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Abstract

Purpose: The purpose of this paper is to develop a set of identities for Euler type sums of products of harmonic
numbers and reciprocal binomial coefficients.

Method: We use analytical methods to obtain our results.

Results: We obtain identities for variant Euler sums of the type
∞∑
n=1

H2n

n

(
n + k
k

) , and its finite counterpart, which

generalize some results obtained by other authors.

Conclusions: Identities are successfully achieved for the sums under investigation. Some published results have
been successfully generalized.

Keywords: Harmonic numbers, Binomial coefficients and gamma function, Polygamma function, Combinatorial
series identities and summation formulas, Partial fraction approach
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Background and preliminaries
In the spirit of Euler, we shall investigate the summation
of some variant Euler sums. In common terminology, let,
as usual,

Hn = γ + ψ (n + 1) =
n∑

r=1

1
r

=
∞∫
0

1 − tn

1 − t
dt

be the nth harmonic number, γ denotes the Euler-
Mascheroni constant, ψ(z) := d log�(z)/dz is the
digamma function and � (z) is the well-known gamma
function. Let also, R, C and N denote, respectively, the
sets of real, complex and natural numbers. A generalized

binomial coefficient
(
w
z

)
may be defined by

(
w
z

)
:= � (w + 1)
� (z + 1) � (w − z + 1)

(w, z ∈ C)

and in the special case when z = n, n ∈ N, we have(
w
n

)
:= w (w − 1) ... (w − n + 1)

n!
= (−1)n (−w)n

n!
,
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where

(w)λ := � (w+λ)
� (w)

=
{

1 (λ=0; w ∈ C\ {0})
w (w+1) . . . (w+λ−1)(w ∈C, λ∈N)

with (0)0 := 1 is known as the Pochhammer symbol.
Some well-known Euler sums are (see, e.g., [1])

∞∑
n=1

Hn
n2

= 2ζ (3) ,
∞∑
n=1

(Hn
n

)2
= 17

4
ζ (4) ;

recently, Chen [2] obtained

∞∑
n=1

H2n

(2n + 1)2
= 7

16
ζ (3) ,

∞∑
n=1

H2n − 1
2Hn

4nn
= 1

4
(ln 3)2 .

In [3], we have, for k ≥ 1,

∞∑
n−1

Hn

n
(
n + k
k

) = 2ζ (2)+
k∑

r=1
(−1)r+1

(
k
r

)

×
(
H2
r−1 + H(2)

r−1

) (1)

and in [4],
© 2012 Sofo; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribution
License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any
medium, provided the original work is properly cited.



SofoMathematical Sciences 2012, 6:10 Page 2 of 7
http://www.iaumath.com/content/6/1/10

∞∑
n−1

Hn

n
(
n + k
k

) = H(2)
p + H2

p +
k∑

r=1
(−1)r

(
k
r

)

×
⎛
⎜⎝

HpHp+r − HpHr−1

−∑r−1
m=1

(Hm−Hm+p
m

)
⎞
⎟⎠ ,

(2)

where H(r)
n denotes the generalized nth harmonic num-

ber in power r defined by

H(r)
n :=

n∑
m=1

1
mr (n, r ∈ N) .

We study, in this paper,
∑∞

n=1
H2n

n
(
n + k
k

) and its finite

counterpart. Analogous results of Euler type for infinite
series have been developed by many authors, see for
example [5,6] and references therein. Many finite ver-
sions of harmonic number sum identities also exist in the
literature, for example in [7], we have

p∑
n=0

(−1)n
(
p
n

)
H2
n+b = 2Hp−1 − Hp+b − Hb

p
(
p + b
b

) ,

and in [8],
p∑

n=0
(−1)n

(
p + n
n

) (
p
n

)
nHn = (−1)p p (p + 1)

(
2Hp−1

)
.

Also, from the study of Prodinger [9],
n∑

k=0

(
n
k

) (
n + k
k

)
(−1)n−k Hk =

n∑
m=1

2
m

= 2Hn.

Further work in the summation of harmonic numbers
and binomial coefficients has also been done by Sofo [10].
The works of [11-17] and references therein also inves-
tigate various representations of binomial sums and zeta
functions in a simpler form by the use of the beta func-
tion and by means of certain summation theorems for
hypergeometric series.

Lemma 1. Let n and r be positive integers. Then we have
n∑

r=1

1
2r − 1

= 1
2
Hn− 1

2
+ ln 2 (3)

= H2n − 1
2
Hn; (4)

r−1∑
m=1

Hm
2m + 1

= 1
2
Hr−1Hr− 1

2
− 1

2

r−1∑
s=1

Hs− 1
2

s ; (5)

r∑
m=1

( Hm
2m + 1

+ H2m
m

)
=HrH2r+1 + 1

4

(
H(2)
r − H2

r

)
.

(6)

Proof. From the definition of harmonic numbers and the
digamma function,

Hn− 1
2

= γ+ψ
(
n + 1

2

)
= γ+2

n∑
r=1

1
2r − 1

−γ−2 ln 2

and Equation 3 follows. From the double argument iden-
tity of the digamma function

ψ (2n) = 1
2
ψ (n)+ 1

2
ψ

(
n + 1

2

)
+ ln 2

H2n−1 − γ = 1
2
(Hn−1 − γ )+ 1

2

(
Hn− 1

2
− γ

)
+ ln 2,

using Equation 3 and rearranging, we obtain Equation 4.
For Equation 5, we first note that for an arbitrary sequence{
Xk,l

}
, the following identity holds:

n∑
k =1

k∑
l=1

Xk,l =
n∑

l=1

n∑
k =l

Xk,l ;

hence,

r−1∑
m=1

Hm
2m + 1

=
r−1∑
m=1

m∑
s=1

1
s (2m + 1)

=
r−1∑
s=1

r−1∑
m=s

1
s (2m + 1)

=
r−1∑
s=1

1
2s

(
Hr− 1

2
− Hs− 1

2

)
= 1

2
Hr−1Hr− 1

2

− 1
2

r−1∑
s=1

Hs− 1
2

s .

The interesting identity (Equation 6) follows from
Equation 5 and substituting

1
2
Hn− 1

2
= H2n − 1

2
Hn − ln 2 (7)

so that

r−1∑
m=1

Hm
2m + 1

= Hr−1

(
H2r − 1

2
Hr − ln 2

)

−
r−1∑
m=1

(
H2m − 1

2Hm − ln 2
)

m
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= Hr−1

(
H2r − 1

2
Hr − ln 2

)
+ Hr−1 ln 2

+ 1
2

r−1∑
m=1

Hm
m

−
r−1∑
m=1

H2m
m

= Hr−1

(
H2r − 1

2

(
1
r

+ Hr−1

))
+ 1

4

×
(
H2
r−1 + H(2)

r−1

)
−

r−1∑
m=1

H2m
m

r−1∑
m=1

×
( Hm
2m + 1

+ H2m
m

)
= Hr−1H2r−1

+ 1
4

(
H(2)
r−1 − H2

r−1

)
replacing the counter, we obtain Equation 6.

Main results and discussion
We now prove the two following theorems:

Theorem 1. Let k ∈ N. Then we have

∞∑
n=1

H2n − 1
2 Hn

n
(
n + k
k

) =
k∑

r=1
(−1)r+1

(
k
r

)

×
⎛
⎜⎝Hr−1H2r−1+ 1

4

(
H(2)
r−1 − H2

r−1

)
+2 ln 2 (

H2r− 1
2Hr

)−∑r−1
j=1

H2j
j

⎞
⎟⎠.

(8)

Proof. Let hn = H2n − 1
2 Hn and consider the following

expansion:
∞∑
n=1

hn

n
(
n + k
k

) =
∞∑

n=1

k! hn

n
k∏

r=1
(n + r)

=
∞∑
n=1

k! hn
n (n + 1)k+1

.

Now,
∞∑
n=1

hn

n
(
n + k
k

) =
∞∑
n=1

k! hn
n

k∑
r=1

Ar
n + r

, (9)

where

Ar = lim
n→−r

n + r
k∏

r=1
n + r

= (−1)r+1 r
k!

(
k
r

)
. (10)

For an arbitrary positive sequence
{
Xk,p

}
, the following

identity holds:
∞∑
k =0

n∑
p=0

Xp,k =
∞∑
k =0

∞∑
p=0

Xp,k+p ;

hence, from Equations 4 and 9,

∞∑
n=1

k! hn
n

k∑
r=1

Ar
n + r

=
k∑

r=1
(−1)r+1 r

(
k
r

)

×
∞∑
n=1

1
n (n + r)

n∑
j=1

1
2j − 1

=
k∑

r=1
(−1)r+1 r

(
k
r

) ∞∑
j=1

1
2j − 1

×
∞∑
n=0

1(
n + j

) (
n + j + r

)
=

k∑
r=1

(−1)r+1 r
(
k
r

)

×
∞∑
j=1

1
2j − 1

(
ψ

(
j + r

)−ψ (r)
r

)
.

Since we notice that

ψ
(
j + r

) − ψ (r)
r

= 1
j

+
r−1∑
m=1

1
m + j

,

we get

∞∑
n=1

hn

n
(
n + k
k

) =
k∑

r=1
(−1)r+1

(
k
r

) ∞∑
j=1

1
2j − 1

×
(
1
j

+
r−1∑
m=1

1
m + j

)
=

k∑
r=1

(−1)r+1

×
(
k
r

) (
2 ln 2 +

r−1∑
m=1

2 ln 2 + Hm
2m + 1

)

=
k∑

r=1
(−1)r+1

(
k
r

)(
2 ln 2 + 2 ln 2

×
(
−1+ln 2+ 1

2
Hr− 1

2

)
+

r−1∑
m=1

Hm
2m + 1

)

= 2 ln2 (2)+
k∑

r=1
(−1)r+1

(
k
r

)

×
(
ln 2Hr− 1

2
+

r−1∑
m=1

Hm
2m + 1

)
.
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Now,

∞∑
n=1

hn

n
(
n + k
k

) =
k∑

r=1
(−1)r+1

(
k
r

)

×
⎛
⎝ln 2Hr− 1

2
+ 1

2Hr−1Hr− 1
2

− 1
2

∑r−1
s=1

Hs− 1
2

s

⎞
⎠+2ln2(2)

=
k∑

r=1
(−1)r+1

(
k
r

)

×
⎛
⎜⎝ 1

2Hr−1Hr− 1
2

− 1
2

∑r−1
s=1

Hs− 1
2

s

+ ln 2
(
−2 ln 2 + 2

∑r
j=1

1
2j−1

)
⎞
⎟⎠

+ 2 ln2 (2) =
k∑

r=1
(−1)r+1

(
k
r

)

×
⎛
⎝1
2
Hr−1Hr− 1

2
+

r∑
j=1

2 ln 2
2j − 1

−1
2

r−1∑
j=1

Hj− 1
2

j

⎞
⎠ ;

substituting Equation 7 and simplifying, we have

=
k∑

r=1
(−1)r+1

(
k
r

)

×
⎛
⎝Hr−1

(
H2r− 1

2
(
Hr−1+ 1

r
)) + 2 ln 2

(
H2r − 1

2Hr
)

+ 1
4

(
H2
r−1 + H(2)

r−1

)
−∑r−1

j=1
H2j
j

⎞
⎠;

hence, the identity (Equation 8) follows.

Corollary 1. From Equation 8 and using Equations 3 and
4, we obtain the results,

∞∑
n=1

H2n

n
(
n + k
k

) =
k∑

r=1
(−1)r+1

(
k
r

)

×
⎛
⎜⎝Hr−1H2r−1+ 1

4

(
5H(2)

r−1+3H2
r−1

)
+2 ln 2

(
H2r − 1

2Hr
) − ∑r−1

j=1
H2j
j

⎞
⎟⎠

+ ζ (2)
2

(11)

and

∞∑
n=1

Hn− 1
2

n
(
n + k
k

) = 2
k∑

r=1
(−1)r+1

(
k
r

)

×
⎛
⎜⎝ Hr−1H2r−1+ 1

4

(
H(2)
r−1 − H2

r−1

)
+2 ln 2

(
H2r − 1

2Hr
) − ∑r−1

j=1
H2j
j

⎞
⎟⎠

− 2 ln 2
k

. (12)

Proof. We can use Equations 3 and 4 and also note that

∞∑
n=1

ln 2

n
(
n + k
k

) = ln 2
k

. (13)

From the rearrangement of
∑∞

n=1
H2n− 1

2 Hn

n
(
n + k
k

) and

Equation 1, we can obtain Equation 11; and from the

rearrangement of
∑∞

n=1

1
2Hn− 1

2
+ln 2

n
(
n + k
k

) and Equation 13, we

can obtain Equation 12.

Example 1. For k=3 and 5,

∞∑
n=1

Hn− 1
2

n
(
n + 3
3

) = 22 ln 2
15

− 11
15

,
∞∑
n=1

H2n

n
(
n + 3
3

)

= ζ (2)
2

+ 16 ln 2
15

− 119
120

∞∑
n=1

Hn− 1
2

n
(
n + 5
5

) = 386 ln 2
315

− 1321
1890

,
∞∑
n=1

H2n

n
(
n + 5
5

)

= ζ (2)
2

+ 256 ln 2
315

− 32093
30240

∞∑
n=1

H2n − 1
2Hn

n
(
n + 3
3

) = 16 ln 2
15

− 11
30

,
∞∑
n=1

H2n − 1
2Hn

n
(
n + 5
5

)

= 256 ln 2
315

− 1321
3780

.

Now, we consider the following finite version of
Theorem 1:
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Theorem 2. Let k, p ∈ N. Then we have

p∑
n=1

H2n − 1
2 Hn

n
(
n + k
k

) =
p∑

n=1

1
2Hn− 1

2
+ ln 2

n
(
n + k
k

)

= Hp

(
H2p− 1

2
Hp−1

)
+

k∑
r=1

(−1)r+1
(
k
r

) ⎛
⎝

(
H2p− 1

2Hp
) (
2H2r−Hr−Hp+r

)
+∑r−1

m=1

(
Hm−Hm+p

2m+1

)
⎞
⎠ (14)

Proof. To prove Equation 14, we may write
p∑

n=1

hn

n
(
n + k
k

) =
p∑

n=1

k! hn
n

k∑
r=1

Ar
n + r

,

where Ar is given by Equation 10, and by a rearrangement
of sums,

p∑
n=1

k! hn
n

k∑
r=1

Ar
n + r

=
k∑

r=1
(−1)r+1 r

(
k
r

) p∑
j=1

p∑
n=j

(
1

n (n + r)
(
2j − 1

)
)

=
k∑

r=1
(−1)r+1 r

(
k
r

) p∑
j=1

1
r
(
2j − 1

)
⎛
⎝ ψ

(
r + j

) − ψ
(
j
)

− (
ψ

(
p + 1 + j

) − ψ (p + 1)
)
⎞
⎠

=
k∑

r=1
(−1)r+1

(
k
r

) p∑
j=1

1(
2j − 1

)
⎛
⎝ 1

j + ∑r−1
m=1

1
m+j

− 1
p+1 + ∑r−1

m=1
1

m+p+1

⎞
⎠

=
k∑

r=1
(−1)r+1

(
k
r

)
⎛
⎜⎜⎜⎜⎜⎝

2 ln 2 + Hp− 1
2

− Hp − 1
p+1

(
ln 2 + 1

2Hp− 1
2

)

+∑r−1
m=1

⎛
⎜⎝

1
2m+1

(
2 ln 2 + Hm + Hp− 1

2
− Hm+p

)
− 1

p+m+1

(
ln 2 + Hp− 1

2

)
⎞
⎟⎠

⎞
⎟⎟⎟⎟⎟⎠

= 2 ln 2 + Hp− 1
2

− Hp − 1
p + 1

(
ln 2 + 1

2
Hp− 1

2

)

+
k∑

r=1
(−1)r+1

(
k
r

)
⎛
⎜⎜⎜⎜⎜⎝

(
2 ln 2 + Hp− 1

2

) (
−1 + ln 2 + 1

2Hr− 1
2

)
−

(
ln 2 + 1

2Hp− 1
2

) (
Hp+r − Hp+1

)
+∑r−1

m=1

(
1

2m+1
(
Hm − Hm+p

))

⎞
⎟⎟⎟⎟⎟⎠

= ln 2
(
2 ln 2 + Hp− 1

2

)
− Hp − 1

p + 1

(
ln 2 + 1

2
Hp− 1

2

)
+ Hp+1

(
ln 2 + 1

2
Hp− 1

2

)

+
k∑

r=1
(−1)r+1

(
k
r

) ⎛
⎝

(
Hr− 1

2
− Hp+r

) (
ln 2 + 1

2Hp− 1
2

)
+∑r−1

m=1

(
1

2m+1
(
Hm − Hm+p

))
⎞
⎠ . (15)
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Substituting Equation 7 into Equation 15 and after sim-
plification, Equation 14 follows.

Corollary 2. Let k, p ∈ N. Then we obtain

p∑
n=1

Hn− 1
2

n
(
n + k
k

) = 2
k∑

r=1
(−1)r+1

(
k
r

)

×
⎛
⎝

(
H2p− 1

2Hp
) (
2H2r−Hr−Hp+r

)
+∑r−1

m=1

(
Hm−Hm+p

2m+1

)
⎞
⎠

+ 2Hp

(
H2p − 1

2
Hp − 1

)
− 2 ln 2

k

×

⎛
⎜⎜⎝1 − 1(

p + k
p

)
⎞
⎟⎟⎠ (16)

and

p∑
n=1

H2n

n
(
n + k
k

) = Hp
(
H2p − 1

) + 1
2
H(2)
p (17)

+
k∑

r=1
(−1)r+1

(
k
r

)

×
⎛
⎝

(
H2p− 1

2Hp
)(
2H2r−Hr − Hp+r

)
+Hp

2
(
Hp+r−Hr−1

)−∑r−1
m=1

(Hm−Hm+p)
2m(2m+1)

⎞
⎠.

Proof. It is straightforward to show that

p∑
n=1

ln 2

n
(
n + k
k

) = ln 2
k

⎛
⎜⎜⎝1 − 1(

p + k
p

)
⎞
⎟⎟⎠ ; (18)

then rearranging Equation 14 and using Equation 18, we
obtain Equation 16. Rearranging Equation 14 and using
Equation 2, we obtain Equation 17.

Example 2. Some examples are

p∑
n=1

H2n − 1
2 Hn

n (n + 1)
= 2p + 1

p + 1
H2p − 4p + 3

2 (p + 1)
Hp,

p∑
n=1

H2n
n (n + 1)

= 2p + 1
p + 1

H2p − 2Hp + H(2)
p
2

,

p∑
n=1

H2n − 1
2 Hn

n
(
n + 2
2

) = (2p + 1) (2p + 5)
3 (p + 1) (p + 2)

H2p

−
(
8p2 + 24p + 13

)
6 (p + 1) (p + 2)

Hp− p
3 (p + 1)

,

p∑
n=1

Hn− 1
2

n
(
n + 2
2

) = (2p + 1) (2p + 5)
3 (p + 1) (p + 2)

H2p

−
(
8p2 + 24p + 13

)
6 (p + 1) (p + 2)

Hp− p
3 (p + 1)

− p (p + 3)
(p + 1) (p + 2)

ln 2,

p∑
n=1

H2n

n
(
n + 2
2

) = (2p + 1) (2p + 5)
3 (p + 1) (p + 2)

H2p + H(2)
p
2

− 4Hp
3

− 5p
6 (p + 1)

and
p∑

n=1

H2n − 1
2 Hn

n
(
n + 3
3

) = 2 (2p + 1)
(
4p2 + 22p + 33

)
15 (p + 1) (p + 2) (p + 3)

H2p

−
(
16p3 + 96p2 + 176p + 81

)
15 (p + 1) (p + 2) (p + 3)

Hp

− p (11p + 25)
30 (p + 1) (p + 2)

.

Conclusions
The author has generalized some results on vari-
ant Euler sums and specifically obtained identities for∑∞

n=1
H2n

n
(
n + k
k

) and its finite counterpart.

Methods
Analytical techniques have been employed in the analysis
of our results. We have used many relations of the
polygamma functions together with results of reordering
of double sums and partial fraction decomposition.
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