
 

 

International Journal of Algebra, Vol. 5, 2011, no. 13, 637 - 645 

 

 

Generalized Identities Involving Common Factors of 
 

Fibonacci and Lucas Numbers 
 

 

Bijendra Singh 1 , Pooja Bhadouria 2 and Omprakash Sikhwal 3  
 
 

1 School of Studies in Mathematics, Vikram University Ujjain, India 
bijendrasingh@yahoo.com 

 
2  School of Studies in Mathematics, Vikram University Ujjain, India 

pooja.kajal@yahoo.co.in 
 

3 Department of Mathematics 
Mandsaur Institute of Technology,Mandsaur, India 

opbhsikhwal@rediffmail.com, opsikhwal@gmail.com 
 

Abstract 

The Fibonacci and Lucas numbers appear in numerous mathematical problems. In this 
paper we present some generalized identities involving common factors of Fibonacci and 
Lucas numbers. Binet’s formula will employ to obtain the identities. Some identities 
involving Fibonacci and Lucas polynomials also explained. 
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1.  INTRODUCTION 

Fibonacci numbers are a popular topic for mathematical enrichment and popularization. 
They are famous for a host of interesting and surprising properties, and show up in text 
books, magazine articles, and websites. 
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There are a lot of identities of Fibonacci and Lucas numbers described in [1]. M. 
Thongmoon [4] defined various identities of Fibonacci and Lucas numbers.  

The Fibonacci sequence is defined as 

11 −+ += nnn FFF   where 1≥n  with initial conditions 1,0 10 == FF                            [1.1]    

 

Binet’s formula is 
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which gives  1=+ βα  and 1. −=βα                                                               [1.3] 

 

The Lucas sequence is defined as 

11 −+ += nnn LLL , where 1≥n  with initial conditions  1,2 10 == LL                          [1.4] 

Binet’s formula for the Lucas sequence is  
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There are some known identities involving Fibonacci and Lucas numbers in [5]. 
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3. SOME IDENTITIES WITH FIBONACCI AND LUCAS POLYNOMIALS 

Lupas Alexandru [3] has defined Fibonacci polynomials by the recurrence relation 

2),()()( 11 ≥+= −+ nxfxxfxf nnn  with xxfxf == )(,1)( 21     [3.1] 

The Binet’s form is given by 
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Now,  Lupas Alexandru [3] has defined Lucas polynomials by the recurrence relation 

2),()()( 11 ≥+= −+ nxlxxlxl nnn  with xxlxl == )(,2)( 10     [3.5] 

The Binet’s form is given by 
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Corollary 3.2:  For different values of s, [3.9] can be expressed for even and odd        

   number of Fibonacci and Lucas polynomials.   

If s=0, then   )()()( 224 xlxfxf nnn =  where 1≥n                 [3.10] 

If s=1, then  )()(1)( 12214 xlxfxf nnn ++ =−  where 1≥n                 [3.11] 

If s=2, then  )()()( 22224 xlxfxxf nnn ++ =−  where 1≥n  and so on.              [3.12]  

Now we state some identities. Their proof can be given same as theorem [3.1].  

 

Theorem 3.1: )()()()( 224 xlxfxfxf nsnssn ++ =+  where n≥1 and s≥0. 

 

Theorem 3.1: )()()4()()( 22
2

4 xfxfxxlxl snnssn ++ +=−  where n≥1 and s≥0. 

  

Theorem 3.1: )()()()( 224 xlxlxlxl snnssn ++ =+  where n≥1 and s≥0. 

 

4. CONCLUSION  

This paper explained generalized identities involving common factors of Fibonacci and 
Lucas numbers. Mainly Binet’s formula employ for the identities. Some identities 
involving Fibonacci and Lucas polynomials also developed and derived. The concept can 
be executed for generalized Fibonacci and Lucas sequences as well as polynomials. 
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