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Abstract The Fibonacci sequence is a source of many nice and interesting identities. A similar interpretation
exists for Lucas sequence. The Fibonacci sequence, Lucas numbers and their generalization have many interesting
properties and applications to almost every field. Fibonacci sequence is defined by the recurrence formula
Fo= Fn1+Fpp n>2and Ry =0, =1, where F; isa n™ number of sequence. The Lucas Sequence is defined

by the recurrence formula L, = L3 +L,, n>2 andLy=2, L;=1, where L, isa n™ number of sequence. In this
paper, Generalized Fibonacci-Lucas sequence is introduced and defined by the
By =Bp_1+B,_p, n>2with By =2b, By =, where b and s are integers. We present some standard identities and
determinant identities of generalized Fibonacci-Lucas sequences by Binet’s formula and other simple methods.
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1. Introduction

Fibonacci numbers Fn and Lucas numbers L, have
delighted mathematicians and amateurs alike for centuries
with their beauty and their propensity to pop up in quite
unexpected places [3], [12] and [13]. It is well known that
generalized Fibonacci and Lucas numbers play an
important role in many subjects such as algebra, geometry,
and number theory. Their various elegant properties and
wide applications have been studied by many authors.

The Fibonacci and Lucas sequences are examples of
second order recursive sequences. The Fibonacci sequence
[4] is defined by the recurrence relation:

Fo=Foa+Fyp, n>2 withFy =0, F =1. (1.1)

The similar interpretation also exists for Lucas
sequence. Lucas sequence [4] is defined by the recurrence
relation:

Ly =Lyg+Ly o, n22withly =2, L =1. (1.2)

Authors [1,2,3,4] and [6-13] have been generalized
second order recurrence sequences by preserving the
recurrence relation and altering the first two terms of the
sequence, while others have generalized these sequences
by preserving the first two terms of sequence but altering
the recurrence relation slightly.

Horadam [1] introduced and studied properties of a

generalized Fibonacci sequence {H,, } and defined generalized

Fibonacci sequence {Hn } by the recurrence relation:

Hpi2 =Hpu +Hp, Hp=gand Hy; = p, n>0, (1.3)

where p, q are arbitrary integers.

Horadam [2] introduced and studied properties of
another generalized Fibonacci sequence {Wn}and defined
generalized
relation:

Fibonacci sequence {w,} by the recurrence

{Wn} = {Wn (a’ b, P, q)} : WO =a, Wl = b,
Wp = PWp_3 —QWp_p, N 22,

(1.4)

where a, b, p and g are arbitrary integers.

Waddill and Sacks [10] extended the Fibonacci
numbers recurrence relation and defined the sequence
{P,} by recurrence relation:

Py =Py q+Pyp+Pg N>3 (1.5)

where By, B and P, are not all zero given arbitrary

algebraic integers.
Jaiswal [5] introduced and studied properties of

generalized Fibonacci sequence {Tn} and defined it by

Ty =Ty+Toq, T=aand T, =b, n>1. (1.6)

Falcon and Plaza [11] introduced k™ Fibonacci

sequence {Fk'n}neN and studied its properties. For any
positive integerk 21 kth

by

Fibonacci sequence is defined
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Fk, 0= 0, Fk, 1 =land Fk, N+l = ka’ n + Fk, n_l,n >1. (17)

In this paper we present Generalized Fibonacci-Lucas
sequence and some specific identities and some
determinant identities.

2. Generalized Fibonacci-Lucas Sequence

Generalized ~Fibonacci-Lucas sequence {By}.~ , is

introduced and defined by recurrence relation:
B, = B4 +By_5, n>2with By =2band B =5, (2.1)

where b and s are non negative integers.
The first few terms are as follows:

By = 2b,

B, =s,

B, =2b+s,
B; =2b+2s,
B, =4b+3s,
Bs = 6b +5s,
Bg =10b +8s,

B; =16b+13s and so on.

The characteristic equation of recurrence relation (2.1)
is t? —t —1= 0. which has two real roots

1+2\/_ dﬁ—l x/_

Also, af=-1, a+p=1, a—ﬂ:\/g, o+ % =3
Generating function of generalized Fibonacci-Lucas
sequence is

(2.2)

3" Bt =B(t) :w_

n:0 l_t_t

(2.3)

Binet’s formula of Generalized Fibonacci-Lucas
sequence is defined by

n n
B, =Cia" +C, 5" = cl[“fJ +C, (1_2*6] (2.4)

s—2bg 2ba —s
Here, = and C, = .
“=" N
2 oo AR2
Also, QCZ:&, C,f+Cra=-s+2b and
(a-p)
C1+C2 =2b.

Generalized Fibonacci-Lucas Sequence generates many
classical sequences on the basis of value of b and s.

3. ldentities of Generalized Fibonacci-
Lucas Sequence

Now some identities of generalized Fibonacci-Lucas
sequence are present using generating function and
Binet’s formula. Authors [6,7] have been described such
type identities.

Theorem (3.1). (Explicit Sum Formula) Let G,, be the

" term of generalized Fibonacci-Lucas sequence. Then

2 -
_22( ] s— 2b)kZ;J( ) j.(3.1)

Proof. By generating function (2.3), we have
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Equating the coefficient of t", we obtain

2 2]

%Bntn =2ka%)(nEk)+(s—2b) kgo (“"k“l).

By taking different values of b and s in above identity,
explicit formulas can be obtained for Fibonacci and Lucas
sequences.

Theorem (3.2). (Sum of First n terms) Sum of first n
terms of Generalized Fibonacci-Lucas sequence is

n-1
Z Bk =Bny—s.
k=0

(3.2

Proof. Using the Binet’s formula (2.4), we have
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EBW f‘i[clak +Co* |

k=0 k=0

A |1=a" 1-p"

ol e
(Cﬁ-%CZ)—(CLﬁ4—C2a)—(Caan-+Caﬁn)
+af(Cla"t +C ML)

1-(a+ B)+ap

Using subsequent results of Binet’s formula, we get

n-1
> By =By +B,1—-5=By-s
k=0
Theorem (3.3). (Sum of First n terms with odd
indices): Sum of first n terms (with odd indices) of
Generalized Fibonacci-Lucas sequence is
n-1

D Boks1 =Bony —Bon g —2b=B,, —2b.
k=0

(3.3

Proof. Using the Binet’s formula (2.4), we have

n-1

z |:C1062k+1 +C2ﬂ2k+1}

n-1
D Boki1 =
k=0 k=0
1_a2n 1_ﬁ2n
(Ca®™ 4 C, 2"~ (Ca +Cy )
+af(C 5 +Coar) -’ 2 (Ca® L+ C g2
a’®+p?-a’p?-1 '

Using subsequent results of Binet’s formula, we get

n-1

D Boks1 =Bany1 —Bang —2b =By, —2b.
k=0

Theorem (3.4). (Sum of First n terms with even
indices) Sum of first n terms (with even indices) of
generalized Fibonacci-Lucas sequence is given by

n-1
3" Boy = Bon —Bon_p —5+20 =By —5+2b. (3.4)
k=0

Proof. Using the Binet’s formula (2.4), we have
n-1

S 2 2k
Eé%Bm<= EZ[Caa —FCZﬁ ]

k=0
-, {1_0‘2: } C, {Pﬁzzn }
l-o 1-p
(Cla®" +C°") = (Cy +C) +(C A% +Cpa)
[—azﬁz(claz“ ST ]
a2+ﬂ2—a2ﬂ2—1

Using subsequent results of Binet’s formula, we get

n-1
D Bk =By —Bonp—s+20=By, 1 —5+2b.
k=0

Theorem (3.5). (Catalan’s Identity) Let B, be the nth
term of Generalized Fibonacci-Lucas sequence. Then

Br% - Bn+r anr

~ (_1)n7r

 s% _2bs—4b?
Proof. Using Binet’s formula (2.4), we have

(3.5)
(sBy —20B,,; )7, n>r>1.

Br? - Bn+anfr
= (Ca" +C,8")?

_ (Clan+r +C2ﬁn+r)(clan—r +C2ﬁn—r),
=CCo(ep)" (2-a" " —a™" ")
=CiCy(ap)" " (20" B —a®" - p*)
= -CiCy(ap)" " (a" - B")%.

Using subsequent results of Binet’s formula, we get
r ry2
(_1)n—r (a _ﬂ ) .

B2 —B,, B, = (s —2bs—4b?
( ) (a- By

a'-p 1 .
Since == 5 (sB; —2bB, ; ), we obtain
a-f  s°-2bs—4b
2 (GO 2
Bf ~ By By =—5———— (B, ~20B,y)* n>r>1
s —2bs—4b

Corollary (3.5.1). (Cassini’s Identity) Let B, be the nth
term of Generalized Fibonacci-Lucas sequence. Then
B2 —By,1Byy = (-1)"}(s® —2bs—4b?), n>1. (3.6)
Taking r=1 in the Catalan’s identity (3.5), the
required identity is obtained.

Theorem (3.6). (d’Ocagne’s Identity) Let B,, be the nth
term of generalized Fibonacci-Lucas sequence. Then

Bm Bn+1 - Bm+1Bn
=(-1)"(sBy_p —2bBy_141), M>n>0.

(3.7

Proof. Using Binet’s formula (2.4), we have
Bm Bn+1 - Bm+an
= (Ca™ +Co M) (" +Cop M)
~(Ca™ +Cp M) (Ca" +Co ")
— C1C2 (amﬁn+1 + arH—lﬁm _anﬁm-i-l _alTH-lﬂn)
=CiCo (@) | pla™" - p" ) —al@™ " - p7 |
=-CCy(ap)" (a- )™ " =" ).
Using subsequent results of Binet’s formula, we get

Bm Bn+l - Bm+1Bn

(2 _one_gp2y @ =BT
= (-1)" (s —2bs—4b“) 5 .

SBm—n — 2me—n+l
(s? — 2bs — 4b?)

m-n m-n
R (04 —
Since B =

a-p

, we obtain
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BmBns1—Bmi1Bn = (=1)" (5Bp_n — 2bByy_psq),m >n>0.
Theorem (3.7). (Generalized Identity) Let B, be the

n™ term of Generalized Fibonacci-Lucas sequence. Then
BmBn = Bm-rBnsr
= (=)™ (sBy —2bBy41)(sBn_m+r —20By_mr)s (3.8)
n>mz2r2>1.
Proof. Using Binet’s formula (2.4), we have
Bm Bn - Bm—r Bn+r
= (Ca™ +Cy8M)(Cra" +Co8")
_ (Clam—r +C2ﬁm—r)(clan+r +C2ﬂn+r)
amﬂn anﬂm
7_7
— C]_CZ (_1)—I' (ar _ﬂr)(amﬁnﬂ _an+rﬂm)
_ C]_CZ (_1)—ramﬂm (ar _ﬂr)(ﬂn—mﬂ _an—m+r)
_ _C’_[CZ (_1)m—r (ar _ﬂr)(an—mﬁ _ﬂn—m+r)'
Using subsequent results of Binet’s formula, we get
Bm Bn - Bm—r Bn+r

:clcz(af—ﬁ“){

2 Y
_ (s” —2bs fb )(_1)m—r (@' = ") (@™ _ gn=meTy
(a-p)
Since a-p_ ! (sB, —2bB,,;) and

a—f  s2_2bs—4ab?

AR A _ SBn—mr _Zan—m+r+1_
a-p (s - 2bs — 4p?)
We obtain,

Bm Bn - Bmfr Bn+r

= (_1)m—r (sBr —2bBy 11)(SBn—m+r —20Bn_myr1),
n>mzrz2>1.

The identity (3.8) provides Catalan’s, Cassini’s and
d’Ocagne’s and other identities:
(i) If m=n, the Catalan’s identity (3.5) is obtained.
(ii) If m=n and r=1 in identity (3.8), the Cassini’s
identity (5.1) is obtained.
(iii) If n=m, m=n+1 and r=1 in identity (3.8), the
d’Ocagne’s identity (3.6) is obtained.

4. Determinant ldentities

There is a long tradition of using matrices and
determinants to study Fibonacci numbers. T. Koshy [10]
explained two chapters on the use of matrices and
determinants. In this section, some determinant identities
are presented.

Theorem(4.1). For any integersn >0 , prove that

Bn+1 Bn+2 Bn+3
Bnia Bn.s Bn.g|=0. (4.1)
Bn+7 Bn+8 Bn+9

Proof.
Bn+l Bn+2 Bn+3
LetA = |Bpy, Bnis Bni6
Bn+7 Bn+8 Bn+9
Applying C; -» C; +C,, we get
Bn+3 Bn+2 Bn+3
LetA = |Bng  Bns Bni6
Bn+9 Bn+8 Bn+9

Since two columns are identical,we obtained required
result.

Theorem (4.2). For any integer " = 0 prove that

Bn—Bnu Bni1 = Bniz Bni2 —Bn
Bni1—Bni2 Bni2 —Bn By~ By | =0.(4.2)
Bn+2 - Bn Bn - Bn+1 Bn+1 - Bn+2
Proof.
Bn - Bn+1 Bn+1 - Bn+2 Bn+2 - Bn
LetA = |Bnyy — By Bhi2 —Bn By —Bn
Bni2 —Bn Bn —Bni1 Bni1—Bniz

By applying C; - C; +C, +C3 and expanding along
first row, we obtained required result.
Theorem (4.3). For any integern >0 , prove that

1 1 1
B, Bri1 Bhyo |=0.(4.3)
Bni1+Bni2 Bn +Brni2 Bn +Bnia
Proof.
1 1 1
LetA = Bn Bni1 Bni2
Bn+1 + Bn+2 Bn + Bn+2 Bn + Bn+1

Applying R; > R3 +R,, we get

1 1 1
A= |By Bn Bni2
2Bn+2 ZBn+2 ZBn+2

Taking common out 2B,,,, from third row,
1 1 1
A = 2By, |By Bni1
1 1 1

Bn+2 :

Since two rows are identical, thus we obtained required
result.
Theorem (4.4). For any integern >0 , prove that
Bn Bn + Bn+1
2B, 2B, +3Bn1

Bn + Bn+l + Bn+2
2B, +3B,,,1 + 4By, 5

(4.4)
3B, 3B, +6B 1 3B,, +6B,1+12B,»
= 3Bn Bn+1Bn+2-
Proof.
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Bn Bn +Bni1 Bn +Bnit +Bni2
Let A=[2B, 2B, +3B,,; 2B,+3B,,5+4B,.,
3B, 3B, +6B,., 3B, +6B,,+12B,.,

Applying Ry, - Ry —2R;, Ry = Rz —3R;, we get

Bn Bn+tBni1 Bn*tBni1 + Bni2
A=|0 Bna Bni112Bp,0
0 3Bny1 3Bni1 +9Bn,

Applying R; = R3 —3R, and expanding along first row,
we obtained required result.
Theorem (4.5). For any integern>0 , prove that

2 2
0 BnBnu BnBni2
2 2 33 B3
BnBni1 0 Bn41Bni2|=2ByBn1Brso. (4.5)
2 2
BiBni2  Bni2Bpa 0
Proof.
2 2
0 BnBni1 BnBni2
2 2
Let A=|ByBp 0 Bn+1Bny2|-
2 2
BnBni2 Bn+2Bnu 0

Taking common out BZ, Bﬁ+1, Bﬁ+2 from C;, C,, Cj3
respectively, we get

0 B, B,
_p2p2 2
A _Bn Bn+an+2 Bn+1 0 Bn+1 :
Bn+2 Bni2 0

Taking common out By, B, 4, B,» from R, Ry, Rj

respectively and expanding along first row, we obtained
required result.
Theorem (4.6). For any integern > 0, prove that

B, F, 1
Bni Fha 1= [Fn Bn+1—Bn Fn+1]- (4.6)
n+2 "n+2
B, F 1
Proof: Let A=|B, 4 Fg 1
n+2 "n+2
Assume B, =a, Bps1=b,Bo=a+band F,=p, Fui=q,
Friz =p+0.

Now substituting the above values in determinant, we
get

ApplyingRy > R —R,

a-bp-q0
=lb q 1
a+b p+ql

A

Applying R, - Ry — Ry

a-bp-q0
A=|-a -p 0|=(pb-aq).
a+b p+ql

Substituting the values of a, b, p and g, we get required
result.

Similarly following identities can be derived:
Theorem (4.8). For any integern >0 , prove that

B Ln
Bt Lt 4=2(LyBny1 —Bplpsa). (4.8)
n+2 =n+2
Theorem (4.9). For any integern >0 , prove that
Bn +Bni1 Bnya +Bni2 B2 +By
n+2 n nit |=0 (4.9)
1 1 1

Theorem 4.(10). For any integern >0 , prove that

1+By, By Bhio
Bn 1+ Bn+1 Bn+2
By Bni1 1+Bnio

=1+B, +By,1 + By, (4.10)

5. Conclusions

In this paper, Generalized Fibonacci-Lucas sequence is
introduced. Some standard identities of generalized
Fibonacci-Lucas sequence have been obtained and derived
using generating function and Binet’s formula. Also some
determinant identities have been established and derived.
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