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Abstract: Many series can be expressed in integral form. In this paper we
develop integral representations of ratios of binomial coefficients, many of which
can then be expressed in closed form.

The series under consideration depend on a number of parameters which
in specific cases reduce to known series representations. The results obtained
extend those published by previous authors.
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1. Introduction

The binomial coefficients are defined by

n!

(n>: =y ™

m
0; n<m

for n and m positive integers, or, more generally,

(Z)meﬁ)(;(tl_)wﬂ)

for z and w non-negative integers, where I' (x) is the Gamma function.
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Binomial coefficients play an important role in many areas of mathematics,
including number theory, statistics and probability.
Recently, Batir [2], [3] considered series of the form

S(a,k)zz !

L (an
for a = 2 and 3 and was able to give some closed form expressions through

integral representations of S (a, k) .
Batir’s motivation was aroused through the known Riemann-zeta series

is the Riemann-zeta function.

Indeed, Apéry [1] used the series representation to prove the irrationality
of ((2) and ¢ (3).

Borwein, Bailey and Girgensohn [4] have also recently given closed forms,
recursion formulas and experimental results for the series

nk

;W and Zzn n.

Borwein, Bailey and Girgensohn have given

27

n=1

nk
")

(_1)k+1 k+1 Jj—1

e )2
:T;]!S(k-i-ld) 3\/§+; 2+ 1) ( ) > (1)

where S (a,b) are Stirling numbers of the second kind. Any interested reader
referring to the Wolfram internet site [16] should note that (1.1) is listed incor-
rectly.



INTEGRAL REPRESENTATIONS OF RATIOS... 31

Many particular cases are explicitly detailed, for example

i n? _ 4 dor
n=1 (2:) N 3 27\/§

It is also of some interest to note that the listing, on the Wolfram internet site,

i18—9n o2t 9 9

2,4 |1
:—:———F ) —
G ]

4

is incorrectly given.

Reciprocals of binomial coefficients are also prolific in the mathematical
literature. Mansour and West [5] set up the problem: Let B,, be the hyperocta-
hedral group, the set of all signed permutations on n letters, and let By, (T') be
the set of all signed permutations in B,, which avoid a set T of signed pattern.
They then show that some of the cardinalities encountered involve reciprocals
of binomial coefficients.

Weinzierl [14] states that in the calculation of higher order corrections to
scattering processes in particle physics one encounters higher order transcenden-
tal functions. In the expansion of transcendental functions in a small parameter
around rational numbers Weinzierl develops an algorithm which allows for the
evaluation of particular sums of reciprocals of binomial coefficients. Many re-
sults on reciprocals of binomial coefficient identities may be seen in the papers
of Mansour [6], Pla [7], Rockett [8], Sury [11], Sury, Wang and Zhao [12], Trif
[13], and Zhao and Wang [17].

It is well known that it is difficult to compute the values of combinatorial
sums involving reciprocals of binomial coefficients, so any closed form represen-
tations is of great benefit.

Sury [11] used the Beta function

L (pT(q) /1 o 4
B(p,q) = ——2F = P (1 -7 "dt forp>0,qg>0
.9) I'(p+q) 0 (-1
to observe that
1 m!(n —m)!

(m)
F'm+1)T'(n—m+1)

1
= T e 1) :(n+1)/0 "1 —t)" " dt.
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Utilising the integral identity for the inverse binomial coefficients, Sury and Trif
further showed that

"1 n+1 e 2m n+1 1 /n+1
Z("): on Zm—i—l: on Z_< j > (12)

m=0 \m m=0 j odd J

and similarly, it can be shown that

2n
(1™ 241
P I

Sury, Wang and Zhao [12] proved the following theorem.
Theorem 1. In the ring of Q [T] of rational polynomials, the identity

T (1-T)""
o ()

N KR G A L

=(n+1 +(n+1 1.3
(TL ); r+1 (n )r:O (m—l—r—i—l) (m:rr) ( )
holds for m < n. An equivalent form is that for A # —1
T ~— At P i —m— (—1)*
A e =
,;(’,}) ;(/\4-1)—1—1 Zz; i m+1+i
Antl n ()\ + 1)7‘-1—1
+(n+1) T3 . (1.4)
(A+1) = T+ 1
By the use of Theorem 1 and noting that for |z| < 1,
i (2x)" _ 2zxarcsin (z) /1 4zt gt
r:lr(%’r) V1—a? 0 1—4332t(1—t) .
Sury, Wang and Zhao [12] showed, among other results, that
1 1
> = , : (1.5)
—~(n+1)(n+2)--(n+j) (G-1D@G-1)
i 1 ~ m/3-3n3 (L6)
(Bn+1)(3n+2)(3n+3) 12 ’ ‘

n=0
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[e.o]

Z 1 _ 6ln2—7 (1.7)
—(An+1)(dn+2)(4n+3)(4n+4) 24 '
and
00 )" J—1 J—1 . j—1—r
Z _]2] 1<ln2 1)_]2 <] 1>2 ’
T T
n=0 ( ) r=1 =
for j=1,2,.... (1.8)

More general versions of identities (1.5) to (1.8) have been given by Sofo [10].
Identities (1.5) to (1.8) are reciprocal binomial identities of the form

St = £ 3 (19)
a,j) = ﬁ (an-{—j) .
n=0 an
and
Lo (=D
=i Z (anH) (1.10)
n=0 an
for j =1,2,3...,a € RT\ {0}.
The identity (1.5)
1
SLJ)=—77—
=10 -1
and
j-2 = —2\ (27 —1
J
S(2,5) = In2 1
@.3) = Gy |2+ 2 (D () %)
1 %7 ]-7 17
=532 o2 |!
2072
and others were also previously given by Sofo [9].
Sofo [10] proved the following theorem.
Theorem 2. For m > 1 and a > 0 and j a positive integer, then
) n+m 1 (n-{—m 1)
(1.11)

§(a,j,m j' Z (anJr]) j' Z (an+])
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1 Ta—az)y!
= d 1.12
o, o (112)
1 2 3 J
1 My, =y ey o
= j+1F L “ it (1.13)
J 1+5,1+5,1+5,...,1+5
) J
=> (m), /n!']] (an+k) (1.14)
n=0 k=1
and
n n+m—1
1 0 (_1)n (n+m71 ( )
T(a J ) ) (anJr]) j'z (anJr]) (1'15)
n=0 an j
1 1(1—3:)3'*1
= d 1.16
G, G (1.16)
12 3
1 - mvavavav a% 1 (1 17)
- j+ - :
ST 42048 144

=>_ (=1 (m), /n'H (an + k) . (1.18)

2. Some Generalisations

The following identities can be established using the ideas of Theorem 2.

Theorem 3. Let the conditions of Theorem 2 hold. Further, let

(n-l—m—l)
Wia,j,m) = ~—"—= (2.1)
(an—f—g)
and s be a positive integer, then
S (a,j,m,s) ZnW a,j,m (2.2)
j ! »
== [ (=27 (p- (2)) da, (2.3)

S
az Jo
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where (p_ (x))" = W and

o= (e o))
)

s—times

is the consecutive derivative operator of the continuous function (1 — z*)™"™ for
€ (0,1), and similarly,

(a,j,m,s) Z )" n*W (a,j,m) (2.4)
j ! —1 s
= ) (1—=2)’" (p4 ()" da, (2.5)
where
1
(p-I- (:C))O (1 —i—.l‘a)m’

is the consecutive derivative operator of the continuous function (1 4+ z*)™"™ for
xz € [0,1].

Proof. Consider

s S o (1 RS
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interchanging sum and integral we have

1
S(a,]}m,s):j/ 1—3:712 (n—i—m >a:‘md3:.
0

Now, consider
0 /n+m—1 an 1
e Dl L FE

=0
<p_<x>>1:x%{m}_az (e e

(p- ()" = di(di < (di <ﬁ>>>>

s times

o
ZQSZTLS (n—i_mIl)l‘(m’
m_

so that

S(ayjm,s) = L /0 (1= 2y (p_ ()" da.

aS

In a similar fashion, we have that

1 ad n+m-—1
T (a,j =j [ =2 (-1)"n ) 2.
(@doms) =5 [ (1=a) S R G P

Now, consider

> nf{ntm—1\ .. 1
@)’ = 0 (T e =

n=0

<p+<x>>1=x%{m}—az WP,

v =gz (e (- (i () )

s times
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(o0}
n+m-—1
=a’ (—1)"n® ( ) %",
o m—1

. 1 '
T(ajims) =L [ (=27 (o (0) o,

hence the theorem is proved. ]

so that

We list some cases as follows

1 a
; T
(a,j,m,1) = nW (a, J, / ) s . —; /)
J E s Jym (=) (1 zayt]
1 a a
1 2% (1 + ma?)
(a,j,m,2) = n?W (a, j, / 11—yt 2T = iy,
J E s Jym (=) 1 a2

1 2% (1 + 2% (1 + 3m) + m222®
:mj/ (1—2)t ( ( ) ) x,
0

(1 _ xa)erB

S(a,j,m,4) = Zn4W (a,j,m

x,

e o1 @ (T4 2 (44 7m) 4+ 22 (1 + 4m + 6m?) + m32>?)
=mj 0 (1—.’E) (1—$a)m+4

$a

oo 1
(a,j,m,1) = "nW (a,j, myj 1—$j717d$,
,J > (-  jym) = J/O (1-x) T

n=1

(_1)n n2W (a7j7 m)

1 a a
, -1
_ mi / (1_x)g_lfff<—+;jf2>dx,
0 (1+2%)

NE

T(a7j7m7 2) =

S
Il
—
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NE

T (a,j,m,3) = Y (=1)"n*W (a, j,m)
n=1
! g 2% (=14 2% (1+3m) — m?z?
:mj/ (1—3:)7_11: ( aal 7:1)3 e )dx,
0 (14 29)
T(a’aj7m74-) = Z (_1)nn4W (a7j7m) = mj/ (1 _‘T)]il
n=1 0
z% (—1 +x%(4+7Tm) — x2e (1 4+ 4m + 6m2) + m3x3a) p
X .

(1 + xa)m+4
A great number of simpler cases can be explicitly evaluated, we list a few:
00 n (n—f—ZL—l) m]

S(l,j,m,l)znzzj1 (n;ﬁ> T G-m) G-—m-1)

m 2,m+1 .
:<m> 2F1[ 42 '1], jFEm,m+1,

n+m 1) m-+3
S (2,m+3,m,2) Zn 2n+m+3) ~ om+l (m—=3)(m—2)(m-1)

X [4-2m(6+m) —m' —2m® —Tm? —22m — 24], m#1,2,3.
Note the special cases

5(2,4,1,2) = 28In2 — 19,

225
5(2,5,2,2) = =~ 802,
291
5(2,6,3,2) =54In2 — =,
$(3.12,7,3) Z ("*0) 13627262 1669367
n = — .
3”+12 32805 729/3

Also,

9 3 4059+/2
5(2,5,5,2> =180 — 33
("?) 157
A T

3
Il
—
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e8] n+3
T(2,8,4,2) = (-1)"n? ((2n+8)) = 87m — 64102 — 229,
n=1 2n

The following theorem details a particular case of (2.2) and (2.4).
Theorem 4. Fora=1/b,b=2,3,4,5,...,s=2andj>m+3

00 n+n171
S <%,j,m,2> = ;#w

forms the rational numbers

(m+2)(b—1)

1 1
S(—,j,m,2) =mj(G—3-m) > a7
—
b p=0 H%:l " (U + ”TH>

m
+ j—2—m pt2) |’
[I= " (v+ 57
where afjm are the coefficients of the expansion of the sums of the powers of

m+2
2/ in (ZZ_:% m“/b) .

Similarly for b an even positive integer

%) n2 ”;”271
T <%]m 2) - nzl (—1)" <<”/l}”1)> (2.7)
(m+2)(b-1)

=mj(j—-3-m)! > (=1)Fabm

(2.6)

2 1
H%:l " (” + %)

Proof. Consider, from (2.2)

ntm—1 1 , 1/b 2/b
S< ,j,m2> Z 2(m1 >—mj/ (1—x)]71—(m +me )da;
0

(n/b+]) (1 o $1/b)m+2

1 ) 1— 7 m+2
_ . _ \J—3-m 1/b 2/b
= m]/o (1—2x) (:v + max ) <1 — ml/b> dx.
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Now, note that

l—2z= (1—m1/b>l)_zlm”/b
§=0

so that
5 (§dm.2)

1 ‘ b—1 m+2
mj/ (1—g)y 3™ (xl/b + me/b) <Z x"/b> dz

0

pn=0
1 4 (m—+2)(b—1)
= mj/ (1—a)/ 2" (:Ul/b + me/b) Z alm /b dy
0 pn=0

1j—3—m _3_m (m+2)(b—1) . s

g [ (TR [ e o
0 r=0 =0
(m+2)(b—1) j—3—m j —3-m 1 m
: b,m r

=my o) -1 ( ) +

ME::O . ; =1 r e e =

(m+2)(b—1) 1 m
. b,m
=mj Z aﬂ : pt1 + . nt2
141 —2—m+ 44 i+2Y [j—2—m+1F2
= [+ () ) ()
(m—+2)(b—1) - , 1
—mj > abm L(G-2-mT(2+57)
+1 ; +1
n=0 " _(1+MT)F(3_1_W+“T)

mI (j —2—m)T (2 + 4£2)
(BTG~ 1 m 52)

(m+2)(b—1) , 1 m
=mj(j—3—m)! o)™ — + == )
1 PP hr?mw+%% HJ?m@+%%1

pn=0 v=1 v=1

which is the result (2.6).
The proof of (2.7) follows a similar pattern and will not be recorded here. [

Note. In the case of b = 2
2
a2’m:<m+ ) for ©=0,1,2,...,m+2

I
and hence
2 [ n+m—1
1 . > n ( m—1 )
S <§,j,m,2> = ZW
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:mj(j—3—m)!n§:2<m+2> H‘ !

j—2-—m pt1
v=1 <”+ 2 )

In particular

[\
=~
3
3

3 —18m? + 71m + 186)
(m_G)(m_5)(m—4)(m—3)(m_2)(m_1)7 m#1,...,6

and
o n+m—1
(L mt3m2 —Z"Q(’“)
g MRS )= (%+m+3)
n=1 m+3

B 240 (mS 4+ 11m® + 53m* + 117m3 + 122m? + 48m) + 8 (m — 3) (m + 1) m
B (m+1)(m+4)(m+5)(m+6)

Similarly

1 i n’ ("mel)
. _ _ n -
n=1 j
m—+2

=mj(j=3=m)!} (-1 (m+2> IT- (

n=0 H

1
j—2— +1
S (v )

In the case when the exponents of the binomial coefficients in the denomi-
nator are unequal, we can state the following theorem.

Theorem 5. Let a and b be real positive numbers such that a > b and let

V (a,b,j,m) = % (2.8)

bn
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for j and m positive real numbers where j > m + 1, then
b V (a,b A-oy”
a ja Z a j> - ] (1 B l:b a b)m €z

1 a b+j—1
(a —b) / dxr (2.9)
0 1 _ xb -

et b>m+1
and
00 v . 1 (1—33)j_1 .
(a,b,j,m) nz%( )"V (a,b,j,m) ]/0 <1+$ 1o b)md

Proof. Consider

n+m—1

(") S n+m—1\TOn+ )T ((a—b)n+j+1)
> L Z( > T (an+j + 1)

I R L R I

_ <7’L +m 1) |:]/ .Z‘bn (1 _ x)(afb)nJrJfl dx
0 " 0

1 .
+ (a— b)/ na® (1 — z) @91 g ||
0

Interchanging sum and integral, we have

:j/ol (1 ! i <n+m - 1> (xb(l _x)(afb))ndx

n
n=0
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+(a—b)/0 1—xﬂlz (”*m”) (xb(1—x)<a*b>)"dx

.’Eb (1 o x)aberj*l

[ (L—a) o [ .
_g/o (1_mb(1_x)a_b>mdx+m(a b)/0 (1_xb(1_x)a—b>m+1d'

For T (a,b,j,m), we have

) [t j— R nf{n+tm-—1 a—b)\"
Tabgm =g [ 0=y S (M) (A e)
1 i > n n+m-—1 a—b\"
+(a—b)/0 (1- ) 1712:%(—1) n< ! )(wb(l—x)( b>) dz

. 1 (1—x)j_1 I 1 2 (1— )" btj—1
G G

and the theorem is proved. ]

By consideration of the ratio of successive terms of V (a,b,j,m) we may
express S (a,b,j,m) and T (a,b, j,m), for a > b, in terms of generalised hyper-
geometric functions as follows:

S(a,b, j,m)
m71,2 b 1% 2# a—b+j bb b
= a+1ly T Y R E(a—b)a . (2.11)
a’ a’ ’a
T (a,b,j,m)
m, L1 2 b 147 247 a=b+j pb b
= at1fa DOy e |- et (212)
a’ a’ ’a

In the degenerative case when a = b, (2.11) reduces to (1.13) and (2.12) reduces
o (1.17).
Some examples can now be given

[e%s) n+m 1) 2 m 1
S(2,1,1,m) = Z 2n+1) =2F1[ 3 'ﬂ

n=0
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2 (m+1) (2m—2
3 ( )[ 3+Zr—|—1 (>

)

. n+1 437 4
5(2,1,1,2)22(2n+1): TR

n=0

Similarly,

where a = @, the golden ratio and (—f3) = ‘/52_1 are the two zeros of the
quadratic 22 —xz — 1 = 0.

[ee) n+2
n n 2,3 1 2
T(2,1,1,3)=> (-1) —((W)) = gFl[ 3 ‘—Z] =
n=0 n 2

and in general

T(2,1,1,m)=Z(—1)"%: Qpl[ 2,m _1}

3. Conclusion

In this paper we have been able to consider series of the form

U ) s ()

2OE) &)

an

and an alternating companion,
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and develop their representations in integral form.
These series generalise a class of series of reciprocal binomial coefficient

type, including the class of type Y 7, (2: developed by Borwein, Bailey and

~—v

Girgensohn.
We can also develop integral identities for products of reciprocals of binomial
coefficients of the form

(")
Z an+j bn+k\’
= () ()

this will be reported in another forum.
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