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A g-ANALOGUE OF THE GENERALIZED
FACTORIAL NUMBERS

SEOK-ZUN SONG, GI-SANG CHEON, YOUNG-BAE JuN, AND LEROY B. BEASLEY

ABSTRACT. In this paper, more generalized g-factorial coefficients are
examined by a natural extension of the g-factorial on a sequence of any
numbers. This immediately leads to the notions of the extended g-Stirling
numbers of both kinds and the extended ¢-Lah numbers. All results
described in this paper may be reduced to well-known results when we
set ¢ = 1 or use special sequences.

1. Introduction

During the last several decades, the Stirling numbers of the first and second
kinds have been studied from many diverse viewpoints (see for example [2]-
[17]). A viewpoint of Carlitz [2], motivated by the enumeration problem for
Abelian groups, is to study the Stirling numbers as specializations of the ¢-
Stirling numbers. Originally, he defined the ¢-Stirling numbers of the second
kind as the numbers S,(n, k) in our notation such that

(1) 2" =3 g8, (n, k) el
k=0

where [z] and [z]; denote the g-number and the (falling) g-factorial of order k,
respectively defined as

(2] =(1-¢")/Q—q)=14+q+---+¢",
and
(2) [k = [z]lz — 1]+ [z —k+1] (k>1), [z]o=1

for real numbers z and gq.

Recently there has been interested in generalizing the g-factorial as well as
¢-Stirling numbers, see for example [3, 4, 14, 17]. This interest is largely moti-
vated by Carlitz [2]. He found for some purposes it is convenient to generalize
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the ¢-Stirling numbers, and studied the coefficients a,, x(r) such that

(3) [+ 1" Zq’“”ank )i

for any real number r. The expression (3) may be written as

(4) @] = 37 q@H S, (n, k1) — v,

k=0

which reduces to (1) when r = 0, where Sy(n, k;7) := q(g)amk(r).

In 2004, Charalambides [4] (also see [12]) called [x — 7] and Sq(n,k;r)
the non-central g-factorial of order k with non-centrality parameter r and the
non-central ¢g-Stirling numbers of the second kind, respectively. Moreover, he
(see [3, 4]) intensively investigated the generalized g-factorial coefficients with
increment h, Rq(n, k; h), and the non-central generalized g-factorial coefficients,
Cy(n, k;s,7), where

n—1 n
(5) [Tz —kh) = "G S ¢ R, (0, ks h) 2l
k=0 k=0
and
n—1
(6) H[sm+r— = ¢ () Zq Cy(n, ks s,7) @]k g0
k=0

In the present paper, more generahzed g-factorial coefficients which involve
Ry(n,k;h) and Cy(n,k;s,r) as well as central or non-central ¢-Stirling num-
bers of both kinds and ¢-Lah numbers are examined by a natural extension of
the g-factorial. This immediately leads to the notion of the extended ¢-Stirling
numbers of both kinds and the extended ¢-Lah numbers. Specifically, in Sec-
tion 2 we first define the extended g¢-factorial for a sequence a = (a,)n>0 of any
numbers. Then we develop the extension of the generalized g-factorial coeffi-
cients and obtain the explicit formula by aid of Newton’s general interpolation
formula based on the divided differences. In Section 3, we give the defini-
tion of the extended ¢-Stirling numbers of both kinds and the extended ¢-Lah
numbers, and we examine the connections with the generalized ¢-factorial coef-
ficients. In Section 4, the non-central ¢-Stirling numbers of both kinds with an
increment which generalize the non-central ¢-Stirling numbers examined in [4]
are developed. In Section 5 we obtain some interesting matrix factorizations
arising from the extended g-factorial coefficients, ¢-Stirling numbers of both
kinds and ¢-Lah numbers. In particular, the LDU-factorization of the Vander-
monde matrix is given. All results described in this paper may be reduced to
well-known results when we set ¢ = 1 or use special sequences for a.

Finally we should mention that similar generalizations of the factorial coef-
ficients can be found in the literature, see for example [6, 8, 14, 17]. However it
should also be emphasized that we have focused our attention on g-analogies of
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the generalized factorial coefficients and related numbers for any sequences. In
particular, our extended g-Stirling numbers allow a straightforward extension
of the notions of the central and non-central ¢-Stirling numbers presented in
[4, 12].

2. Extended g-factorial coefficients

We begin this section defining the extended q-factorial of order n associated
with o sequence oo = (o, )n>0 of any numbers, denoted by f,(z; a), as

M false)={ ool m el m el 2

For the sake of notational convenience we shall mean o —ap = (tn — @0 )n>0,
a—1=(a, —1)p>o and —a = (—a)n>0. We note that f,(z;a) may be
considered as the central or non-central extended g-factorial along with ag = 0
or ag # 0, respectively. Also one may consider f,(z;a — ag) as the central
extended ¢-factorial by means of

fa(@ia =) = [2][z — (1 — a0)] -+ [ = (-1 — ag)], n>1.

We shall take f,(z; —«a) as the notation for the extended rising g-factorial of
order n associated with @ = (& )n>0 by means of

folz;—a) =[x + agllr + a1] -+ - [ + an—1], folz;—a)=1.
By the ¢-Newton’s formula (see [4]), the expansion of the extended ¢-factorial
fn(z; @) into a polynomial of g-factorial [z]j is given by

1
(8) o) = 32 i [l

=0
where A% is the g-difference operator of order k defined by AF = (E —1)(E —
q) -+ (E — ¢* 1) together with the usual shift operator E.

We suppose that o = (a)n>0 and 8 = (8,)n>0 are two distinct sequences.

Applying Newton’s general interpolation formula [11] based on the divided
differences, we easily obtain the expansion of f,(z;«) into a polynomial of

fn(; B) given by

(9) =D ¢ (Df fulws ),y fil; B),

k=0
where Cr(8) = f1+ P2+ -+ Br—1 and D’qC is the g-divided difference operator
of order k defined by
Dgilfn(ﬁ @) — Dgilfn(ﬂld @)
(=] — [B%]
The following theorem provides very useful another generalization for g-
Stirling numbers of both kinds and ¢-Lah numbers in the next section.

(10) Dy fala; ) =
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Theorem 2.1. Given the sequences o = (ap)n>0 and f = (Bn)n>0 of any
numbers, the followings are equz’valent:

(i) fo(z;0) = ¢ () Z Py (n, ks o, B) fio(a; B);

( ) (n k; o 5) (n LE—-1; 0475) ([/Bk]_[O‘nfl])Qq(n_Lk;avﬁ)f
Q,(0,0; 0, B3) = 1;
(i) Qq(n, ko, ) = z 4 i f;ﬁfwo“m) if B; # B; for eachi,j=0,... .k,

QQ(n’O;aaﬁ) - Hi:o ([ﬁ(ﬂ [ 1])7 (n > 1)7

where Cp(@) :=ap+ a1 + -+ + ap—1 and Co(a) = 0 are assumed.
Proof. Comparing (i) with (9), we get

Qq(n, k; a0, B) = ¢ [Dy fulz; )], -
Using the identity fo (30) = g~ (2] — [an_1])fo_1(z; ), we get

Qq(n, ks o, B) = ¢ DE fr(210)|o=p,
= ¢“ 1Dy (2] = [Br]) 1 (25 @) la=g
+ (B8] = [an—1])g® D} fro (25 ) o=

= ¢S IDEHD (2] = [Br]) fr1 (w5 0) Y=g,
+([ﬂk] [an 11)2g(n =1,k 0, 8)
= Q(n =1,k =L, B) + ([6k] = [om1])Q(n = 1, k; 0, B),

(
which proves (i) < (ii).
The relation (i) < (iii) is easily seen by

Dk - . _ fn(ﬁOa ) fn(ﬂl;a) fn(ﬂk?a) k=0.1....
qf (ﬂ07 ) (ﬁO; +Wk(ﬁ17ﬁ)+ +w (6k)7ﬁ), ( D) ,Tl),
where wy(8;,6) = %W\ e=p; With wo(8;,8) = 1.
Hence the proof is complete. ([

Theorem 2.1 suggests that many well-known results can be derived when we
set ¢ = 1 or use special sequences « and 5. We call the coefficients Q,(n, k; o, 5)
the extended q-factorial coefficients associated with the sequences o and (3.

By aid of the formula
k . k=i | k
(11) Af;fn(x,a) = Z(_l)k—Jq( 27) |;]] folz + j;a),
§=0
we can easily derive the following corollary from Theorem 2.1.

Corollary 2.2. Given the sequence o = (u)n>0 of any numbers, the follow-
ings are equivalent:
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() folas) = a7 3 g0, m, ksl
cn,<a>;_(’5) k K-

(i) Q(n,k;0) = g 30 (=14 g2 [} £ (G a);

(i) (0, k5 0) = Qy(n — 1,k — 1;0) + (K] — [an_1))2(n — 1, ki),
Q,(0,0;a) = 1.

We observe that the formula (i) above corollary may be regarded as an
extension of both (5) and (6). If each «,, is replaced by nh, then we obtain
immediately R,(n,k;h) = Qq(n, k;a). If each a,, is replaced by "=*, then we
obtain

ﬁ[sx+r—k]: [5]”ﬁ [a; ks’ﬂLs

k=0 k=0

— ¢ (3) 2": ¢°(2) {[S]nq(s_l)(m_(g)mqs (n, k; oz)} (@], q= -
k=0

It implies that Cy(n, k;s,r) = [s]"q(sfl)("“(g))Qqs (n, k; ).

3. Extended g¢-Stirling and g-Lah numbers

Since the extended g¢-factorial f,(x;«) is a polynomial of the g-number [z]
of degree n > 1, by following Carlitz [2] it would be natural to define more
generalized ¢-Stirling numbers of the first and second kind related to f,(z; @)
denoted by sq(n, k; o) and Sy(n, k; a), respectively as follows:

n

(12) Falw; ) = ¢ > sy (n, k; ) [a]”,
k=0
and
(13) [2]" = > ¢S5y (n, k; ) fu(; ).
k=0

In a similar way, we may express the extended rising g¢-factorial f,(z; —«)
associated with the sequence o = (o, )n>0 by

(14) Falws—a) = ¢ 57 O L (n, ks ) fua: ).
k=0

We should also mention that (12) and (13) yield the following orthogonality
relation:

n n

(15) Z sq(i, k; ) Sy(k, j;a) = ZSq(i, k;a)sq(k, j;a) = 6;5,
k=0 k=0

where d;; is the Kronecker’s delta.
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Further, given sequences a = (ay,)n>0 and = (8, )n>0 of any numbers the
extended g¢-factorial f, (x; @) may be expressed by

fulwia) = > sy (n, k; ) qu (k. j; B) f;(x; B)

k=0

n

=g N O S s (n,55.0) Sy (G, 3 B) | (s B)
k=0

=k

Comparing above expression with (i) of Theorem 2.1, we obtain the following
theorem.

Theorem 3.1. Let oo = (ap)n>0 and 8 = (Bn)n>0 be sequences of any numbers.

Then we have

(16) Qq(n, ks, 8) =Y 5q(n, 55 2) S5, k3 B).
j=k
If @ = (n)n>0, then fi(z;«) reduces to g-factorial [z];. It means s4(n, k; o),
Sq(n, k; ) and L, (n, k; ) reduce to the ordinary ¢-Stirling numbers of the first
and second kind and g-Lah numbers, respectively. Further, by setting ¢ = 1
these three numbers reduce to Comtet’s generalized Stirling numbers of both
kinds [6] and the generalized Lah numbers which are related to the generalized
factorial (x; o)y == (z—ap)(r—a1) - - - (x—apn_1) for any sequence a = (o )n>0,
respectively. For the reason, we will call the coefficients s,(n, k; ), Sqy(n, k; o)
and L,(n,k;a) appearing in (12), (13) and (14), respectively, the extended
q-Stirling numbers of first and second kind and the extended q-Lah numbers
associated with the sequence o = (on)n>0-
We note that these special numbers may be obtained in some connections
with the extended g-factorial coefficients Q,(n, k; , 3):
(1) sq(n,k; ) = Qq(n, k; o, 0);
(i) Sq(n, k; o) = Qq(n, k30, a);
(iil) Lg(n, k;a) = Qq(n, k; —o, ).
The following result can be easily derived from Theorem 2.1.

Theorem 3.2. Given a sequence a = (a,)n>0 of any numbers, we have:

(1) sq(n,k;a) =s4(n—1,k — 1;a) — [an—1]sq(n — 1, k; @), $4(0,0;0) = 1;

(i) Sy(n,k;a) = Sy(n— 1,k — 1; ) + [ag)Sy(n — 1, ks ), S4(0,0;) =1
(iii) Lg(n, k;a)= Lq(n — 1,k — 1)+ ([ag] —[—an-1])Le(n — 1, k; a),
L,(0,0;0) =1;
0 0= el
c;€{0,1}
) Symkia)= 5 gl

¢;€40,1,...,n}

(Vl) Lq(na ka O[) = Z;L:k Sq(naj; —Oé)Sq(j, kv Oé);
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Ik

o0
(vii) 2_3 (k)" = e e

(vii) 32 sq(m, ;) = (1~ foola) (1~ fonJe) - (1~ fon a]e).

We point out that the above theorem may be also derived from some known
results for Comtet’s generalized Stirling numbers [6].

Corollary 3.3. Let a = (ap)n>0 be a sequence of any numbers. Then we have:

(i) Sq(n, k;) = Z qU =R ao]" 7 (1) Sy (4, ks o — a);

3

GU%@%w%z%ﬁ”“%F%V*@%mma—%)

§=

Proof. We only give the proof of (i) since (ii) may be proved analogously. First,
let ap # 0 and let & = 0. Since S4(0,0; ¢ — ) = 1 and Sy(n, 0;a — g) = 0 for
n > 1, (i) gives Sy(n,0;a) = [ap]™. Hence (i) holds for k¥ = 0. Now the proof
is by 1nduct10n on n. Clearly (i) holds when n = 1. Assume that n > 2, k > 1.
From (ii) of Theorem 3.2 we have

n—1
a(n, k3 ) Z R T J( ; )Sqo',kl;aao)

j=k—1
n—1 . -1
+[0‘k]zq(jk)a°[ozo}nlj( i )Sq(j,k;ozozo).
=k

Apply [ak] = [ao] + g [ax — ap] to the last equation and combine the first and
second summation using the Pascal identity and Sq(j,k — 1;a — o) + [ow —
aglSqe(J, by — ap) = S¢(j + 1,k;a — ag). Then it is easily seen that

n—1
(N, k; ) Zq] k)o‘o (])S(],ka o)

+q(” k)ew g (n, ka0 — ap)

_ Zq(g Baofq <3>S (o Ks o — ),

which completes the proof. O

We conclude this section describing the familiar formulae for the ¢-Stirling
numbers s4(n, k) and S,(n, k), and ¢g-Lah numbers L,(n, k). By a ¢-binomial
coefficient we shall mean

{n] B [n]!
rl, [rlfn—r]!

where n and r are nonnegative integers and [n]! = [n]|[n — 1] -- - [1].
The following may be easily deduced from Theorem 3.2 and Corollary 3.3:
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(i) Sq(n, k) = |
(i) sq(n, k) =

(iii) Lg(n, k) =

We also note that the expression (i), (iii) were obtained in [17] and (ii) was
obtained in [16].

f ye=ig("2") =G ] [j]m;

> (—1)77*q I (121) sq(n = 1,5 — 1);
)—(’2‘)[%1] [nt

k—11g TR]T"

Mﬁ ?v‘H

mwk‘

4. Examples

Let us define the non-central generalized q-factorial with both increment h
and non-centrality parameter r of order n denoted by [z; 7, hl, as

(17) [x;r Rl =[x —7r][t—r—h] [z —r — (n—1)h)].

By setting h =1 or r = 0, [x;7, h], is reduced to the noncentral g-factorial
with non-centrality parameter r or the central generalized g-factorial with in-
crement h given in (4) and (5), respectively.

In this section, we investigate the ¢-Stirling numbers of both kinds and
the ¢g-Lah numbers corresponding to the generalized g-factorial [z;r, k], as
the special examples of our extended g-factorial coefficients. First note that
[;7, ], may be considered as f,(x;a) with a = (r + nh),>o by means of
falz;r+nh) =z —r]lx—(r+h)] [z —(r+ (n—1)h)]. Thus (12), (13) and
(14) respectively can be expressed by

(i) [z;7, hl, = qu’*(g)h En: sq(n, ks, h)[x]*;

. k=0
(ii) [z]" = qkﬂr( )hSq(n,k,T, h)[z; 7, hlk;
k=0 .
(iif) [2; -7, —hlx = an+(§)h > qkr+(g)th(n,k‘;7‘, h)[x;r, hg.
k=0

We call s,(n, k;r, h), Sq(n,k;r,h) and Ly(n, k;r, h) the non-central g-Stirling
numbers of the first and second kind with both increment h and non-centrality
parameter v and non-central q-Lah numbers with both increment h and non-
centrality parameter r, respectively.

Theorem 4.1. The Sy(n, k;r, h) satisfy the following explicit formula:

(hkr

(18) Sy (n,k;r,h) = L ,Z "2 hm h[r+jh]”.

Proof. From the expression (iii) for Q,(n, k; o, 8) with @ = 0 in Theorem 2.1,
we have

(19) Sq(n,k;r h) = i . [B;]" '
20 lico, iz (18] = [B:])
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By aid of [z] — [y] = ¢Y[x —y], [xh] = [z],n[h] and [—x] = —¢~*[z] with the
g"-number [z],» and B = (r 4+ nh),>0, we get
k
([8)] = 18:]) = ¢+ OB GR][(j = 1)A] -~ [A][=R][=2R] - [~ (k — 5)h]
i=0, i

= (-1 O A — 0!

= (_l)k—jqkr—((kgj)_(’;))h[h]k[k]qh! (W) .

q
Hence (18) follows from (19). O

The following is an immediate consequence of Corollary 3.3.

Corollary 4.2. The sq(n,k;r, h) and Sy(n, k;r, h) satisfy the following relat-
10ns:

(l) sq(n,k;r, h) q(n_k)T[_r]j_k(i)Sq(n,j;h);

(i) Sy(nkir.h) = > g0 [r]=3 (%) S, (. ks ),

n
-y
=k

n
-3
j=k
where sq(n, k;h) and Sy(n, k; h) are the central generalized g-Stirling numbers
of the first and second kind with an increment h, i.e., r = 0, investigated in

3].

5. Matrix factorizations

In this section, we develop special matrices arising from the extended g-
factorial coefficients Q4(n, k; o, 5). Define the n x n matrix Q4 (n; «, 3) by

Qq(4, 750, 8 if i>j52>0,
[Qq(n; 0, B)]i; = { 0 o] ) otherwige,

where the rows and columns are indexed by 0,1,...,n—1. Similarly the matri-
ces sq(n; @), Sq(n; ) and Lg(n; o) corresponding to sq(n, k; o), Sq(n, k; o) and
L,(n, k; ) respectively can be defined as Q4 (n;«a, 3). We will see how these
matrices are connected with each other and are related to the g-Vandermonde
matrix V([ao], [1], - - -, [an—1])-

We first define the n x n (n > 2) matrix Fq(e)(oz), ¢=0,...,n—2, for any
numbers «q, a1, ... by

[ag] 1
where I,,_;_5 is the identity matrix of order n — ¢ — 2, and @ denotes the direct
sum of matrices and unspecified entries are all zeros.
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Lemma 5.1. The n x n matriz Q4(n; o, 8), n > 2, may be factorized by
(20)  Qy(msa,B) = (F" 2 () (L @ Qq(n — 150, 8))Fy" 2 (5).
Proof. From the recurrence relation for Q4(n, k; o, 3) in Theorem 2.1, we have
Qe(n, ko, B) + [an—1]Qq(n — 1, k; 0, B)
=Qin—1,k—-10,0) + [Be]Q(n — 1, k; 0, B),
which implies that
F"™2(a)Qq(n; o, ) = (I & Qq(n — Lo, B))F" 2 (B).
Hence the proof is complete. (]
The following is an immediate consequence of (20) and (16).

Corollary 5.2. The n x n matriz Qq(n; o, 8), n > 2, may be factorized by

(i) Qq(nsa, B) = (Fg” (@) - Fy" (@) "M ED(B) - "2 (8));
(ii) Qq(n;a,ﬂ) = Sq(nQO‘)Sq(mﬂ)'

For example, if n = 4, then we have:

100071t 0 o001 0 oo\ "
01 00|01 00| 1 00
L B)=1100 1 0| [0fag] 1 0] [0][a1] 10
00fao] 1] |0 0 Jau]1]| | 0 0 Jag]l
1000][to 00][1 0 00
01 00|01 00|]|[B] 1 00
“1 oo 10 {o[ﬁo} 1 0[]0 ([& 1O
00[B] 1] [0 0 [B]1 0 0 [B]1
1 0 0 0
B —[ao) 1 0 0
| [eo]lad] —([ao]+[a1]) 1 0
—[ao][e1][e2] o] [eer] + [vo] [eva] + [ —([ovo] +[ox )1
1 0 0
« | [Bo 1 0]
Bo)? [Bo] + [B1] 0
[B0]? [Bo]? + [Bo][B1] + [61)? [Bo] + 1

The following is an immediate consequence of (15), Theorem 3.1, Theo-
rem 3.2, Corollary 3.3, and Corollary 5.2.

Theorem 5.3. The n x n matrices sq(n; ), Sq(n;a), Ly(n;a) have the fol-
lowing matriz factorizations:
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(i) sq(n;@)Sq(n; @) = In;
(i) Sy(n;a) = F\()FV () - B2 ();

(i) s, (n; ) = (1 ® 84(n — Lo — o)) Pu(—[aw])  if o # 0,
o L@ (3¢(n — Lia = 1)P ) if ap = 0;
() Sy(mia) = { Pu(lool)(11 © Sy(n — L;a —a0)) ifag #0,

L& (P—1S(n—1;a0—1)) if ag = 0;
(v) Lg(n;a) = s4(n; — ;
(vi) (Lg(n;))~t = Ly(n; —a),

where 3,(n — 1;a — ag) and Sy(n — 1;00 — ag) are (n — 1) x (n — 1) matrices

defined by

. ¢ 0s(n— 15d, jia—ag) ifn—1>i>j5>1,
[¢(n — Lo — )i, = )
0 otherwise,

(i=fao g 147 — f n — ) ]
N q (n 1727],04 Oé()) an IZZZ]ZL
[Sq(n =Ly — o), ; = { ! 0 otherwise

Further, the extended g-factorial f,(x;«) can be used to obtain the LDU-
decomposition of the n x n g¢-Vandermonde matriz

Vy(n;a) :== V(lagl, [ai], . . ., [an—1]) = ([os])ij0-

Let Uy(n;a) denote the n x n matrix defined by [Uy(n;)l;; = fi(ay; ), and
let D, (n; ) = diag(g€0(™), g€ (@) ... ¢Cn-1(2)). Note that U,(n; ) is an upper
triangular matrix since f;(a;; ) =0if i > j.

The following theorem may be easily obtained by setting £ = o; and n =4
for each 4,7 =0,1,...,n— 1 in (13) (also see [16]).

Theorem 5.4. Given a sequence a = (au)n>0 of any different numbers, the
q-Vandermonde matriz Vy(n; o) may be factorized by

Vy(n; ) = Sq(n; a) Dy (n; @)Uy (n; @),
where Sq(n; a) is the generalized g-Stirling matriz of the second kind.

Thus given a sequence o = (aw,)n>0 of any different numbers, V,(n;a) is
nonsingular and by using ¢% [a;; — o] = [¢y;] — ;] we obtain

det V,(n; ) = H (loj] = [as]).

0<i<j<n

Remark. If we take oy, = x for all k = 0,1,...,n — 1, then S;(n; ) is exactly
the same as P,([z]) = [(;) [z]*77]. Thus our results examined in the present
paper may be used to obtain a g-analogue of the Pascal matrix. We omit the
details here.



656

(1]

S.-Z. SONG, G.-S. CHEON, Y.-B. JUN, AND L. B. BEASLEY

References

G. S. Call and D. J. Vellemam, Pascal’s matrices, Amer. Math. Monthly 100 (1993),
no. 4, 372-376.

L. Carlitz, g-Bernoulli numbers and polynomials, Duke Math. J. 15 (1948), 987-1000.
Ch. A. Charalambides, On the g-differences of the generalized q-factorials, J. Statist.
Plann. Inference 54 (1996), no. 1, 31-43.

, Non-central generalized q-factorial coefficients and q-Stirling numbers, Dis-
crete Math. 275 (2004), no. 1-3, 67-85.

G.-S. Cheon and J.-S. Kim, Stirling matriz via Pascal matriz, Linear Algebra Appl.
329 (2001), no. 1-3, 49-59.

L. Comtet, Nombres de Stirling générauz et fonctions symétriques, C. R. Acad. Sci.
Paris Ser. A-B 275 (1972), A747-A750.

, Advanced Combinatorics, D. Reidel Publishing Co., Dordrecht, 1974.

H. W. Gould, The q-Stirling numbers of first and second kinds, Duke Math. J. 28
(1961), 281-289.

L. C. Hsu, A summation rule using Stirling numbers of the second kind, Fibonacci
Quart. 31 (1993), no. 3, 256-262.

L. C. Hsu and P. Shiue, A unified approach to generalized Stirling numbers, Adv. in
Appl. Math. 20 (1998), no. 3, 366—384.

C. Jordan, Calculus of Finite Differences, Chelsea Pub. Co., New York, 1950.

M. Koutras, Noncentral Stirling numbers and some applications, Discrete Math. 42
(1982), no. 1, 73-89.

D. E. Loeb, A generalization of the Stirling numbers, Discrete Math. 103 (1992), no.
3, 259-269.

A. De Medicis and P. Leroux, Generalized Stirling numbers, convolution formulae and
p, g-analogues, Canad. J. Math. 47 (1995), no. 3, 474-499.

S. C. Milne, A g-analog of restricted growth functions, Dobinski’s equality, and Charlier
polynomials, Trans. Amer. Math. Soc. 245 (1978), 89-118.

H. Oruc and H. K. Akmaz, Symmetric functions and the Vandermonde matriz, J.
Comput. Appl. Math. 172 (2004), no. 1, 49-64.

C. G. Wagner, Generalized Stirling and Lah numbers, Discrete Math. 160 (1996), no.
1-3, 199-218.

SEOK-ZUN SONG

DEPARTMENT OF MATHEMATICS

JEJU NATIONAL UNIVERSITY

CHEJU 690-756, KOREA

E-mail address: szsong@cheju.ac.kr

GI-SANG CHEON

DEPARTMENT OF MATHEMATICS
SUNGKYUNKWAN UNIVERSITY
SUWON 440-746, KOREA

E-mail address: gscheon@skku.edu

YOUNG-BAE JuUN

DEPARTMENT OF MATHEMATICS EDUCATION
GYEONGSANG NATIONAL UNIVERSITY
CHINJU 660-701, KOREA

E-mail address: ybjun@gsnu.ac.kr



A ¢-ANALOGUE OF THE GENERALIZED FACTORIAL NUMBERS 657

LERoOY B. BEASLEY

DEPARTMENT OF MATHEMATICS AND STATISTICS
UTAH STATE UNIVERSITY

Locan, UT 84322-3900, U.S.A

E-mail address: 1beasley@math.usu.edu



