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CLOSED FORM REPRESENTATION OF

BINOMIAL SUMS AND SERIES

ANTHONY SOFO

This paper deals with the classical quest for �closed form� expressions
of binomial sums and series. We shall consider a generalised Binomial sum
and some relations and investigate several methods for its representation in
closed form. In the process of our analysis we shall �discover� several new
identities and the closed form representation of a related series depending on
a parameter.

1. Introduction.

Many methods and techniques are available for identity representations.
Residue theory and contour integration can be gainfully employed to express
certain sums in closed form. For example, Flajolet and Salvy [4] apply contour
integral methods to obtain an identity, originally given by Ramanujan,

∞�

n=1

coth nπ

n7
=

19π7

56700
,

and currently Borwein [1] and his coworkers are carrying out a great deal of
exciting work on symbolically discovered identities. Finally, recently Efthimiou
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[3] uses an elegant method, related to Laplace transforms, and originally given
by Wheelon [12], to obtain closed form expressions for sums of the form

∞�

n=1

1
j�

k=1

(an + k)

.

We shall investigate in this paper, the generalised binomial sum

(1.1) fn (a, b) =

n�

k=0

�
n
k

�

(−a)k
�
bk
k

�

and some of its variations. Finally we �nd the closed form representation of the
series

∞�

k=1

(2k − 1)!

22k((m + k)!)2
,

where m is a non negative integer.

2. Closed form representation of binomial sums.

Consider the generalised sum (1.1),

(2.1) fn (a, b) =

n�

k=0

�
n
k

�

(−a)k
�
bk
k

�

=

n�

k=0

Tk

for a real and b integer. The ratio of consecutive terms is

(2.2)
Tk+1

Tk
=

abb (k − n)

(b − 1)b−1 (k + 1)2

b−1�

j=1

�
k + b− j

b

�

b−1�

j=2

�
k + b− j

b−1

� ,

T0 = 1, and hence from (2.2), in terms of the generalised hypergeometric

function x Fx−1

�
., ..., .

., .., .

�
�
�.

�

, we have

(2.3) fn (a, b) = bFb−1

� b−1
b

, b−2
b

, b−3
b

, ..., 1
b
, −n

1, b−2
b−1

, b−3
b−1

, ..., 1
b−1

�
�
�

abb

(b − 1)b−1

�

,
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for b ≥ 2. For the relatively simple case of b = 1, from (2.1)

fn (a, 1) = 1F0

�
−n
−

�
�
�a

�

= (1 − a)n .

Now, we concentrate on the case of b = 2 ; from (2.3)

(2.4) fn (a, 2) = 2F1

�
1
2
, −n
1

�
�
�4a

�

and a recurrence relation for (2.4) obtained from the Zb algorithm in Mathe-
matica, is

(2.5)
(n + 2) fn+2 + (2n + 3) (2a − 1) fn+1 + (n + 1) (1 − 4a) fn = 0,

f0 (a, 2) = 1, f1 (a, 2) = 1 − 2a.

�

We can see from (2.5) that for two special cases of a = 1/2 and a = 1/4 the
recurrence relation (2.5) becomes manageable. From (2.4) let a = 1/2 such
that

(2.6) fn

�
1

2
, 2

�

= 2F1

�
1
2
, −n
1

�
�
�2

�

and replacing k with n − k we have

(2.7) fn

�
1

2
, 2

�

= T0 2F1

�
−n, −n
1
2

− n

�
�
�
1

2

�

, T0 =

�
−1

2

�n �
2n
n

�

.

There is an identity, due to Gauss, see Graham, Knuth and Patashnik [6], which
states

(2.8) 2F1

�
α1, α2

α1 + α2 + 1
2

�
�
�1

�

= 2F1

�
2α1, 2α2

α1 + α2 + 1
2

�
�
�
1

2

�

,

hence from (2.8) and (2.7)

(2.9) fn =

�
−1

2

�n �
2n
n

�

2F1

� −n
2

, −n
2

1
2

− n

�
�
�1

�

.

Using the classical Gauss formula

2F1

�
α1, α2

α3

�
�
�1

�

=
� (α3) � (α3 − α1 − α2)

� (α3 − α2) � (α3 − α1)
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we obtain from (2.9)

(2.10) fn =

�
−1

2

�n �
2n
n

�
�

�
1
2

− n
�
�

�
1
2

�

�2
�
1
2

− n
2

� ,

(for n even only), such that when n is odd fn = 0 and when n is even, from
(2.10)

f2n =

�
4n
2n

�
1

4n

�
(2n)!

2nn!

�2 4n (2n)!

(4n)!
= 2−2n

�
2n
n

�

.

Also, from (2.5) for a = 1/2 we have that (n + 2) fn+2 − (n + 1) fn = 0 and
hence the Reed Dawson identities follow, namely

(2.11) f2n

�
1

2
, 2

�

=

2n�

k=0

�
2n
k

��

−
1

2

�k �
2k
k

�

= 2−2n

�
2n
n

�

and

(2.12) f2n+1

�
1

2
, 2

�

=

2n+1�

k=0

�
2n + 1

k

� �

−
1

2

�k �
2k
k

�

= 0.

Both (2.11) and (2.12) have been considered by Riordan [10]. The sums (2.11)
and (2.12), or their generic representation (2.1) for a = 1

2
and b = 2, arise in

the work of Jonassen and Knuth [8] in an algorithm known as tree search and
insertion and were also investigated by Greene and Knuth [7] and Rousseau [7].

For a = 1/4, from (2.4)

fn

�
1

4
, 2

�

= 2F1

�
1
2
, −n
1

�
�
�1

�

,

and from (2.5)

(n + 2) fn+2 −
1

2
(2n + 3) fn+1 = 0,

hence

fn = 2−n
n−1�

j=0

�
2 j + 1

j + 1

�

=
�

�
1
2

+ n
�

n!
√

π
= 2−2n

�
2n
n

�

,

also from (2.1), f2n (1/2, 2) = fn (1/4, 2). For b = 3, a recurrence relation,
using the Zb algorithm in Mathematica, fn (a, 3) = fn , of (2.1) is

(2.13)

2 (n + 3) (2n + 5) fn+3 +
�
n2 (27a − 12)+

n (135a − 56) + 168a − 66
�
fn+2+

2 (n + 2) (3n (2 − 9a) + 11 − 54a) fn+1+
(27a − 4) (n + 1) (n + 2) fn = 0,

f0 = 1, f1 = 1 − 3a, f2 = 1 − 3a + 15a2
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The recurrence (2.13) does not lend itself to easy closed form evaluations for
any special values of a. A variation of the sum (1.1) is

(2.14) gn (a, b) =

n�

k=0

�
n
k

�

(−a)k

�
bk
k

�

and in hypergeometric notation

gn (a, b) = bFb−1

�
1, b−2

b−1
, b−3
b−1

, ..., 1
b−1

, −n
b−1
b

, b−2
b

, b−3
b

, ..., 1
b

�
�
�
a (b − 1)b−1

bb

�

.

For b = 1, gn (a, 1) = fn (a, 1) = (1− a)n . For b = 2,

gn (a, 2) = 2F1

�
1, −n

1
2

�
�
�
a

4

�

which has a recurrence relation

2 (2n + 1) gn+1 + (n + 1) (a − 4) gn + 2 = 0, g0 = 1.

In the speci�c case of a = 4, we obtain the identity

gn (4, 2) =

n�

k−0

�
n
k

�

(−4)k

�
2k
k

� =
1

1 − 2n
,

evaluated by Riordan [10] and it may be easily veri�ed, utilizing the procedure
described by Petkov�sek et al. [9], by the rational certi�cate function

R (n, k) =
k (1− 2k)

(n + 1 − k) (2n − 1)
.

For b = 3, a recurrence relation of (2.14), using the Zb algorithm in Mathe-
matica, is

3 (3n + 4) (3n + 5) gn+2 − 2 (n + 2) (n (27− 2a) + 27 − 3a) gn+1+
(4a − 27) (n + 1) (n + 2) gn − 6 = 0, g0 = 1, g1 = 1− 1

2
a

�

,
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and again it does not lend itself to easy closed form evaluations for any special
values of a.

Another variation of (1.1) is the related sum

(2.15) Sn (p, q) =

qn�

r=0

(−1)r
�
qn
r

�p

for p and q integers. For q = 1 and p = 1, (2.15) is identical to (2.1) for a = 1
and b = 1. From (2.15) we have

(2.16) Sn (p, q) = pFp−1

�
−qn, −qn, −qn, ..., −qn

1, 1, 1, ..., 1

�
�
� (−1)p+1

�

,

and some special cases, from (2.16), are

Sn (1, q) = 1F0

�
−qn
−

�
�
�1

�

=

�
0 if qn ∈ Z+

1 if qn = 0

and

(2.17) Sn (p, 2) = pFp−1

�
−2n, −2n, −2n, ..., −2n

1, 1, 1, ..., 1

�
�
� (−1)p+1

�

.

It is known that Sn (2, 2) = (−1)n
�
2n
n

�
, Sn (3, 2) = (−1)n

�
3n
n

��
2n
n

�
and

therefore Sn (3, 2) =
�
3n
n

�
Sn (2, 2); however for p ≥ 4, deBruijn [2] showed

that (2.17) cannot be expressed as a ratio of products of factorials, and Graham
et al. [5] also showed this by an application of the multidimensional saddle
point method. We can deduce, from (2.16) and by the use of Gauss� formula,
the identity

(2.18) Sn (2, q) = 2F1

�
−qn, −qn

1

�
�
� − 1

�

=
2qn+1

B
�
2+qn
2

,
1−qn
2

�

for q �= 1 and n even, where B (x , y) is the Beta function. From (2.15) and
(2.16) we may also deduce that

S2n+1 (p, 1) =

2n+1�

r=0

(−1)r
�
2n + 1

r

�p

= pFp−1

�
− (2n + 1) , ..., − (2n + 1)

1, ..., 1

�
�
� (−1) p+1

�

= 0,



CLOSED FORM REPRESENTATION OF . . . 181

S2n (p, 1) =

2n�

r=0

(−1)r
�
2n
r

�p

= (−1)n
�
2n
n

�p

+ 2

n−1�

r=0

(−1)r
�
2n
r

�p

and utilizing (2.18), gives the new result

n�

r=0

(−1)r
�
2n
r

�2

=
22n−1

√
π

n!�
�
1−2n
2

� +
(−1)n

2

�
2n
n

�2

.

The sum (2.15) may, for speci�c cases of p and q , be written as a recurrence
relation. Another related sum is given by Strehl [11], whom in an informative
paper shows that, for all natural numbers n

n�

k=0

�
n
k

�2 �
n + k
k

�2

=

n�

k=0

�
n
k

��
n + k
k

� k�

j=0

�
k
j

�3

(2.19)

= 4F3

�
n + 1, n + 1, −n, −n

1, 1, 1

�
�
�1

�

.

Strehl offers six different proofs of (2.19) based on:
• Bailey�s bilinear generating function for the Jacobi polynomials in the

special case when the Jacobi polynomials reduce to Legendre polynomials,
• A combinatorial approach to the Bailey identity,
• Legendre inverse pairs,
• the Pfaff-Saalschütz identity,
• Zeilberger�s algorithm, and
• known recurrences for the Franel and Apèry numbers.

From (2.19), after various manipulations Strehl obtains

n�

k=0

�
n
k

�2
�

(λ + 1)2

λ

�k

(2.20)

=

n�

k=0

�
n
k

��
λ + 1

λ

�k k�

j=0

λ j

�
k
j

�2

= 2F1

�
−n, −n

1

�
�
�2 + λ +

1

λ

�

.(2.21)
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Given that 2λ1,2 = −3 ±
√
5 are the zeros of the quadratic λ2 + 3λ + 1, then

from (2.20)

(2.22)

n�

k=0

�
n
k

�2

(−1)k =

n�

k=0

�
n
k

��
λ1,2 + 1

λ1,2

�k k�

j=0

λ
j
1,2

�
k
j

�2

.

Identifying (2.21) with (2.18) for q = 1 we may also give the identity

n�

k=0

�
n
k

�2

(−1)k = 2F1

�
−n, −n

1

�
�
� − 1

�

=
2n

√
π

�
�
2+n
2

�
�

�
1−n
2

�

for n even, and from (2.22) we can write, the new result

Sn (2, 1) =

n�

k=0

�
n
k

��

1+
1

λ1,2

�k k�

j=0

λ
j
1,2

�
k
j

�2

where a second order recurrence of (2.22) is

(n + 2) Sn+2 (2, 1) + 4 (n + 1) Sn (2, 1) = 0,

with S0 (2, 1) = 1 and S1 (2, 1) = 0; for n odd Sn (2, 1) = 0, hence
(n + 1) S2n+2 (2, 1) + 2 (2n + 1) S2n (2, 1) = 0 and by iteration S2n (2, 1) =

(−2)n
n−1�

j=0

2 j+1
j+1

.

3. Closed form representation of a binomial related series with a parame-
ter.

The WZ pairs method certi�es a given identity as well as having some
spin-offs. Given the identity (1.11) for a = 1

2
and b = 2, or from (2.11) we

may write

(3.1)

2n�

k≥0

�
2n
k

�
�
−1

2

�k
�
2k
k

�

22n

�
2n
n

� = 1,

and let

(3.2) F (n, k) =

�
2n
k

�
�
−1

2

�k
�
2k
k

�

4n

�
2n
n

� =

�
−1

2

�k
(2k)! (n!)2 4n

(2n − k)! (k!)3
.



CLOSED FORM REPRESENTATION OF . . . 183

Calling up the WZ package in �Mathematica� we obtain the certi�cate function

(3.3) R (n, k) =
k2

(2n − k + 1) (k − 2− 2n)
.

Now, we de�ne

(3.4) G (n, k) = R (n, k) F (n, k) =
−

�
−1

2

�k
(2k)! (n!)2 4n

k! ((k − 1)!)2 (2n − k + 2)!

such that F (n + 1, k) − F (n, k) = G (n, k + 1) − G (n, k) is true. Sum that
equation over all integers k, such that the right hand side telescopes to zero and
therefore

(3.5)
�

k≥0

F (n + 1, k) =
�

k≥0

F (n, k) .

The two discrete functions F (n, k) and G (n, k) are termed the WZ pairs.
From (3.5) and with initial conditions we obtain the Reed Dawson identity.
Petkov�sek et al. [9] claim that the WZ pairs method provides extra information
because of the existence of a dual WZ pair. To obtain the dual WZ pair make

the substitution (an + bk + c)! by (−1)an+bk

(−an−bk−c−1)!
for a + b �= 0 in (3.2) and

(3.4) to obtain F and G . Next change the variables (n, k) by F∗ (n, k) =
G (−k − 1, −n) ;G∗ (n, k) = F (−k, −n − 1), (this transformation maps WZ
pairs to WZ pairs), such that we obtain

(3.6) F∗ (n, k) =
(−1)n+1 2n (n − 1)! (n!)2 (2k − 1 − n)!

4k+1 (2n − 1)! (k!)2

and

(3.7) G∗ (n, k) =
(−1)n+1 2n+1 (n!)3 (2k − 2 − n)!

4k (2n + 1)! ((k − 1)!)2
.

As previously, we obtain f ∗
n =

�

k≥0

F∗ (n, k) and because of the (2k − 1 − n)

term in (3.6) we shall de�ne

(3.8) f ∗
n =

�

k≥[ n
2 ]+1

F∗ (n, k) ,
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where [x ] represents the integer part of x . Now, we need to sum over k, the
recurrence

(3.9) F∗ (n + 1, k) − F∗ (n, k) = G∗ (n, k + 1) − G∗ (n, k) ;

from(3.9) it follows easily that

F∗ (n + 2, k) − F∗ (n, k)

= G∗ (n + 1, k + 1) − G∗ (n + 1, k) + G∗ (n, k + 1) − G∗ (n, k) .

For n even, let n = 2m, and summing for k ≥ 2 + m, we obtain

f ∗ (2 + 2m) − f ∗ (2m) + F∗ (2m,m + 1)

= −G∗ (2m + 1,m + 2) − G∗ (2m,m + 2) ,

and from (3.6) and (3.7) substituting for F∗ and G∗ we obtain

(3.10) f ∗ (2 + 2m) = f ∗ (2m) +
(3m + 2) (2m + 1)! (2m)!2

m! (4m + 3)! (m + 1)!
.

Iterating the recurrence (3.10) we have

(3.11) f ∗ (2+ 2m) = f ∗ (2) +

m�

j=1

(3 j + 2) (2 j + 1)! (2 j )!2

j ! (4 j + 3)! ( j + 1)!

and from (3.6) and (3.8) we have

(3.12) f ∗ (2) = −
2

3

�

k≥2

(2k − 3)!

4k (k!)2
.

We can put (3.12) in �Mathematica, Algebra, SymbolicSum� and obtain

(3.13) f ∗ (2) =
1

3
− ln

√
2.

(We may also obtain (3.13) by starting with identity 2.5.16 in the book by Wilf
[13]). Now from (3.13), (3.11), and (3.8) we obtain

4m (2m − 1)! (2m)!2

(4m − 1)!

∞�

k=m+1

(2k − 1− 2m)!

4k+1 (k!)2
(3.14)

= ln
√
2 −

1

3
−

m−1�

j=1

(3 j + 2) (2 j + 1)! (2 j )!2

j ! (4 j + 3)! ( j + 1)!
.
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From (3.10) and (3.13) we also obtain f ∗ (0) = −ln
√
2 and from (3.14) putting

k∗ = k − m and renaming k∗ we have the new result

∞�

k=1

(2k − 1)!

22k ((m + k)!)2

=
(4m − 1)!

(2m − 1)! (2m)!2





ln 4− 4

m−1�

j=0

(3 j + 2) (2 j + 1)! (2 j )!2

j ! (4 j + 3)! ( j + 1)!





.
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