On a general class of q-polynomials suggested by basic Laguerre polynomials

Balraj Singh, R. K. Yadav*

Department of Mathematics and Statistics, J. N. Vyas University, Jodhpur-342005, India [rkmdyadav@yahoo.co.in]

2000 Mathematics Subject Classification. 33D45, 33C45, 42C05
Having defined a q-extension of the polynomial $L_{n}^{\alpha, \beta}(x)$, we investigate its fundamental properties such as q-generating relation, q-partial difference equation and recurrence relations. A generalized q-generating function for the said polynomial is also established. It has further been shown that the newly defined polynomial is closely related to the q-Laguerre polynomial $L_{n}^{\beta}(x ; q)$. Certain interesting limiting cases in the form of the known results due to Prabhakar and Rekha [Math. Student, 40(1972), 311-317] and Prabhakar [Pacific J. Math. 35(1)(1970), 213-219] have also been discussed. Some of the main results proved in this paper are as under:
(a) A q-extension of $L_{n}^{\alpha, \beta}(x)$:

$$
\begin{equation*}
L_{n}^{\alpha, \beta}(x ; q)=\frac{\Gamma_{q}(\alpha n+\beta+1)}{(q ; q)_{n}} \sum_{j=0}^{n} \frac{\left(q^{-n} ; q\right)_{j}\left(x q^{n}\right)^{j} q^{j(j-1) / 2}}{(q ; q)_{j} \Gamma_{q}(\alpha j+\beta+1)}, \tag{1}
\end{equation*}
$$

where $\operatorname{Re}(\alpha)>0$ and $\operatorname{Re}(\beta)>-1$.
(b) q-generating function:

$$
\begin{equation*}
\sum_{n=0}^{\infty} \frac{L_{n}^{\alpha, \beta}(x ; q) t^{n}}{\Gamma_{q}(\alpha n+\beta+1)}=e_{q}(t) \phi(\alpha, \beta+1 ; q,-x t), \tag{2}
\end{equation*}
$$

where $\phi(\alpha, \beta+1 ; q,-x t)$ is q-Bessel-Maitland function.
[1] Al-Salam, W.A. and Verma, A.: q-Konhauser polynomials, Pacific J. Math. 108(1983), 1-7.
[2] Konhauser, Joseph D.E.: Biorthogonal polynomials suggested by the Laguerre polynomials, Pacific J. Math. 21 (1967), 303-314.
[3] Prabhakar, T.R.: On a set of polynomials suggested by Laguerre polynomials, Pacific J. Math. 35(1) (1970), 213-219.
[4] Prabhakar, T.R. and Rekha, Suman: On a general class of polynomials suggested by Laguerre polynomials, Math. Student 40 (1972), 311-317.
[5] Srivastava, H.M. and Agarwal, A.K.: Generating functions for a class of q-polynomials, Annali di Matematica pura ed applicata.IV 154 (1989), 99-109.

