hn + C(n),
k=\

where B(n), C(n) are polynomials of degree q.

Even powers of harmonic numbers can be summed. We give just one result,
but omit the proof.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



858 JÜRGEN SPIEß

Lemma 29. For all «, p e N

tCK=e:¡K-Ki.)+(-"Hn
P+l

(p + i)2vp + i;   (p + i)!f-; "

(45)      k~X
p+\

T(2-k)

k=2

>«      ,/c\ „3One can obtain a similar, but more complicated, identity for Ejt=i \p)Hk ■
We therefore have:

Theorem 30. For all n,peN, reZ, me {0,1,2,3}, if A0(k), ... , Am(k)
are polynomials in k of degree at most q, then

n     m m

EE^)"r = E *,(«)<+ c("<)>
k=\p=0 p=0

where the B0(n), ... , Bm(n),  C(n)  are polynomials in « of degree at most
q+l.

We conjecture that this theorem holds for all m e N.
From Theorem 1 we can derive, for u, v , «, p e N,

¿ Qp(M> k > P)Piv, n - k, 0) = ̂  + j W + v, n + 1, p + 1).Eik
fc=0

This may be restated as

Theorem 31. For all u, v , «, p € N, j/ ^0(/c), ... , Am(k) are polynomials in
k of degree at most q, then

n     m m

Yjy,Ap(k)P(u,k,p)P(v,n-k,0) = y^Bp(n)P(u + v,n + l,p+l),
k=\ p=0 p=0

where the B0(n), ... , Bm(n) are polynomials in n of degree at most q + 1.

We shall now try to find the structure of sums of the form E£=i Hkl(k + p) .
By partial fraction expansion we have

i i a q
-L— = y.-L--: withYV. = 0.
+ P)a        t,k+p+l-J fjf    J

Therefore,

(*+*,, ;=,-■--

"        H q n „

These sums can be evaluated by Lemma 18.
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Because of E/=i a¡ = 0, many terms cancel, and we get:

Theorem 32. For all «, p, q e N

n „ P i p-\      i

¿77^ = ̂ +   E   -^rHn + z2-^r forO<q<p,,Ak+P)a , n + k   n    f-<n + kk=\ v '1 k=p-q+2 k=\

^   (k+p)~  ' \ ^    n + kn» +, L    n + k+C2li»
k=q-p v '1 k=p-q+2 k=p-q+2

for q > P + 1 > 1 ,
H„ PXrK2    dL     ..       "t^2     0,Y" k     =c +  V       k   H +  V       k

^  (k-p)n       '      ¿-   n-k   "      ^  n-k'k=p+q K yj<l k=p k=0

where ck, dk, bk are constants depending on p and q.

6. Open questions
1. It seems natural to consider the coefficients of

-i

k>0

where a0 = -H2, ax = H2 - H3, a2 = -H2 + 2H2H^ -H4,... . Obviously,
many nice summation formulas can be derived for these quantities. Do these
numbers occur in a natural way in applications?

2. Is the conjecture following Theorem 30 true?
3. Is it possible to introduce a few new functions so that any sum ¿^,kpHk

can be expressed by these functions for p, q e Z ?

7. Conclusion

We have shown in this paper that

(1) many complicated-looking summation problems with harmonic num-
bers can be solved;

(2) there are two natural generalizations of the harmonic numbers, namely
Hn and the function P(r, « , m), which share many properties with
the harmonic numbers; and

(3) sums of powers behave similarly to sums of harmonic numbers.

Appendix

In this appendix we give some special sums which might be helpful if one
carries out symbolic computations 'by hand', in contrast to using a formula
manipulation system.
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All equations can be derived from the results of §3 with the aid of

Lemma 33. Given summation formulas J2l=o (p)ak = ^in > P) • n > P e N - one
has

(46) yikpak = j^S(p,k)-k\-F(n,k).
k=0 fe=0

Proof. Using (4b), we have

EkPak = Í2akEs(P'^^kh = Í2s(p^)-j{-Í2(k,)ak
k=0 7=0fc=0       7=0

= ¿S(p,j)-;!-F(«,j).   D
7=0

From Corollary 2 we can derive as special cases:

¿t=o

*r=0 x^7 p + 1
H.n+\ P+1J

and

¿gk*=c::k.-*w-
From Corollary 3 we obtain

eQ^-*=C+¡
From Corollary 26 we have

Hn+1~ [HP+\ + -p-^\)Hn+

+ i     p+1    p+l        p+x

£n<=f"+!)«!2»-t^/i.
fc=0 ̂ ' p + l)  "     p+l   "

and Lemma 29 states

¿e^G+iH-'-^-'-
To complete this list, we note

A:=0 Xi^
P+l
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Using these equations and Lemma 33, we get:

Yákp = A(p,n),
fc=0

J2k"Hk=A(p,n)Hn+x-B(p,n),
k=0

n

ykpHn_k=A(p,n)Hn+x-C(p,n),
k=0

J2kpHkHn_k = A(p, n)(H2n+x-H(nllx) - (B(p, n) + C(p, n))Hn+x+D(p, «),
A:=0

(2)y kpH(kZ) =A(p, n)H(2] - BpHn -E(p,n),
fc=0

n

£ kpH¡ = A(p, n)H2n - F(p, n)Hn + G(p, n),
k=0

where the A(p,«),... , G(p, «) are polynomials in « and the Bp are the
Bernoulli numbers. The A(p, «) are well known (see, e.g., Riordan [6]).

Table 1 lists some values for small p of these polynomials.

Table 1

A(p,n) B(p,n) C(p,n)

n+\

n(n+ 1)
2

n(n+ 1)(2« +

n(n+ 1)

«+1

n(n+ 1) _ \_
2       ' 2

n(n +1)    4n + 5
3 ÎT~

n(n + 1) _ (n + 2)(3n+ 1)
4       ' 12

n+ 1

n(n+l)    3
2       ' 2

«(«+ 1) _ 22n + 5
3 12

n(n+ 1)    25n2 + 13w-2
4 12_

D(P-") E(P> ") F(P,n) G(P,n)

n(n+ !)•

n\n + 1)'

2(n+l)

n(n+ 1)

71n + 37

0

«
2

«(« - 2)
108

35n + 37
72 n(H-l)-

, 2n- 1
24

2/1+ 1

/T - n - 1

4nJ -in1 -n + i

*r-)=¿í n(/i- 1

2«

n(/i - 3)
4

8/i2 - 15/1 + 25
108

9/i2 -5/1+10
288
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It remains to prove that ELo ^^ = A(P > n)Hn] ~ BPHn ~ EÍP > ") • But
this results from ELo ©^ =-(-l)pHJ(p+l) + --- and the following
lemma, which connects the Stirling numbers with the Bernoulli numbers.

Lemma 34. For all p € N

(47)
y       kS(p,k)-k\ =

k=0
k+l "p

Proof. The following identities are well known (see e.g. Riordan [6]):

(ez-l)k = k\-J2S(p,k)^j   and
p>o P'

ez _ i   E bp ■ p\
p>0 y

Then,

££(-1)'5Ü^^£^.t!.£s(;,,^
p>0k=0 k>0 p>0

£
lt>0

(_1) (ez-l)* = -rL..log(l-(l-e2)) =k+ 1 1 z-l

Comparing coefficients gives the result.   D

The first few Bernoulli numbers are:

50 = 1,    Bx = -1/2,     52 = l/6,     53 = 0,    B4 = -l/30.

The next formulas are immediate consequences of Lemma 18.

£
k=\

H,
(k + 2)(k + l

= 1 - 1
;H.

1
« + 2   "     « + 1 '

(2)IT

(k+l)k       n

"k
k(k- 1)

n„,
k=\

H,

« + 1   "

Y"      "k_= 2--H --
^k(k-l) «   "    «'fc=2

a     Hk        1/9    2 „     i     n
f^(rc-l)(/i-2)     2^2     «-1   "     «-1     n)k=3
n

///.

-^(k + 2)(k + l)k     2 [  "H{2)-1- J_l_\ H   |      1
«+1     «+2/    "     «+1

^
*=2

1
(k+l)k(k-l)     2

-H{2)  I   5      (l l
"2     \n     «+ 1

«.-i
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£
fc=3

Hk -1
k(k-l)(k-2)     4

£
k=2

£
k=3

H, 1
(/c + 2)(Â:+l)Â:(rC-l)      6

H,

^—^-W—,+-«-1     « /    "     «-1     n

-2tff + f -U-^TTT + ̂ Tl)^

i
(fc + l)fc(fc-l)(ifc-2)     12 L    "2//!2) - 2

11
«     « +1

«- 1 «     n + lj"

1 3+ -« - 1     «
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