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ABSTRACT. We investigate the representation of sums of the derivative of the reciprocal of
Catalan type numbers in integral form. We show that for various parameter values the sums
maybe expressed in closed form. Finally we give bounds for the sums under investigation, in
terms of the parameters.
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1. I NTRODUCTION

We defineCn (j) , the Catalan related numbers, forj ∈ N ∪ {0} , N = {1, 2, 3, ...} as

(1.1) Cn (j) =


1

n+1

(
2n+j

n

)
= 1

2n+j+1

(
2n+j+1

n+1

)
, for n = 1, 2, 3, ...

1, for n = 0,

and in particular, from (1.1), the Catalan numbersCn = Cn (0) are defined by

Cn =


1

n+1

(
2n
n

)
= 1

2n+1

(
2n+1

n

)
, for n = 1, 2, 3, ...

1, for n = 0.
.

Catalan numbers have many representations, see Adamchik [1], in particular Penson and Six-
deniers [3], by employing some ideas of the Mellin transform gave the integral representation,

(1.2) Cn =
1

2π

∫ 4

0

tn−1/2
√

4− t dt.

By the change of variabletw2 = 4− t, in (1.2) we find that

Cn =
22n+2

π

∫ ∞

0

w2

(1 + w2)n+2 dw,
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which, see Bailey et.al. [2], is closely related tocbn, the central binomial coefficient

cbn =

(
2n

n

)
=

22n+1

π

∫ ∞

0

1

(1 + w2)n+1 dw.

Moreover, it can be seen thatcbn = (n + 1) Cn.

Lemma 1.1. For j ≥ 0 andn ∈ N, let the Catalan related numbers

Cn (j) =


1

n+1

(
2n+j

n

)
= 1

2n+j+1

(
2n+j+1

n+1

)
, for n = 1, 2, 3, ...

1, for n = 0

be an analytic function inj then

d

dj

(
1

Cn (j)

)
=

(
1

Cn (j)

)′
(1.3)

= − n + 1(
2n+j

n

) n∑
r=1

1

r + j + n

= − n + 1(
2n+j

n

) [Ψ (1 + j + 2n)−Ψ (1 + j + n)] ,

where the Psi(or digamma function)

Ψ (z) =
d

dz
ln (Γ (z)) =

(Γ (z))′

Γ (z)

and the Gamma function

Γ (w) =

∫ ∞

0

tw−1e−t dt,

for < (w) > 0.

Proof. For the first derivative of 1
Cn(j)

with respect toj, let for integern,

1

Cn (j)
=

n + 1(
2n+j

n

)
=

(n + 1) Γ (n + 1) Γ (n + j + 1)

Γ (2n + j + 1)

=
(n + 1) Γ (n + 1)

n∏
r=1

(n + r + j)
.

Taking the logs on both sides we have

ln

[
1

Cn (j)

]
= ln (n + 1) + ln [Γ (n + 1)]− ln

[
n∑

r=1

(n + r + j)

]
and differentiating with respect toj we obtain the result (1.3).

It may be seen that forj = 0, we obtain(
1

Cn (j)

)′]
j=0

= −n + 1(
2n
n

) n∑
r=1

1

r + n
= −n + 1(

2n
n

) [H(1)
2n+1 −H

(1)
n+1

]
,
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where thenth Harmonic number

H(1)
n = Hn =

∫ 1

t=0

1− tn

1− t
dt =

n∑
r=1

1

r
= γ + Ψ (n + 1) ,

andγ denotes the Euler-Mascheroni constant, defined by

γ = lim
n→∞

(
n∑

r=1

1

r
− log (n)

)
= −Ψ (1) ≈ 0.577215664901532860606512.........

An extension of thenth harmonic numbers is introduced and studied by Sandor [4]. As an aside
it is possible to consider higher derivatives of (1.3). �

Some numbers of (1.3), without the negative sign are

n
(

1
Cn(j)

)′
1 2

(j+2)2

2 3!(2j+7)

(j+3)2(j+4)2

3
4!(3j2+30j+74)

(j+4)2(j+5)2(j+6)2

4
5!(2j3+39j2+251j+533)

(j+5)2(j+6)2(j+7)2(j+8)2

5
6!(5j4+160j3+1905j2+10000j+19524)

(j+6)2(j+7)2(j+8)2(j+9)2(j+10)2

6
7!(6j5+285j4+5380j3+50445j2+234908j+434568)

(j+7)2(j+8)2(j+9)2(j+10)2(j+11)2(j+12)2

... .............................


In the next theorems we give integral representations for various summation expressions of

Catalan type numbers with parameters. In some particular cases we give closed form values of
the sums and then determine upper and lower bounds in terms of the given parameters.

The following theorem is proved.

2. CATALAN RELATED SUMS

Theorem 2.1. Let the Catalan related numbers, with parameterj = 0, 1, 2, 3, 4, ..., Cn (j) =
1

n+1

(
2n+j

n

)
and|t| < 4, then

Sj (t) =
∞∑

n=1

tn

Cn (j)

n∑
r=1

1

r + j + n

=
∞∑

n=1

tn (n + 1)(
2n+j

n

) n∑
r=1

1

r + j + n

=
∞∑

n=1

tn (n + 1)(
2n+j

n

) [Ψ (1 + j + 2n)−Ψ (1 + j + n)]

= −2t

∫ 1

0

(1− x)j+1 log(1− x)

(1− tx (1− x))3 dx.(2.1)
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Proof. Consider

∞∑
n=1

tn

Cn (j)
=

∞∑
n=1

tn (n + 1)(
2n+j

n

)
=

∞∑
n=1

tn (n + 1) Γ (n + 1) Γ (n + j + 1)

Γ (2n + j + 1)
.

Now by the use of the Gamma propertyΓ (n + 1) = nΓ (n) we have

∞∑
n=1

tnn (n + 1) Γ (n) Γ (n + j + 1)

Γ (2n + j + 1)
=

∞∑
n=1

tnn (n + 1) B (n, n + j + 1) ,

where

B (α, β) =
Γ (α) Γ (β)

Γ (α + β + 1)
=

∫ 1

0

(1− y)α−1 yβ−1dy =

∫ 1

0

(1− y)β−1 yα−1dy

for α > 0 andβ > 0 is the classical Beta function, therefore

∞∑
n=1

tnn (n + 1) B (n, n + j + 1) =
∞∑

n=1

tnn (n + 1)

∫ 1

0

(1− x)n+j xn−1dx

=

∫ 1

0

(1− x)j

x

∞∑
n=1

n (n + 1) (tx (1− x))n dx

by interchanging sum and integral. Now applying Lemma 1.1 we obtain

Sj (t) = −2t

∫ 1

0

(1− x)j+1 log(1− x)

(1− tx (1− x))3 dx,

which is the result (2.1). �

Other integral representations involving binomial coefficients and Harmonic numbers can be
seen in [5], [6], [7] and [8].

Remark 1. For j ∈ N we obtain fort = 2

Sj (2) =
∞∑

n=1

2n (n + 1)(
2n+j

n

) n∑
r=1

1

r + j + n

= −4

∫ 1

0

(1− x)j+1 log(1− x)

(1− 2x (1− x))3 dx

= α1G + α2ζ (2) + α3π ln (2) + α4π + α5,

where the Catalan constant

G =

∫ π
4

0

ln (cot (x)) dx = .0.91596559...,
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andζ (z) is the Zeta function. Some specific cases ofSj (2) are

j α1 α2 α3 α4 α5

0 3 0 3
4

1
4

0

6 3
8

−27
32

3
32

− 7
32

7
4

13 35
32

− 27
256

35
128

− 3
32

−6920563
6350400

....... ....... ....... ....... ....... .......


Remark 2. For j ∈ N we obtain fort = −1

2

Sj

(
−1

2

)
=

∞∑
n=1

(
−1

2

)n
(n + 1)(

2n+j
n

) n∑
r=1

1

r + j + n

=

∫ 1

0

(1− x)j+1 log(1− x)(
1 + 1

2
x (1− x)

)3 dx

= β1ζ (2) + β2 (ln (2))2 + β3 ln (2) + β4.

Some specific cases ofSj

(
−1

2

)
are

j β1 β2 β3 β4

0 − 8
81

4
81

− 2
27

0

2 8
81

− 8
81

− 4
27

−2
9

8 −31412
81

31744
81

6596
27

5045
18

. . . . . . . . . . . . . . .


.

Next we shall give upper and lower bounds for the seriesSj (t) given by (2.1).

Theorem 2.2.For j = 0, 1, 2, 3, ..., and0 < t < 4

2t

(j + 2)2 < Sj (t)(2.2)

≤


2t

(j+2)2

(
4

4−t

)3
,

2t
√

2
(2j+3)3

[
2t4−41t3+342t2−1490t+3860

5(4−t)5
+

1008 arcsin
(√

t
2

)
√

t(4−t)11

] 1
2

.

Proof. Consider the integral inequality∫ x1

x0

|f (x) g (x)| dx ≤ sup
x∈[x0,x1]

|f (x)|
∫ x1

x0

|g (x)| dx,

and from the integral (2.1) we can identify

(2.3)
∫ x1

x0

|g (x)| dx =

∫ 1

0

(1− x)j+1 ln (1− x) dx =
1

(j + 2)2 .
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Similarly

(2.4) f (x) =
2t

(1− tx (1− x))3

is monotonic onx ∈ [0, 1] with lim
x→0

f (x) = 2t, lim
x→1

f (x) = 0, hence

sup
x∈[0,1]

f (x) = 2t

(
4

4− t

)3

.

The series (2.1) is one of positive terms and its lower bound is given by the first term, hence
combining these results we obtain the first part of the inequality (2.2). For the second part of
the inequality (2.2), consider the Euclidean norm where forα = β = 2, 1

α
+ 1

β
= 1, and

for f (x) andg (x) defined by (2.4) and (2.3) respectively we have that|f (x)|2 and |g (x)|2
are integrable functions defined onx ∈ [0, 1] . From (2.1) and by Hölder’s integral inequality,
which is a special case of the Cauchy-Buniakowsky-Schwarz inequality,

Sj (t) ≤
(∫ 1

0

|f (x)|2 dx

) 1
2
(∫ 1

0

|g (x)|2 dx

) 1
2

,

where (∫ 1

0

|g (x)|2 dx

) 1
2

=

(∫ 1

0

∣∣∣(1− x)j+1 ln (1− x)
∣∣∣2 dx

) 1
2

=

√
2

(2j + 3)3

and(∫ 1

0

|f (x)|2 dx

) 1
2

= 2t

2t4 − 41t3 + 342t2 − 1490t + 3860

5 (4− t)5 +
1008 arcsin

(√
t

2

)
√

t (4− t)11


1
2

,

so that

Sj (t) ≤ 2t

√
2

(2j + 3)3

2t4 − 41t3 + 342t2 − 1490t + 3860

5 (4− t)5 +
1008 arcsin

(√
t

2

)
√

t (4− t)11


1
2

and the second part of (2.2) follows. �

Remark 3. For a particular value oft andj ≥ 0 we can plot the exact value ofSj (t) , (2.1)
against the upper bounds from (2.2)

(2.5) Aj (t) =
2t

(j + 2)2

(
4

4− t

)3

and

(2.6) Bj (t) = 2t

√
2

(2j + 3)3

2t4 − 41t3 + 342t2 − 1490t + 3860

5 (4− t)5 +
1008 arcsin

(√
t

2

)
√

t (4− t)11


1
2

.

Remark 4. Fort = 1.5 we have the graph, Figure 2.1, showing thatBj (1.5) is a better estimator
of Sj (1.5), (the lower curve in Figure 2.1), thanAj (1.5) up to aboutj = 4.5. The exact value
of j for a given value oft can be exactly calculated from (2.5) and (2.6).

The graph in Figure 2.1 suggests that the sum in (2.1) may be convex. We prove the convexity
of (2.1) in the following theorem.
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CATALAN RELATED SUMS 7

Figure 2.1: A plot ofSj(1.5), Aj(1.5) andBj(1.5) showing the crossover point at aboutj = 4.5.

Theorem 2.3. For j ≥ 0 and0 < t < 4 the functionj 7→ Sj (t), as given in Theorem 2.1 is
strictly decreasing and convex with respect to the parameterj ∈ [0,∞) for everyx ∈ [0, 1] .

Proof. Let

gj (x, t) =
(1− x)j+1 ln (1− x)

(1− tx (1− x))3

be an integrable function forx ∈ [0, 1] and put

Sj (t) = −2t

∫ 1

0

gj (x, t) dx,

so that

S0 (t) = −2t

∫ 1

0

g0 (x, t) dx = −2t

∫ 1

0

(1− x) ln (1− x)

(1− tx (1− x))3 dx.

Applying the Leibniz rule for differentiation under the integral sign, we have that

S ′j (t) =

∫ 1

0

∂

∂j
gj (x, t) dx

= −2t

∫ 1

0

(1− x)j+1 (ln (1− x))2

(1− tx (1− x))3 dx.

Sincej ≥ 0 and0 < t < 4

(1− x)j+1 (ln (1− x))2

(1− tx (1− x))3 > 0 for x ∈ (0, 1) ,

thenS ′j (t) < 0, so that the sum in (2.1), is a strictly decreasing sum with respect to the param-
eterj for x ∈ [0, 1] .
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Now

S ′′j (t) =

∫ 1

0

∂2

∂2j
gj (x, t) dx

= −2t

∫ 1

0

(1− x)j+1 (ln (1− x))3

(1− tx (1− x))3 dx,

and since
(1− x)j+1 (ln (1− x))3

(1− tx (1− x))3 < 0,

thenS ′′j (t) > 0 so that (2.1) is a convex function forx ∈ [0, 1] . �
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