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q-HYPERGEOMETRIC REPRESENTATIONS OF THE

q-ANALOGUE OF ZETA FUNCTION

A. SORIA-LORENTE, R. CUMBRERA-GONZÁLEZ

Abstract. In this paper, we give a summary introduction to the ordinary
hypergeometric rFs series and q-hypergeometric rϕs series. We also provide a

brief overview of the q-calculus topics which are necessary to understand the

main results. Finally, we give some q-hypergeometric representations for the
q-analogue of the generalized Zeta function.

1. Introduction

The Hurwitz or generalized Zeta function at integer points

ζ (s, α) ≡
∑
n≥0

1

(n+ α)
s , 0 < α ≤ 1, (1)

has a q-analogue [5, 6, 9], defined by

ζq (s, α) ≡
∑
n≥0

q(n+α)(s−1)

[n+ α]
s
q

, 0 < q < 1, 0 < α ≤ 1, (2)

where the q-number [z]q is defined through

[z]q ≡
1− qz

1− q
, z ∈ C. (3)

Notice that, the series (1) and (2) are convergent as Re s > 1.
As it’s known, nowadays there is no general rigorous definition of a q-analogues.

An intuitive definition of a q-analogues of a mathematical object G is a family of
objects Gq with 0 < q < 1, such that

lim
q→1−

Gq = G.

Observe that, it makes sense to call to (2) a q-analogue of (1), since

lim
q→1−

ζq (s, α) = ζ (s, α) .
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A special case of (3) when z ∈ N is

[n]q =
1− qn

1− q
=

∑
0≤j≤n−1

qj , n ∈ N,

which is called the q-analogue of n ∈ N, since

lim
q→1−

[n]q = lim
q→1−

∑
0≤j≤n−1

qj = n.

Another manner of represent to (1) it’s through

ζ (s, α) = α−s
∑
n≥0

αs (α+ 1)
s

(α+ 2)
s · · · (α+ n− 1)

s

(α+ 1)
s

(α+ 2)
s · · · (α+ 1 + n− 2)

s
(α+ 1 + n− 1)

s

= α−s
∑
n≥0

(1)n (α)
s
n

(α+ 1)
s
n

1n

n!
= α−ss+1Fs

 1, α, . . . , α
1

α+ 1, . . . , α+ 1

 (4)

s-times

= α−s
∑
n≥0

︷ ︸︸ ︷
2F1

 −n, 1 1
α+ 1

 · · · 2F1

 −n, 1 1
α+ 1

, (5)

where (·)k denotes the Pochhammer symbol, also called the shifted factorial, defined
by

(z)k ≡
∏

0≤j≤k−1

(z + j) , k ≥ 1,

(z)0 = 1, (−z)k = 0, if z < k,

which in terms of the gamma function is given by

(z)k =
Γ (z + k)

Γ (z)
, k = 0, 1, 2, . . . ,

and rFs denotes the ordinary hypergeometric series [4, 7, 8] with variable z is
defined by

rFs

 a1, . . . , ar
z

b1, . . . , bs

 ≡∑
k≥0

(a1, . . . , ar)k
(b1, . . . , bs)k

zk

k!
, (6)

being

(a1, . . . , ar)k ≡
∏

1≤i≤r

(ai)k ,

with {ai}ri=1 and {bj}sj=1 complex numbers subject to the condition that bj 6= −n
with n ∈ N\ {0} for j = 1, 2, . . . , s.

The equality (5) is justified by the Chu-Vandermonde identity [4, 7], which occur
very often in practice, and the same comes given by

2F1

 −n, b 1
c

 =
(c− b)n

(c)n
, n = 0, 1, 2, . . . . (7)
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Moreover, taking into account that the ordinary hypergeometric s+1Fs series is
called k-balanced if in s+1Fs the sum of denominator parameters is equal to k plus
the sum of numerator parameters, i.e.,∑

1≤j≤s

(bj − aj)− as+1 = k,

then, from (4) is deduce that ζ (s, α) is the product of α−s by a ordinary hypergeo-
metric s+1Fs series (s− 1)-balanced.

The structure of the paper is as follows. In Section 2, we compress some necessary
definitions and tools. Finally, in Section 3, we give the main results.

2. Basic definitions and notations

Here we will give some usual notions and notations used in q-Calculus, i.e the
q-analogues of the usual calculus.

Let the q-analogues of Pochhammer symbol or q-shifted factorial [4, 7] be defined
by

(a; q)n ≡

1, n = 0,∏
0≤j≤n−1

(
1− aqj

)
, n = 1, 2, . . . , (8)

where (
q−n; q

)
k

= 0, whenever n < k, (9)

(0; q)n = 1,

and

lim
q→1−

(qz; q)k

(1− q)k
= (z)k .

The formula (8) is known as the Watson notation [2, 3]. The q-binomial coefficient
[4, 7] is defined by [

n

k

]
q

≡
(q; q)n

(q; q)k (q; q)n−k
, k, n ∈ N,

and for complex z is defined by[
z

k

]
q

≡
(q−z; q)k
(q; q)k

(−1)
k
qzk−(k

2), k ∈ N. (10)

In addition, using the above definitions, we have that the binomial theorem

(x+ y)
n

=
∑

0≤k≤n

(
n

k

)
xkbn−k, n = 0, 1, 2, . . . ,

has a q-analogue of the form [1]-[4, pp. 25]

(xy; q)n =
∑

0≤k≤n

[
n

k

]
q

yk (x; q)k (y; q)n−k

=
∑

0≤k≤n

[
n

k

]
q

xn−k (x; q)k (y; q)n−k .
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In particular, when y = 0 we have that∑
0≤k≤n

[
n

k

]
q

xn−k (x; q)k = (0; q)n = 1. (11)

In comparison with the ordinary hypergeometric rFs series defined by (6), is present
here in a concise manner, the basic hypergeometric or q-hypergeome-tric rϕs series.
The details can be found in [4, 7].

Let {ai}ri=0 and {bj}si=0 be complex numbers subject to the condition that bj 6=
q−n with n ∈ N\ {0} for j = 1, 2, . . . , s. Then the basic hypergeometric or q-
hypergeometric rϕs series with variable z is defined by

rϕs

 a1, . . . , ar
q; z

b1, . . . , bs

 ≡∑
k≥0

(a1, . . . , ar; q)k
(b1, . . . , bs; q)k

(−1)
(1+s−r)k

q(1+s−r)(k
2) zk

(q; q)k
,

where

(a1, . . . , ar; q)k ≡
∏

1≤j≤r

(aj ; q)k .

In addition, for brevity, let us denote by
rϕs

 a1, . . . , ar
q; z

b1, . . . , bs

n = rϕ
n
s

 a1, . . . , ar
q; z

b1, . . . , bs

 , n = 1, 2, . . . .

Analogously to the ordinary hypergeometric s+1Fs series, the q-hypergeome-tric

s+1ϕs series is called k-balanced if b1b2 · · · bs = qka1a2 · · · as+1.
The q-hypergeometric rϕs series is a q-analogue of the ordinary hypergeometric

rFs series defined by (6) since

lim
q→1−

rϕs

 qã1 , . . . , qãr

q; z (q − 1)
1+s−r

qb̃1 , . . . , qb̃s

 = rFs

 ã1, . . . , ãr
z

b̃1, . . . , b̃s

 .

The q-analogue of the Chu-Vandermonde convolution (7) is given by

2ϕ1

 q−n, a

q;
bqn

a
b

 =

(
a−1b; q

)
n

(b; q)n
, n = 0, 1, 2, . . . , (12)

2ϕ1

 q−n, a
q; q

b

 =

(
a−1b; q

)
n

(b; q)n
an, n = 0, 1, 2, . . . . (13)

The details can be found in [4, 7].
In the last years, into the q-Calculus have been found many applications of the

quantum group theory. In particular, the q-hypergeometric rϕs series are applicable
nowadays to different subjects of combinatorics, quantum theory, number theory,
statistical mechanics, etc....
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3. Main Results

In this section we will give the main results.

Lemma 1. The following relation

2ϕ0

 q−n, z
q; qnz−1

−

 = z−n, n = 0, 1, 2, . . . ,

holds.

Proof. Since

2ϕ0

 q−n, z
q; qnz−1

−

 =
∑
k≥0

(q−n; q)k
(q; q)k

(−1)
k
qnk−(k

2) (z; q)k z
−k.

Then, from (9) and (10) we have that

2ϕ0

 q−n, z
q; qnz−1

−

 = z−n
∑

0≤k≤n

[
n

k

]
q

zn−k (z; q)k .

Finally, using (11) we get the desired result. �

Theorem 2. Let s be an integer number, with s > 1, |q| < 1 and 0 < α ≤
1. Then the q-analogue of the generalized Zeta function (2) admits the following
representations

i.)

ζq (s, α) = qα(s−1)

(
1− q

1− qα

)s
s+1ϕs

 q, qα, . . . , qα

q; qs−1

qα+1, . . . , qα+1

 , (14)

ii.)

ζq (s, α) = qα(s−1)

(
1− q

1− qα

)s
×
∑
n≥0

2ϕ0

 q−n, q
q; qn−1

−


2ϕ

s
1

 q−n, q
q; q

qα+1

 , (15)

iii.)

ζq (s, α) = qα(s−1)

(
1− q

1− qα

)s∑
n≥0

(−1)
n
q(

n
2)+nα

× 2ϕ1

 q−n, qα

q; qn+1

qα+1


2ϕ

s−1
1

 q−n, q
q; q

qα+1


× sϕs−1

 qn+1, qn+α, . . . , qn+α

q; qs−1

qn+α+1, . . . , qn+α+1

 . (16)
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Proof. In fact, firstly let’s prove i.). For such purpose it is enough to check

ζq (s, α) = qα(s−1)

(
1− q

1− qα

)s
×
∑
n≥0

(1− qα)
s

(1− qαq)s · · ·
(
1− qαqn−1

)s
qn(s−1)

(1− qα+1)
s · · · (1− qα+1qn−2)

s
(1− qα+1qn−1)

s

= qα(s−1)

(
1− q

1− qα

)s∑
n≥0

(q; q)n (qα; q)
s
n

(qα+1; q)
s
n

qn(s−1)

(q; q)n

= qα(s−1)

(
1− q

1− qα

)s
s+1ϕs

 q, qα, . . . , qα

q; qs−1

qα+1, . . . , qα+1

 . (17)

Clearly, according to (17), the function ζq (s, α) is the product of

qα(s−1)

(
1− q

1− qα

)s
,

by a q-hypergeometric s+1ϕs series (s− 1)-balanced.
Now let’s prove ii.). Taking into account

ζq (s, α) = qα(s−1)

(
1− q

1− qα

)s∑
n≥0

q−n
[

(qα; q)n
(qα+1; q)n

qn
]s
,

and using the lemma 1 as well as the q-Chu-Vandermonde formula (13) we obtain
the desired result for (15).

According to the q-Chu-Vandermonde formula (12), we have that

(qα; q)n
(qα+1; q)n

= 2ϕ1

 q−n, q
q; qn+α

qα+1


=

∑
k≥0

(q−n; q)k (q; q)k
(qα+1; q)k

qk(n+α)

(q; q)k

=
∑

0≤k≤n

(q−n; q)k
(qα+1; q)k

qk(n+α).

Consequently

ζq (s, α) = qα(s−1)

(
1− q

1− qα

)s∑
n≥0

(qα; q)
s−1
n

(qα+1; q)
s−1
n

qn(s−1)
∑

0≤k≤n

(q−n; q)k
(qα+1; q)k

qk(n+α).

Since (
q−n; q

)
k

=
(q; q)n

(q; q)n−k
(−1)

k
q(

k
2)−nk, k ≤ n.
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Then, as result we obtain that

ζq (s, α) = qα(s−1)

(
1− q

1− qα

)s
×
∑
k≥0

∑
n≥k

(q; q)n (qα; q)
s−1
n

(qα+1; q)
s−1
n (qα+1; q)k (q; q)n−k

(−qα)
k
q(

k
2)+n(s−1)

= qα(s−1)

(
1− q

1− qα

)s
×
∑
k≥0

∑
n≥0

(q; q)n+k (qα; q)
s−1
n+k

(qα+1; q)
s−1
n+k (qα+1; q)k (q; q)n

(
−qs−1+α

)k
q(

k
2)+n(s−1).

Using the property

(a; q)n+k = (a; q)n (aqn; q)k = (a; q)k (aqk; q)n,

we have

ζq (s, α) = qα(s−1)

(
1− q

1− qα

)s
×
∑
k≥0

(−1)
k
q(

k
2)+kα (q; q)k

(qα+1; q)k

(qα; q)
s−1
k

(qα+1; q)
s−1
k

qk(s−1)

×
∑
n≥0

(
qk+1; q

)
n

(
qk+α; q

)s−1

n

(qk+α+1; q)
s−1
n

qn(s−1)

(q; q)n
,

which coincides with (16). Thus, the proof is completed. �
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