A q-ANALOGUE OF THE GENERALIZED FACTORIAL NUMBERS

Seok-Zun Song, Gi-Sang Cheon, Young-Bae Jun, and LeRoy B. Beasley

Abstract

In this paper, more generalized q-factorial coefficients are examined by a natural extension of the q-factorial on a sequence of any numbers. This immediately leads to the notions of the extended q-Stirling numbers of both kinds and the extended q-Lah numbers. All results described in this paper may be reduced to well-known results when we set $q=1$ or use special sequences.

1. Introduction

During the last several decades, the Stirling numbers of the first and second kinds have been studied from many diverse viewpoints (see for example [2][17]). A viewpoint of Carlitz [2], motivated by the enumeration problem for Abelian groups, is to study the Stirling numbers as specializations of the q Stirling numbers. Originally, he defined the q-Stirling numbers of the second kind as the numbers $S_{q}(n, k)$ in our notation such that

$$
\begin{equation*}
[x]^{n}=\sum_{k=0}^{n} q^{\binom{k}{2}} S_{q}(n, k)[x]_{k}, \tag{1}
\end{equation*}
$$

where $[x]$ and $[x]_{k}$ denote the q-number and the (falling) q-factorial of order k, respectively defined as

$$
[x]=\left(1-q^{x}\right) /(1-q)=1+q+\cdots+q^{x-1},
$$

and

$$
\begin{equation*}
[x]_{k}=[x][x-1] \cdots[x-k+1] \quad(k \geq 1), \quad[x]_{0}=1 \tag{2}
\end{equation*}
$$

for real numbers x and q.
Recently there has been interested in generalizing the q-factorial as well as q-Stirling numbers, see for example [3, 4, 14, 17]. This interest is largely motivated by Carlitz [2]. He found for some purposes it is convenient to generalize

[^0]the q-Stirling numbers, and studied the coefficients $a_{n, k}(r)$ such that
\[

$$
\begin{equation*}
[x+r]^{n}=\sum_{k=0}^{n} q^{\left(\frac{k+r}{2}\right)} a_{n, k}(r)[x]_{k} \tag{3}
\end{equation*}
$$

\]

for any real number r. The expression (3) may be written as

$$
\begin{equation*}
[x]^{n}=\sum_{k=0}^{n} q^{\binom{k}{2}+k r} S_{q}(n, k ; r)[x-r]_{k}, \tag{4}
\end{equation*}
$$

which reduces to (1) when $r=0$, where $S_{q}(n, k ; r):=q^{\binom{r}{2}} a_{n, k}(r)$.
In 2004, Charalambides [4] (also see [12]) called $[x-r]_{k}$ and $S_{q}(n, k ; r)$ the non-central q-factorial of order k with non-centrality parameter r and the non-central q-Stirling numbers of the second kind, respectively. Moreover, he (see $[3,4]$) intensively investigated the generalized q-factorial coefficients with increment $h, R_{q}(n, k ; h)$, and the non-central generalized q-factorial coefficients, $C_{q}(n, k ; s, r)$, where

$$
\begin{equation*}
\prod_{k=0}^{n-1}[x-k h]=q^{-h\binom{n}{2}} \sum_{k=0}^{n} q^{\binom{k}{2}} R_{q}(n, k ; h)[x]_{k} \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
\prod_{k=0}^{n-1}[s x+r-k]=q^{r n-\binom{n}{2}} \sum_{k=0}^{n} q^{s\binom{k}{2}} C_{q}(n, k ; s, r)[x]_{k, q^{s}} . \tag{6}
\end{equation*}
$$

In the present paper, more generalized q-factorial coefficients which involve $R_{q}(n, k ; h)$ and $C_{q}(n, k ; s, r)$ as well as central or non-central q-Stirling numbers of both kinds and q-Lah numbers are examined by a natural extension of the q-factorial. This immediately leads to the notion of the extended q-Stirling numbers of both kinds and the extended q-Lah numbers. Specifically, in Section 2 we first define the extended q-factorial for a sequence $\alpha=\left(\alpha_{n}\right)_{n \geq 0}$ of any numbers. Then we develop the extension of the generalized q-factorial coefficients and obtain the explicit formula by aid of Newton's general interpolation formula based on the divided differences. In Section 3, we give the definition of the extended q-Stirling numbers of both kinds and the extended q-Lah numbers, and we examine the connections with the generalized q-factorial coefficients. In Section 4, the non-central q-Stirling numbers of both kinds with an increment which generalize the non-central q-Stirling numbers examined in [4] are developed. In Section 5 we obtain some interesting matrix factorizations arising from the extended q-factorial coefficients, q-Stirling numbers of both kinds and q-Lah numbers. In particular, the LDU-factorization of the Vandermonde matrix is given. All results described in this paper may be reduced to well-known results when we set $q=1$ or use special sequences for α.

Finally we should mention that similar generalizations of the factorial coefficients can be found in the literature, see for example [6, 8, 14, 17]. However it should also be emphasized that we have focused our attention on q-analogies of
the generalized factorial coefficients and related numbers for any sequences. In particular, our extended q-Stirling numbers allow a straightforward extension of the notions of the central and non-central q-Stirling numbers presented in $[4,12]$.

2. Extended \boldsymbol{q}-factorial coefficients

We begin this section defining the extended q-factorial of order n associated with a sequence $\alpha=\left(\alpha_{n}\right)_{n \geq 0}$ of any numbers, denoted by $f_{n}(x ; \alpha)$, as

$$
f_{n}(x ; \alpha)= \begin{cases}{\left[x-\alpha_{0}\right]\left[x-\alpha_{1}\right] \cdots\left[x-\alpha_{n-1}\right]} & \text { if } n \geq 1 \tag{7}\\ 1 & \text { if } n=0 .\end{cases}
$$

For the sake of notational convenience we shall mean $\alpha-\alpha_{0}=\left(\alpha_{n}-\alpha_{0}\right)_{n \geq 0}$, $\alpha-1=\left(\alpha_{n}-1\right)_{n \geq 0}$ and $-\alpha=\left(-\alpha_{n}\right)_{n \geq 0}$. We note that $f_{n}(x ; \alpha)$ may be considered as the central or non-central extended q-factorial along with $\alpha_{0}=0$ or $\alpha_{0} \neq 0$, respectively. Also one may consider $f_{n}\left(x ; \alpha-\alpha_{0}\right)$ as the central extended q-factorial by means of

$$
f_{n}\left(x ; \alpha-\alpha_{0}\right)=[x]\left[x-\left(\alpha_{1}-\alpha_{0}\right)\right] \cdots\left[x-\left(\alpha_{n-1}-\alpha_{0}\right)\right], \quad n \geq 1 .
$$

We shall take $f_{n}(x ;-\alpha)$ as the notation for the extended rising q-factorial of order n associated with $\alpha=\left(\alpha_{n}\right)_{n \geq 0}$ by means of

$$
f_{n}(x ;-\alpha)=\left[x+\alpha_{0}\right]\left[x+\alpha_{1}\right] \cdots\left[x+\alpha_{n-1}\right], f_{0}(x ;-\alpha)=1 .
$$

By the q-Newton's formula (see [4]), the expansion of the extended q-factorial $f_{n}(x ; \alpha)$ into a polynomial of q-factorial $[x]_{k}$ is given by

$$
\begin{equation*}
f_{n}(x ; \alpha)=\sum_{k=0}^{n} \frac{1}{[k]!}\left[\Delta_{q}^{k} f_{n}(x ; \alpha)\right]_{x=0}[x]_{k}, \tag{8}
\end{equation*}
$$

where Δ_{q}^{k} is the q-difference operator of order k defined by $\Delta_{q}^{k}=(E-1)(E-$ $q) \cdots\left(E-q^{k-1}\right)$ together with the usual shift operator E.

We suppose that $\alpha=\left(\alpha_{n}\right)_{n \geq 0}$ and $\beta=\left(\beta_{n}\right)_{n \geq 0}$ are two distinct sequences. Applying Newton's general interpolation formula [11] based on the divided differences, we easily obtain the expansion of $f_{n}(x ; \alpha)$ into a polynomial of $f_{n}(x ; \beta)$ given by

$$
\begin{equation*}
f_{n}(x ; \alpha)=\sum_{k=0}^{n} q^{\mathcal{C}_{k}(\beta)}\left(\mathcal{D}_{q}^{k} f_{n}(x ; \alpha)\right)_{x=\beta_{0}} f_{k}(x ; \beta) \tag{9}
\end{equation*}
$$

where $\mathcal{C}_{k}(\beta)=\beta_{1}+\beta_{2}+\cdots+\beta_{k-1}$ and \mathcal{D}_{q}^{k} is the q-divided difference operator of order k defined by

$$
\begin{equation*}
\mathcal{D}_{q}^{k} f_{n}(x ; \alpha)=\frac{\mathcal{D}_{q}^{k-1} f_{n}(x ; \alpha)-\mathcal{D}_{q}^{k-1} f_{n}\left(\beta_{k} ; \alpha\right)}{[x]-\left[\beta_{k}\right]} . \tag{10}
\end{equation*}
$$

The following theorem provides very useful another generalization for q Stirling numbers of both kinds and q-Lah numbers in the next section.

Theorem 2.1. Given the sequences $\alpha=\left(\alpha_{n}\right)_{n \geq 0}$ and $\beta=\left(\beta_{n}\right)_{n \geq 0}$ of any numbers, the followings are equivalent:
(i) $f_{n}(x ; \alpha)=q^{-\mathcal{C}_{n}(\alpha)} \sum_{k=0}^{n} q^{\mathcal{C}_{k}(\beta)} \Omega_{q}(n, k ; \alpha, \beta) f_{k}(x ; \beta)$;
(ii) $\Omega_{q}(n, k ; \alpha, \beta)=\Omega_{q}(n-1, k-1 ; \alpha, \beta)+\left(\left[\beta_{k}\right]-\left[\alpha_{n-1}\right]\right) \Omega_{q}(n-1, k ; \alpha, \beta)$, $\Omega_{q}(0,0 ; \alpha, \beta)=1 ;$
(iii) $\Omega_{q}(n, k ; \alpha, \beta)=\sum_{j=0}^{k} \frac{\prod_{i=0}^{n-1}\left(\left[\beta_{j}\right]-\left[\alpha_{i}\right]\right)}{\left.\prod_{i=0, i \neq j}^{k}\left[\beta_{j}\right]-\left[\beta_{i}\right]\right)}$ if $\beta_{i} \neq \beta_{j}$ for each $i, j=0, \ldots, k$, $\Omega_{q}(n, 0 ; \alpha, \beta)=\prod_{i=0}^{n-1}\left(\left[\beta_{0}\right]-\left[\alpha_{i}\right]\right),(n \geq 1)$,
where $\mathcal{C}_{n}(\alpha):=\alpha_{0}+\alpha_{1}+\cdots+\alpha_{n-1}$ and $\mathcal{C}_{0}(\alpha)=0$ are assumed.
Proof. Comparing (i) with (9), we get

$$
\Omega_{q}(n, k ; \alpha, \beta)=q^{\mathcal{C}_{n}(\alpha)}\left[\mathcal{D}_{q}^{k} f_{n}(x ; \alpha)\right]_{x=\beta_{0}} .
$$

Using the identity $f_{n}(x ; \alpha)=q^{-\alpha_{n-1}}\left([x]-\left[\alpha_{n-1}\right]\right) f_{n-1}(x ; \alpha)$, we get

$$
\begin{aligned}
\Omega_{q}(n, k ; \alpha, \beta)= & \left.q^{\mathcal{C}_{n}(\alpha)} \mathcal{D}_{q}^{k} f_{n}(x ; \alpha)\right|_{x=\beta_{0}} \\
= & \left.q^{\mathcal{C}_{n-1}(\alpha)} \mathcal{D}_{q}^{k}\left([x]-\left[\beta_{k}\right]\right) f_{n-1}(x ; \alpha)\right|_{x=\beta_{0}} \\
& +\left.\left(\left[\beta_{k}\right]-\left[\alpha_{n-1}\right]\right) q^{\mathcal{C}_{n-1}(\alpha)} \mathcal{D}_{q}^{k} f_{n-1}(x ; \alpha)\right|_{x=\beta_{0}} \\
= & \left.q^{\mathcal{C}_{n-1}(\alpha)} \mathcal{D}_{q}^{k-1}\left\{\mathcal{D}_{q}\left([x]-\left[\beta_{k}\right]\right) f_{n-1}(x ; \alpha)\right\}\right|_{x=\beta_{0}} \\
& +\left(\left[\beta_{k}\right]-\left[\alpha_{n-1}\right]\right) \Omega_{q}(n-1, k ; \alpha, \beta) \\
= & \Omega_{q}(n-1, k-1 ; \alpha, \beta)+\left(\left[\beta_{k}\right]-\left[\alpha_{n-1}\right]\right) \Omega_{q}(n-1, k ; \alpha, \beta),
\end{aligned}
$$

which proves (i) \Leftrightarrow (ii).
The relation (i) \Leftrightarrow (iii) is easily seen by

$$
\mathcal{D}_{q}^{k} f_{n}\left(\beta_{0} ; \alpha\right)=\frac{f_{n}\left(\beta_{0} ; \alpha\right)}{\omega_{k}\left(\beta_{0}, \beta\right)}+\frac{f_{n}\left(\beta_{1} ; \alpha\right)}{\omega_{k}\left(\beta_{1}, \beta\right)}+\cdots+\frac{f_{n}\left(\beta_{k} ; \alpha\right)}{\omega_{k}\left(\beta_{k}, \beta\right)},(k=0,1, \ldots, n)
$$

where $\omega_{k}\left(\beta_{j}, \beta\right)=\left.\frac{q^{\mathcal{C}_{k+1}}(\beta) f_{k+1}(x ; \beta)}{[x]-\left[\beta_{j}\right]}\right|_{x=\beta_{j}}$ with $\omega_{0}\left(\beta_{j}, \beta\right)=1$.
Hence the proof is complete.
Theorem 2.1 suggests that many well-known results can be derived when we set $q=1$ or use special sequences α and β. We call the coefficients $\Omega_{q}(n, k ; \alpha, \beta)$ the extended q-factorial coefficients associated with the sequences α and β.

By aid of the formula

$$
\Delta_{q}^{k} f_{n}(x ; \alpha)=\sum_{j=0}^{k}(-1)^{k-j} q^{\left({ }_{2}^{k-j}\right)}\left[\begin{array}{l}
k \tag{11}\\
j
\end{array}\right] f_{n}(x+j ; \alpha)
$$

we can easily derive the following corollary from Theorem 2.1.
Corollary 2.2. Given the sequence $\alpha=\left(\alpha_{n}\right)_{n \geq 0}$ of any numbers, the followings are equivalent:
(i) $f_{n}(x ; \alpha)=q^{-\mathcal{C}_{n}(\alpha)} \sum_{k=0}^{n} q^{\binom{k}{2}} \Omega_{q}(n, k ; \alpha)[x]_{k}$;
(ii) $\Omega_{q}(n, k ; \alpha)=\frac{q^{c_{n}(\alpha)-\binom{k}{2}}}{[k]!} \sum_{j=0}^{k}(-1)^{k-j} q^{\binom{k-j}{2}}\left[\begin{array}{c}k \\ j\end{array}\right] f_{n}(j ; \alpha)$;
(iii) $\Omega_{q}(n, k ; \alpha)=\Omega_{q}(n-1, k-1 ; \alpha)+\left([k]-\left[\alpha_{n-1}\right]\right) \Omega_{q}(n-1, k ; \alpha)$, $\Omega_{q}(0,0 ; \alpha)=1$.

We observe that the formula (i) above corollary may be regarded as an extension of both (5) and (6). If each α_{n} is replaced by $n h$, then we obtain immediately $R_{q}(n, k ; h)=\Omega_{q}(n, k ; \alpha)$. If each α_{n} is replaced by $\frac{n-r}{s}$, then we obtain

$$
\begin{aligned}
\prod_{k=0}^{n-1}[s x+r-k] & =[s]^{n} \prod_{k=0}^{n-1}\left[x-\frac{k-r}{s}\right]_{q^{s}} \\
& =q^{r n-\binom{n}{2}} \sum_{k=0}^{n} q^{s\binom{k}{2}}\left\{[s]^{n} q^{(s-1)\left(n r-\binom{n}{2}\right)} \Omega_{q^{s}}(n, k ; \alpha)\right\}[x]_{k, q^{s}}
\end{aligned}
$$

It implies that $C_{q}(n, k ; s, r)=[s]^{n} q^{(s-1)\left(n r-\binom{n}{2}\right)} \Omega_{q^{s}}(n, k ; \alpha)$.

3. Extended \boldsymbol{q}-Stirling and \boldsymbol{q}-Lah numbers

Since the extended q-factorial $f_{n}(x ; \alpha)$ is a polynomial of the q-number $[x]$ of degree $n \geq 1$, by following Carlitz [2] it would be natural to define more generalized q-Stirling numbers of the first and second kind related to $f_{n}(x ; \alpha)$ denoted by $s_{q}(n, k ; \alpha)$ and $S_{q}(n, k ; \alpha)$, respectively as follows:

$$
\begin{equation*}
f_{n}(x ; \alpha)=q^{-\mathcal{C}_{n}(\alpha)} \sum_{k=0}^{n} s_{q}(n, k ; \alpha)[x]^{k}, \tag{12}
\end{equation*}
$$

and

$$
\begin{equation*}
[x]^{n}=\sum_{k=0}^{n} q^{\mathcal{C}_{k}(\alpha)} S_{q}(n, k ; \alpha) f_{k}(x ; \alpha) . \tag{13}
\end{equation*}
$$

In a similar way, we may express the extended rising q-factorial $f_{n}(x ;-\alpha)$ associated with the sequence $\alpha=\left(\alpha_{n}\right)_{n \geq 0}$ by

$$
\begin{equation*}
f_{n}(x ;-\alpha)=q^{\mathcal{C}_{n}(\alpha)} \sum_{k=0}^{n} q^{\mathcal{C}_{k}(\alpha)} L_{q}(n, k ; \alpha) f_{k}(x ; \alpha) \tag{14}
\end{equation*}
$$

We should also mention that (12) and (13) yield the following orthogonality relation:

$$
\begin{equation*}
\sum_{k=0}^{n} s_{q}(i, k ; \alpha) S_{q}(k, j ; \alpha)=\sum_{k=0}^{n} S_{q}(i, k ; \alpha) s_{q}(k, j ; \alpha)=\delta_{i j}, \tag{15}
\end{equation*}
$$

where $\delta_{i j}$ is the Kronecker's delta.

Further, given sequences $\alpha=\left(\alpha_{n}\right)_{n \geq 0}$ and $\beta=\left(\beta_{n}\right)_{n \geq 0}$ of any numbers the extended q-factorial $f_{n}(x ; \alpha)$ may be expressed by

$$
\begin{aligned}
f_{n}(x ; \alpha) & =q^{-\mathcal{C}_{n}(\alpha)} \sum_{k=0}^{n} s_{q}(n, k ; \alpha)\left(\sum_{j=0}^{k} q^{\mathcal{C}_{j}(\beta)} S_{q}(k, j ; \beta) f_{j}(x ; \beta)\right) \\
& =q^{-\mathcal{C}_{n}(\alpha)} \sum_{k=0}^{n} q^{\mathcal{C}_{k}(\beta)}\left(\sum_{j=k}^{n} s_{q}(n, j ; \alpha) S_{q}(j, k ; \beta)\right) f_{k}(x ; \beta) .
\end{aligned}
$$

Comparing above expression with (i) of Theorem 2.1, we obtain the following theorem.

Theorem 3.1. Let $\alpha=\left(\alpha_{n}\right)_{n \geq 0}$ and $\beta=\left(\beta_{n}\right)_{n \geq 0}$ be sequences of any numbers. Then we have

$$
\begin{equation*}
\Omega_{q}(n, k ; \alpha, \beta)=\sum_{j=k}^{n} s_{q}(n, j ; \alpha) S_{q}(j, k ; \beta) . \tag{16}
\end{equation*}
$$

If $\alpha=(n)_{n \geq 0}$, then $f_{k}(x ; \alpha)$ reduces to q-factorial $[x]_{k}$. It means $s_{q}(n, k ; \alpha)$, $S_{q}(n, k ; \alpha)$ and $L_{q}(n, k ; \alpha)$ reduce to the ordinary q-Stirling numbers of the first and second kind and q-Lah numbers, respectively. Further, by setting $q=1$ these three numbers reduce to Comtet's generalized Stirling numbers of both kinds [6] and the generalized Lah numbers which are related to the generalized factorial $(x ; \alpha)_{n}:=\left(x-\alpha_{0}\right)\left(x-\alpha_{1}\right) \cdots\left(x-\alpha_{n-1}\right)$ for any sequence $\alpha=\left(\alpha_{n}\right)_{n \geq 0}$, respectively. For the reason, we will call the coefficients $s_{q}(n, k ; \alpha), S_{q}(n, k ; \alpha)$ and $L_{q}(n, k ; \alpha)$ appearing in (12), (13) and (14), respectively, the extended q-Stirling numbers of first and second kind and the extended q-Lah numbers associated with the sequence $\alpha=\left(\alpha_{n}\right)_{n \geq 0}$.

We note that these special numbers may be obtained in some connections with the extended q-factorial coefficients $\Omega_{q}(n, k ; \alpha, \beta)$:
(i) $s_{q}(n, k ; \alpha)=\Omega_{q}(n, k ; \alpha, 0)$;
(ii) $S_{q}(n, k ; \alpha)=\Omega_{q}(n, k ; 0, \alpha)$;
(iii) $L_{q}(n, k ; \alpha)=\Omega_{q}(n, k ;-\alpha, \alpha)$.

The following result can be easily derived from Theorem 2.1.
Theorem 3.2. Given a sequence $\alpha=\left(\alpha_{n}\right)_{n \geq 0}$ of any numbers, we have:
(i) $s_{q}(n, k ; \alpha)=s_{q}(n-1, k-1 ; \alpha)-\left[\alpha_{n-1}\right] s_{q}(n-1, k ; \alpha), s_{q}(0,0 ; \alpha)=1$;
(ii) $S_{q}(n, k ; \alpha)=S_{q}(n-1, k-1 ; \alpha)+\left[\alpha_{k}\right] S_{q}(n-1, k ; \alpha), S_{q}(0,0 ; \alpha)=1$;
(iii) $L_{q}(n, k ; \alpha)=L_{q}(n-1, k-1 ; \alpha)+\left(\left[\alpha_{k}\right]-\left[-\alpha_{n-1}\right]\right) L_{q}(n-1, k ; \alpha)$, $L_{q}(0,0 ; \alpha)=1 ;$
(iv) $s_{q}(n, k ; \alpha)=(-1)^{n-k} \sum_{\substack{c_{0}+c_{1}+\cdots+c_{n-1}=n-k \\ c_{i} \in\{0,1\}}}\left[\alpha_{0}\right]^{c_{0}}\left[\alpha_{1}\right]^{c_{1}} \cdots\left[\alpha_{n-1}\right]^{c_{n-1}}$;
(v) $S_{q}(n, k ; \alpha)=\sum_{c_{0}+c_{1}+\cdots+c_{k}=n-k}\left[\alpha_{0}\right]^{c_{0}}\left[\alpha_{1}\right]^{c_{1}} \cdots\left[\alpha_{k}\right]^{c_{k}}$;
(vi) $L_{q}(n, k ; \alpha)=\sum_{j=k}^{\substack{c_{i} \in\{0,1, \ldots, n\} \\ n}} s_{q}(n, j ;-\alpha) S_{q}(j, k ; \alpha)$;
(vii) $\sum_{n=0}^{\infty} S_{q}(n, k ; \alpha) x^{n}=\frac{x^{k}}{\left(1-\left[\alpha_{0}\right] x\right)\left(1-\left[\alpha_{1}\right] x\right) \cdots\left(1-\left[\alpha_{k}\right] x\right)}$;
(viii) $\sum_{k=0}^{n} s_{q}(n, k ; \alpha) x^{n-k}=\left(1-\left[\alpha_{0}\right] x\right)\left(1-\left[\alpha_{1}\right] x\right) \cdots\left(1-\left[\alpha_{n-1}\right] x\right)$.

We point out that the above theorem may be also derived from some known results for Comtet's generalized Stirling numbers [6].
Corollary 3.3. Let $\alpha=\left(\alpha_{n}\right)_{n \geq 0}$ be a sequence of any numbers. Then we have:
(i) $S_{q}(n, k ; \alpha)=\sum_{j=k}^{n} q^{(j-k) \alpha_{0}}\left[\alpha_{0}\right]^{n-j}\binom{n}{j} S_{q}\left(j, k ; \alpha-\alpha_{0}\right)$;
(ii) $s_{q}(n, k ; \alpha)=\sum_{j=k}^{n} q^{(n-k) \alpha_{0}}\left[-\alpha_{0}\right]^{j-k}\binom{j}{k} s_{q}\left(n, j ; \alpha-\alpha_{0}\right)$.

Proof. We only give the proof of (i) since (ii) may be proved analogously. First, let $\alpha_{0} \neq 0$ and let $k=0$. Since $S_{q}\left(0,0 ; \alpha-\alpha_{0}\right)=1$ and $S_{q}\left(n, 0 ; \alpha-\alpha_{0}\right)=0$ for $n \geq 1$, (i) gives $S_{q}(n, 0 ; \alpha)=\left[\alpha_{0}\right]^{n}$. Hence (i) holds for $k=0$. Now the proof is by induction on n. Clearly (i) holds when $n=1$. Assume that $n \geq 2, k \geq 1$. From (ii) of Theorem 3.2 we have

$$
\begin{aligned}
S_{q}(n, k ; \alpha)= & \sum_{j=k-1}^{n-1} q^{(j-k+1) \alpha_{0}}\left[\alpha_{0}\right]^{n-1-j}\binom{n-1}{j} S_{q}\left(j, k-1 ; \alpha-\alpha_{0}\right) \\
& +\left[\alpha_{k}\right] \sum_{j=k}^{n-1} q^{(j-k) \alpha_{0}}\left[\alpha_{0}\right]^{n-1-j}\binom{n-1}{j} S_{q}\left(j, k ; \alpha-\alpha_{0}\right) .
\end{aligned}
$$

Apply $\left[\alpha_{k}\right]=\left[\alpha_{0}\right]+q^{\alpha_{0}}\left[\alpha_{k}-\alpha_{0}\right]$ to the last equation and combine the first and second summation using the Pascal identity and $S_{q}\left(j, k-1 ; \alpha-\alpha_{0}\right)+\left[\alpha_{k}-\right.$ $\left.\alpha_{0}\right] S_{q}\left(j, k ; \alpha-\alpha_{0}\right)=S_{q}\left(j+1, k ; \alpha-a_{0}\right)$. Then it is easily seen that

$$
\begin{aligned}
S_{q}(n, k ; \alpha)= & \sum_{j=k}^{n-1} q^{(j-k) \alpha_{0}}\left[\alpha_{0}\right]^{n-j}\binom{n}{j} S_{q}\left(j, k ; \alpha-\alpha_{0}\right) \\
& +q^{(n-k) \alpha_{0}} S_{q}\left(n, k ; \alpha-\alpha_{0}\right) \\
= & \sum_{j=k}^{n} q^{(j-k) \alpha_{0}}\left[\alpha_{0}\right]^{n-j}\binom{n}{j} S_{q}\left(j, k ; \alpha-\alpha_{0}\right),
\end{aligned}
$$

which completes the proof.
We conclude this section describing the familiar formulae for the q-Stirling numbers $s_{q}(n, k)$ and $S_{q}(n, k)$, and q-Lah numbers $L_{q}(n, k)$. By a q-binomial coefficient we shall mean

$$
\left[\begin{array}{l}
n \\
r
\end{array}\right]_{q}=\frac{[n]!}{[r]![n-r]!}
$$

where n and r are nonnegative integers and $[n]!=[n][n-1] \cdots[1]$.
The following may be easily deduced from Theorem 3.2 and Corollary 3.3:

(ii) $s_{q}(n, k)=\sum_{j=k}^{n}(-1)^{j-k} q^{n-j}\binom{j-1}{k-1} s_{q}(n-1, j-1)$;
(iii) $L_{q}(n, k)=q^{\binom{k}{2}-\binom{n}{2}}\left[\begin{array}{c}n-1 \\ k-1\end{array}\right]_{q}\left[\frac{[n]!}{[k]!}\right.$.

We also note that the expression (i), (iii) were obtained in [17] and (ii) was obtained in [16].

4. Examples

Let us define the non-central generalized q-factorial with both increment h and non-centrality parameter r of order n denoted by $[x ; r, h]_{n}$ as

$$
\begin{equation*}
[x ; r, h]_{n}:=[x-r][x-r-h] \cdots[x-r-(n-1) h] . \tag{17}
\end{equation*}
$$

By setting $h=1$ or $r=0,[x ; r, h]_{n}$ is reduced to the noncentral q-factorial with non-centrality parameter r or the central generalized q-factorial with increment h given in (4) and (5), respectively.

In this section, we investigate the q-Stirling numbers of both kinds and the q-Lah numbers corresponding to the generalized q-factorial $[x ; r, h]_{n}$ as the special examples of our extended q-factorial coefficients. First note that $[x ; r, h]_{n}$ may be considered as $f_{n}(x ; \alpha)$ with $\alpha=(r+n h)_{n \geq 0}$ by means of $f_{n}(x ; r+n h):=[x-r][x-(r+h)] \cdots[x-(r+(n-1) h)]$. Thus (12), (13) and (14) respectively can be expressed by
(i) $[x ; r, h]_{n}=q^{-n r-\binom{n}{2} h} \sum_{k=0}^{n} s_{q}(n, k ; r, h)[x]^{k}$;
(ii) $[x]^{n}=\sum_{k=0}^{n} q^{k r+\binom{k}{2} h} S_{q}(n, k ; r, h)[x ; r, h]_{k}$;
(iii) $[x ;-r,-h]_{k}=q^{n r+\binom{n}{2} h} \sum_{k=0}^{n} q^{k r+\binom{k}{2} h} L_{q}(n, k ; r, h)[x ; r, h]_{k}$.

We call $s_{q}(n, k ; r, h), S_{q}(n, k ; r, h)$ and $L_{q}(n, k ; r, h)$ the non-central q-Stirling numbers of the first and second kind with both increment h and non-centrality parameter r and non-central q-Lah numbers with both increment h and noncentrality parameter r, respectively.

Theorem 4.1. The $S_{q}(n, k ; r, h)$ satisfy the following explicit formula:

$$
S_{q}(n, k ; r, h)=\frac{q^{-\binom{k}{2} h-k r}}{[h]^{k}[k]_{q^{h}}!} \sum_{j=0}^{k}(-1)^{k-j} q^{\binom{k-j}{2} h}\left[\begin{array}{c}
k \tag{18}\\
j
\end{array}\right]_{q^{h}}[r+j h]^{n} .
$$

Proof. From the expression (iii) for $\Omega_{q}(n, k ; \alpha, \beta)$ with $\alpha \equiv 0$ in Theorem 2.1, we have

$$
\begin{equation*}
S_{q}(n, k ; r, h)=\sum_{j=0}^{k} \frac{\left[\beta_{j}\right]^{n}}{\prod_{i=0, i \neq j}^{k}\left(\left[\beta_{j}\right]-\left[\beta_{i}\right]\right)} \tag{19}
\end{equation*}
$$

By aid of $[x]-[y]=q^{y}[x-y],[x h]=[x]_{q^{h}}[h]$ and $[-x]=-q^{-x}[x]$ with the q^{h}-number $[x]_{q^{h}}$ and $\beta=(r+n h)_{n \geq 0}$, we get

$$
\begin{aligned}
\prod_{i=0, i \neq j}^{k}\left(\left[\beta_{j}\right]-\left[\beta_{i}\right]\right) & =q^{\mathcal{C}^{k+1}(\beta)-\beta_{j}}[j h][(j-1) h] \cdots[h][-h][-2 h] \cdots[-(k-j) h] \\
& =(-1)^{k-j} q^{k r-\left(j-\binom{k+1}{2}+\binom{k-j+1}{2}\right) h}[h]^{k}[j]_{q^{h}}![k-j]_{q^{h}}! \\
& =(-1)^{k-j} q^{k r-\left(\binom{k-j}{2}-\binom{k}{2}\right) h}[h]^{k}[k]_{q^{h}}!\left(\frac{[j]_{q^{h}}![k-j]_{q^{h}}!}{[k]_{q^{h}}!}\right)
\end{aligned}
$$

Hence (18) follows from (19).
The following is an immediate consequence of Corollary 3.3.
Corollary 4.2. The $s_{q}(n, k ; r, h)$ and $S_{q}(n, k ; r, h)$ satisfy the following relations:
(i) $s_{q}(n, k ; r, h)=\sum_{j=k}^{n} q^{(n-k) r}[-r]^{j-k}\binom{j}{k} s_{q}(n, j ; h)$;
(ii) $S_{q}(n, k ; r, h)=\sum_{j=k}^{n} q^{(j-k) r}[r]^{n-j}\binom{n}{j} S_{q}(j, k ; h)$,
where $s_{q}(n, k ; h)$ and $S_{q}(n, k ; h)$ are the central generalized q-Stirling numbers of the first and second kind with an increment h, i.e., $r=0$, investigated in [3].

5. Matrix factorizations

In this section, we develop special matrices arising from the extended q factorial coefficients $\Omega_{q}(n, k ; \alpha, \beta)$. Define the $n \times n$ matrix $\Omega_{q}(n ; \alpha, \beta)$ by

$$
\left[\Omega_{q}(n ; \alpha, \beta)\right]_{i, j}= \begin{cases}\Omega_{q}(i, j ; \alpha, \beta) & \text { if } i \geq j \geq 0 \\ 0 & \text { otherwise }\end{cases}
$$

where the rows and columns are indexed by $0,1, \ldots, n-1$. Similarly the matrices $s_{q}(n ; \alpha), S_{q}(n ; \alpha)$ and $L_{q}(n ; \alpha)$ corresponding to $s_{q}(n, k ; \alpha), S_{q}(n, k ; \alpha)$ and $L_{q}(n, k ; \alpha)$ respectively can be defined as $\Omega_{q}(n ; \alpha, \beta)$. We will see how these matrices are connected with each other and are related to the q-Vandermonde matrix $V\left(\left[\alpha_{0}\right],\left[\alpha_{1}\right], \ldots,\left[\alpha_{n-1}\right]\right)$.

We first define the $n \times n(n \geq 2)$ matrix $F_{q}^{(\ell)}(\alpha), \ell=0, \ldots, n-2$, for any numbers $\alpha_{0}, \alpha_{1}, \ldots$ by

$$
F_{q}^{(\ell)}(\alpha)=I_{n-\ell-2} \oplus\left[\begin{array}{cccc}
1 & & & \\
{\left[\alpha_{0}\right]} & 1 & & \\
& \ddots & \ddots & \\
& & {\left[\alpha_{\ell}\right]} & 1
\end{array}\right]
$$

where $I_{n-\ell-2}$ is the identity matrix of order $n-\ell-2$, and \oplus denotes the direct sum of matrices and unspecified entries are all zeros.

Lemma 5.1. The $n \times n$ matrix $\Omega_{q}(n ; \alpha, \beta)$, $n \geq 2$, may be factorized by

$$
\begin{equation*}
\Omega_{q}(n ; \alpha, \beta)=\left(F_{q}^{(n-2)}(\alpha)\right)^{-1}\left(I_{1} \oplus \Omega_{q}(n-1 ; \alpha, \beta)\right) F_{q}^{(n-2)}(\beta) \tag{20}
\end{equation*}
$$

Proof. From the recurrence relation for $\Omega_{q}(n, k ; \alpha, \beta)$ in Theorem 2.1, we have

$$
\begin{aligned}
& \Omega_{q}(n, k ; \alpha, \beta)+\left[\alpha_{n-1}\right] \Omega_{q}(n-1, k ; \alpha, \beta) \\
= & \Omega_{q}(n-1, k-1 ; \alpha, \beta)+\left[\beta_{k}\right] \Omega_{q}(n-1, k ; \alpha, \beta),
\end{aligned}
$$

which implies that

$$
F_{q}^{(n-2)}(\alpha) \Omega_{q}(n ; \alpha, \beta)=\left(I_{1} \oplus \Omega_{q}(n-1 ; \alpha, \beta)\right) F_{q}^{(n-2)}(\beta)
$$

Hence the proof is complete.
The following is an immediate consequence of (20) and (16).
Corollary 5.2. The $n \times n$ matrix $\Omega_{q}(n ; \alpha, \beta)$, $n \geq 2$, may be factorized by
(i) $\Omega_{q}(n ; \alpha, \beta)=\left(F_{q}^{(0)}(\alpha) \cdots F_{q}^{(n-2)}(\alpha)\right)^{-1}\left(F_{q}^{(0)}(\beta) \cdots F_{q}^{(n-2)}(\beta)\right)$;
(ii) $\Omega_{q}(n ; \alpha, \beta)=s_{q}(n ; \alpha) S_{q}(n ; \beta)$.

For example, if $n=4$, then we have:

$$
\left.\left.\begin{array}{rl}
\Omega_{q}(n ; \alpha, \beta)= & \left(\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & {\left[\alpha_{0}\right]} & 1
\end{array}\right]\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & {\left[\alpha_{0}\right]} & 1 & 0 \\
0 & 0 & {\left[\alpha_{1}\right]} & 1
\end{array}\right]\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
{\left[\alpha_{0}\right]} & 1 & 0 & 0 \\
0 & {\left[\alpha_{1}\right]} & 1 & 0 \\
0 & 0 & {\left[\alpha_{2}\right]} & 1
\end{array}\right]\right)^{-1} \\
& \times\left(\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & {\left[\beta_{0}\right]}
\end{array}\right]\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0\left[\beta_{0}\right] & 1 & 0 \\
0 & 0 & {\left[\beta_{1}\right]} & 1
\end{array}\right]\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
{\left[\beta_{0}\right]} & 1 & 0 & 0 \\
0 & {\left[\beta_{1}\right]} & 1 & 0 \\
0 & 0 & {\left[\beta_{2}\right]}
\end{array}\right]\right.
\end{array}\right]\right)
$$

The following is an immediate consequence of (15), Theorem 3.1, Theorem 3.2, Corollary 3.3, and Corollary 5.2.
Theorem 5.3. The $n \times n$ matrices $s_{q}(n ; \alpha), S_{q}(n ; \alpha), L_{q}(n ; \alpha)$ have the following matrix factorizations:
(i) $s_{q}(n ; \alpha) S_{q}(n ; \alpha)=I_{n}$;
(ii) $S_{q}(n ; \alpha)=F_{q}^{(0)}(\alpha) F_{q}^{(1)}(\alpha) \cdots F_{q}^{(n-2)}(\alpha)$;
(iii) $s_{q}(n ; \alpha)= \begin{cases}\left(I_{1} \oplus \hat{s}_{q}\left(n-1 ; \alpha-\alpha_{0}\right)\right) P_{n}\left(-\left[\alpha_{0}\right]\right) & \text { if } \alpha_{0} \neq 0, \\ I_{1} \oplus\left(\hat{s}_{q}(n-1 ; \alpha-1) P_{n-1}^{-1}\right) & \text { if } \alpha_{0}=0 ;\end{cases}$
(iv) $S_{q}(n ; \alpha)= \begin{cases}P_{n}\left(\left[\alpha_{0}\right]\right)\left(I_{1} \oplus \hat{S}_{q}\left(n-1 ; \alpha-\alpha_{0}\right)\right) & \text { if } \alpha_{0} \neq 0, \\ I_{1} \oplus\left(P_{n-1} \hat{S}_{q}(n-1 ; \alpha-1)\right) & \text { if } \alpha_{0}=0 ;\end{cases}$
(v) $L_{q}(n ; \alpha)=s_{q}(n ;-\alpha) S_{q}(n ; \alpha)$;
(vi) $\left(L_{q}(n ; \alpha)\right)^{-1}=L_{q}(n ;-\alpha)$,
where $\hat{s}_{q}\left(n-1 ; \alpha-\alpha_{0}\right)$ and $\hat{S}_{q}\left(n-1 ; \alpha-\alpha_{0}\right)$ are $(n-1) \times(n-1)$ matrices defined by

$$
\begin{aligned}
& {\left[\hat{s}_{q}\left(n-1 ; \alpha-\alpha_{0}\right)\right]_{i, j}=\left\{\begin{array}{cl}
q^{(i-j) \alpha_{0}} s_{q}\left(n-1 ; i, j ; \alpha-\alpha_{0}\right) & \text { if } n-1 \geq i \geq j \geq 1 \\
0 & \text { otherwise }
\end{array}\right.} \\
& {\left[\hat{S}_{q}\left(n-1 ; \alpha-\alpha_{0}\right)\right]_{i, j}=\left\{\begin{array}{cl}
q^{(i-j) \alpha_{0}} S_{q}\left(n-1 ; i, j ; \alpha-\alpha_{0}\right) & \text { if } n-1 \geq i \geq j \geq 1 \\
0 & \text { otherwise }
\end{array}\right.}
\end{aligned}
$$

Further, the extended q-factorial $f_{n}(x ; \alpha)$ can be used to obtain the LDUdecomposition of the $n \times n q$-Vandermonde matrix

$$
V_{q}(n ; \alpha):=V\left(\left[\alpha_{0}\right],\left[a_{1}\right], \ldots,\left[\alpha_{n-1}\right]\right)=\left(\left[\alpha_{j}\right]^{i}\right)_{i j \geq 0} .
$$

Let $U_{q}(n ; \alpha)$ denote the $n \times n$ matrix defined by $\left[U_{q}(n ; \alpha)\right]_{i j}=f_{i}\left(\alpha_{j} ; \alpha\right)$, and let $D_{q}(n ; \alpha)=\operatorname{diag}\left(q^{\mathcal{C}_{0}(\alpha)}, q^{\mathcal{C}_{1}(\alpha)}, \ldots, q^{\mathcal{C}_{n-1}(\alpha)}\right)$. Note that $U_{q}(n ; \alpha)$ is an upper triangular matrix since $f_{i}\left(\alpha_{j} ; \alpha\right)=0$ if $i>j$.

The following theorem may be easily obtained by setting $x=\alpha_{j}$ and $n=i$ for each $i, j=0,1, \ldots, n-1$ in (13) (also see [16]).

Theorem 5.4. Given a sequence $\alpha=\left(\alpha_{n}\right)_{n \geq 0}$ of any different numbers, the q-Vandermonde matrix $V_{q}(n ; \alpha)$ may be factorized by

$$
V_{q}(n ; \alpha)=S_{q}(n ; \alpha) D_{q}(n ; \alpha) U_{q}(n ; \alpha),
$$

where $S_{q}(n ; \alpha)$ is the generalized q-Stirling matrix of the second kind.
Thus given a sequence $\alpha=\left(\alpha_{n}\right)_{n \geq 0}$ of any different numbers, $V_{q}(n ; \alpha)$ is nonsingular and by using $q^{\alpha_{i}}\left[\alpha_{j}-\alpha_{i}\right]=\left[\alpha_{j}\right]-\left[\alpha_{i}\right]$ we obtain

$$
\operatorname{det} V_{q}(n ; \alpha)=\prod_{0 \leq i<j \leq n}\left(\left[\alpha_{j}\right]-\left[\alpha_{i}\right]\right)
$$

Remark. If we take $\alpha_{k} \equiv x$ for all $k=0,1, \ldots, n-1$, then $S_{q}(n ; \alpha)$ is exactly the same as $P_{n}([x])=\left[\binom{i}{j}[x]^{i-j}\right]$. Thus our results examined in the present paper may be used to obtain a q-analogue of the Pascal matrix. We omit the details here.

References

[1] G. S. Call and D. J. Vellemam, Pascal's matrices, Amer. Math. Monthly 100 (1993), no. 4, 372-376.
[2] L. Carlitz, q-Bernoulli numbers and polynomials, Duke Math. J. 15 (1948), 987-1000.
[3] Ch. A. Charalambides, On the q-differences of the generalized q-factorials, J. Statist. Plann. Inference 54 (1996), no. 1, 31-43.
[4] _, Non-central generalized q-factorial coefficients and q-Stirling numbers, Discrete Math. 275 (2004), no. 1-3, 67-85.
[5] G.-S. Cheon and J.-S. Kim, Stirling matrix via Pascal matrix, Linear Algebra Appl. 329 (2001), no. 1-3, 49-59.
[6] L. Comtet, Nombres de Stirling généraux et fonctions symétriques, C. R. Acad. Sci. Paris Ser. A-B 275 (1972), A747-A750.
[7] _ Advanced Combinatorics, D. Reidel Publishing Co., Dordrecht, 1974.
[8] H. W. Gould, The q-Stirling numbers of first and second kinds, Duke Math. J. 28 (1961), 281-289.
[9] L. C. Hsu, A summation rule using Stirling numbers of the second kind, Fibonacci Quart. 31 (1993), no. 3, 256-262.
[10] L. C. Hsu and P. Shiue, A unified approach to generalized Stirling numbers, Adv. in Appl. Math. 20 (1998), no. 3, 366-384.
[11] C. Jordan, Calculus of Finite Differences, Chelsea Pub. Co., New York, 1950.
[12] M. Koutras, Noncentral Stirling numbers and some applications, Discrete Math. 42 (1982), no. 1, 73-89.
[13] D. E. Loeb, A generalization of the Stirling numbers, Discrete Math. 103 (1992), no. 3, 259-269.
[14] A. De Medicis and P. Leroux, Generalized Stirling numbers, convolution formulae and p, q-analogues, Canad. J. Math. 47 (1995), no. 3, 474-499.
[15] S. C. Milne, A q-analog of restricted growth functions, Dobinski's equality, and Charlier polynomials, Trans. Amer. Math. Soc. 245 (1978), 89-118.
[16] H. Oruc and H. K. Akmaz, Symmetric functions and the Vandermonde matrix, J. Comput. Appl. Math. 172 (2004), no. 1, 49-64.
[17] C. G. Wagner, Generalized Stirling and Lah numbers, Discrete Math. 160 (1996), no. 1-3, 199-218.

Seok-Zun Song
Department of Mathematics
Jeju National University
Cheju 690-756, Korea
E-mail address: szsong@cheju.ac.kr

GI-SAng Cheon
Department of Mathematics
Sungkyunkwan University
Suwon 440-746, Korea
E-mail address: gscheon@skku.edu

Young-Bae Jun
Department of Mathematics Education
Gyeongsang National University
Chinju 660-701, Korea
E-mail address: ybjun@gsnu.ac.kr

LeRoy B. Beasley
Department of Mathematics and Statistics
Utah State University
Logan, UT 84322-3900, U.S.A
E-mail address: lbeasley@math.usu.edu

[^0]: Received November 19, 2008.
 2000 Mathematics Subject Classification. Primary 05A30; Secondary 05A15.
 Key words and phrases. q-factorial, q-Stirling numbers, q-Lah numbers.

