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Abstract
In this paper, we investigate some new identities related to the unification of the
Bernstein-type polynomials, Bernoulli polynomials, Euler numbers and Stirling
numbers of the second kind. We also give some remarks and applications of the
Bernstein-type polynomials related to solving high even-order differential equations
by using the Bernstein-Galerkin method. We also give some applications on these
polynomials and differential equations.
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1 Introduction
Generating functions play an important role in the investigation of various useful prop-
erties of the sequences and differential equations. These functions are also used to find
many properties and formulas for the sequences. In [], the author constructed certain
generating functions for the unification of the classical Bernstein polynomials. Using these
generating functions, the author derived several interesting and useful identities for these
polynomials. The Bernstein polynomials have been defined by many different ways, for
example, by q-series, by complex function and bymany algorithms. The Bernstein polyno-
mials are used in approximations of functions as well as in other fields such as smoothing
in statistics, in numerical analysis, constructing the Bezier curves. The Bernstein polyno-
mials are also used to solve differential equations.
According to Farouki [], the Bernstein polynomial basis was introduced  years ago

(Bernstein, ) as a means to constructively prove the ability of polynomials to ap-
proximate any continuous function, to any desired accuracy, over a prescribed interval.
Their slow convergence rate and the lack of digital computers to efficiently construct them
caused the Bernstein polynomials to lie dormant in the theory rather than practice of ap-
proximation for the better part of a century. The Bernstein coefficients of a polynomial
provide valuable insight into its behavior over a given finite interval, yielding many use-
ful properties and elegant algorithms that are now being increasingly adopted in other
application domains.
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Recently, the author [] introduced and investigated the following generating functions
which use a unification of the classical Bernstein polynomials:

F (t,b, s : x) =
bxbs( t )

bset(–x)

(bs)!
, ()

where b, s ∈N := {, , , , . . .}, t ∈C and x ∈ [, ]. The following function is a generating
function of the polynomialsSn(b, s,x)

F (t,b, s : x) =
∞∑
n=

Sn(b, s,x)
tn

n!
, ()

whereS(b, s,x) = · · · =Sbs–(b, s,x) = .
An explicit formula of the polynomialsSn(b, s,x) is given by the following theorem [].

Theorem . Let x ∈ [, ]. Let b, n and s be nonnegative integers. If n≥ bs, then we have

Sn(b, s,x) =
(
n
bs

)
xbs( – x)n–bs

b(s–)
.

Remark . If we set s =  in (), we have

Sn(b, ,x) = Bn
b(x),

which denotes the classical Bernstein basis function (cf. [–]). Consequently, the polyno-
mialsSn(b, s,x) are a unification of the Bernstein polynomials.

The remainder of this study is organized as follows.
Section : We give many properties of the unification of the Bernstein-type polynomi-

als: partition of unity, alternating sum, subdivision property.We also givemany functional
equations and differential equations of this generating function. Using these equations,
many properties of the unification of the Bernstein-type polynomials can be found. Sec-
tion : Integral representations of the unification of the Bernstein-type polynomials are
given. Using these representations, we give an identity. Section : By using the Laplace
transform, we find some identities of the unification of the Bernstein-type polynomials.
Section : By using a new generating function, we prove the Marsden identity for the
unification of the Bernstein-type polynomials. Section : By using generating functions,
we give relations between the unification of the Bernstein-type polynomial, the unifi-
cation of the Bernoulli polynomial of higher order and the Stirling numbers of the sec-
ond kind. Section : By using the unification of the Bernstein-type polynomials and the
Bernstein-Galerkin methods, we solve high even-order differential equations. Section :
We give some remarks on the unification of the Bernstein-type polynomials and Bezier-
type curves.

2 Properties of the unification of the Bernstein-type polynomials
In this section, we investigate some properties of the unification of the Bernstein-type
polynomials.
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2.1 Partition of unity
The unification of the Bernstein-type polynomials Sn(b, s,x) does not have partition of
unity. That is, by using (), we derive the following functional equation:

∞∑
s=

F (t, , s : x) = e t
 (–x).

By using the same method as that in [] and (), we arrive at the formula for the polyno-
mialsSn(, s,x)

n∑
s=

Sn(, s,x) = –n( – x)n.

Remark . The polynomials b(s–)Sn(b, s,x) have partition of unity. That is,

n∑
bs=

b(s–)Sn(b, s,x) = .

2.2 Alternating sum
By using (), we derive the following functional equation which is used to find an alternat-
ing sum of the unification of the Bernstein-type polynomialsSn(b, s,x):

∞∑
s=

(–)sF (t, , s : x) = e t
 (–x).

By using the samemethod as that in [] and (), we arrive at a formula for the alternating
sum of the polynomialsSn(, s,x), which is given by the following theorem.

Theorem .

n∑
s=

(–)sSn(, s,x) = –n( – x)n.

2.3 Subdivision property
Here, we give partial differential equations and a functional equation of the generating
function for the unification of the Bernstein-type polynomials Sn(b, s,x). By using this
functional equation, we derive the subdivision property unification of the Bernstein-type
polynomialsSn(b, s,x).
We set

F (t,b, s : yx) =F (yt,b, s : x)et(–y). ()

By using the above functional equation and (), we derive the subdivision property for the
polynomialsSn(b, s,x) by the following theorem.

Theorem .

Sn(b, s,xy) =
n∑

k=bs
k–Sk(b, s,x)Sn(,k, y)

http://www.boundaryvalueproblems.com/content/2013/1/56
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or

Sn(b, s,xy) =
n∑

k=bs
Sk(b, s,x)Bn

k (y), ()

where Bn
k (y) denotes the classical Bernstein basis function.

Remark . Substituting s =  into (), we obtain the subdivision property for the classical
Bernstein basis functions:

Bn
b(xy) =

n∑
k=b

Bk
b(x)Bn

k (y).

Using (), we give the following partial differential equations:

∂

∂y
F (t,b, s : yx) = et(–y) ∂

∂y
F (yt,b, s : x) – tF (yt,b, s : x)

and

∂

∂x
F (t,b, s : yx) = et(–y) ∂

∂x
F (yt,b, s : x).

By applying these partial differential equations, we obtain the following derivative rela-
tions which are related to the subdivision property unification of the Bernstein-type poly-
nomialsSn(b, s,x), respectively:

Theorem .

∂

∂y
Sn(b, s,xy) =

n∑
j=

jBn
j (y)Sj(b, s,x) – nyn–Sn–(b, s,x)

and

∂

∂x
Sn(b, s,xy) =

n∑
j=

Bn
j (y)

∂

∂x
Sj(b, s,x).

3 Integral representations
In this section, we derive integral representations of the unification of the Bernstein-type
polynomialsSn(b, s,x). We also give an identity which connects the binomial coefficients,
gamma and beta functions.
The beta function B(α,β) is a function of two complex variables α and β , defined by

B(α,β) =
∫ 


tα–( – t)β– dt = B(β ,α)

(�(α) > ,�(β) > 
)

()

(cf. [, p., Eq. ()]). The beta function is related to the gamma function; one has

B(α,β) = �(α)�(β)
�(α + β)

.

http://www.boundaryvalueproblems.com/content/2013/1/56
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Replacing α by n ∈ Z
+ and β bym ∈ Z

+ in the above equation, we get

B(α,β) =
�(n)�(m)
�(n +m)

=
(n – )!(m – )!
(n +m – )!

()

(cf. [, p., Eq. ()]).

Theorem .

∫ 


Sn(b, s,x)dx = b(–s)

(
n
bs

)
B(bs + ,n – bs + ) ()

or

∫ 


Sn(b, s,x)dx = b(–s)

(
n
bs

) n–bs∑
l=

(–)n–bs–l
(
n – bs

l

)


n – l + 
. ()

Proof

∫ 


Sn(b, s,x)dx = b(–s)

(
n
bs

)∫ 


xbs( – x)n–bs dx, ()

where

bs ≤ n.

By using (), we easily arrive at the desired result. �

Binomial coefficients play an important role in mathematics and mathematical physics,
especially in statistics, probability and analytic number theory. Therefore, by using () and
(), we derive the following identity related to the binomial coefficients, gamma and beta
functions:

n–bs∑
l=

(–)n–bs–l
(
n – bs

l

)


n – l + 
=


(n + )

( n
bs
) .

4 Identities
In this section, by using the Laplace transform, we give some identities of the unification
of the Bernstein-type polynomialsSn(b, s,x).
Using the generating function in (), we get

e–t
∞∑
n=

Sn(bs,x)
tn

n!
=
bxbs( t )

bs

(bs)!
e–xt . ()

Integrating equation () (by parts) with respect to t from zero to infinity, we have

∞∑
n=

Sn(b, s,x)
n!

∫ ∞


e–ttn dt =

b(–s)xbs

(bs)!

∫ ∞


tbse–xt dt. ()

http://www.boundaryvalueproblems.com/content/2013/1/56
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If we appropriately use the case x >  of the following Laplace transform of the function
f (t) = tk :

∫ ∞


tke–ut dt = k!

uk+
, ()

by substituting () into (), we arrive at the following theorem.

Theorem . Let | – x| < . Then we have

∞∑
n=

xSn(b, s,x) = b(–s). ()

Remark . If we set s =  in (), then we arrive at Theorem  in [].

We modify () as follows:

ext
∞∑
n=

Sn(b, s,x)
tn

n!
=
bxbs( t )

bs

(bs)!
et .

From the above equation, we get

∞∑
n=

xn
tn

n!

∞∑
n=

Sn(b, s,x)
tn

n!
=
b(–s)xbs

(bs)!

∞∑
n=

tn+bs

n!
.

Therefore, we arrive at the following theorem.

Theorem .

n∑
j=

(
n
j

)
xjSn–j(b, s,x) =

(
n
bs

)
b(–s)xbs.

5 Marsden identity
In this section, by using generating functions, we prove the Marsden identity for the uni-
fication of the Bernstein-type polynomials Sn(b, s,x). This identity is associated with a
formula for rational linear transformation of B-splines, which are of interest in computer-
aided geometric design and approximation theory.
We set

h(x,u, t) =
∞∑
n=

(x – u)n t
n

n!

or

h(x,u, t) = e(x–u)t .

We derive the following functional equation:

h(x,u, t) = h(,u,xt)h(x, ,ut).

http://www.boundaryvalueproblems.com/content/2013/1/56
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From the above functional equation, we get

∞∑
n=

(x – u)n t
n

n!
=

( ∞∑
n=

( – u)n x
ntn

n!

)( ∞∑
n=

(–)n( – x)n u
ntn

n!

)
.

Therefore

∞∑
n=

(x – u)n
tn

n!
=

∞∑
n=

( n∑
j=

(–)n–j
(
n
j

)
xj( – x)n–jun–j( – u)j

)
tn

n!
. ()

From the above equation, we have

∞∑
n=

(x – u)n
tn

n!
=

∞∑
n=

( n∑
j=

(–)n–j
n–( n
n–j

)Sn(, j,x)Sn(,n – j,u)
)
tn

n!
.

By comparing the coefficients of tn
n! on the both sides of the above equation, we obtain

(x – u)n 
n!

=

n!

n∑
j=

(–)n–j
n–( n
n–j

)Sn(, j,x)Sn(,n – j,u).

Therefore, we arrive at the Marsden identity which is given by the following theorem.

Theorem .

(x – u)n =
n∑
j=

(–)n–j
n–( n
n–j

)Sn(, j,x)Sn(,n – j,u).

Remark . By using (), we also obtain the Marsden identity for the classical Bernstein
polynomials Bn

j (x) as follows:

(x – u)n =
n∑
j=

(–)n–j( n
n–j

) Bn
j (x)Bn

n–j(u).

6 Relations between the polynomialSn(b, s,x), unification of the Bernoulli
polynomial of higher order and Stirling numbers of the second kind

The so-called unification of the Bernoulli, Euler and Genocchi polynomials Yn,β (x;k,a,b)
were defined by Ozden []. The polynomials Yn,β (x;k,a,b) are defined by means of the
following generating function:

fa,b(x; t;k,β) =
–ktketx

βbet – ab
=

∞∑
n=

Yn,β (x;k,a,b)
tn

n!
, ()

where k is an integer parameter, a and b are real parameters and β is a complex parameter.
Observe that

Yn,β (;k,a,b) = Yn,β (k,a,b)

(cf. [, ]).
The above generating function is related to some special polynomials as follows.

http://www.boundaryvalueproblems.com/content/2013/1/56
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Remark . Substituting a = b = k =  into (), we have the Apostol-Bernoulli polyno-
mials (cf. [–]):

Yn,β (x; , , ) = Bn(x,β);

substituting b = , k =  and a = – into (), we have the Apostol-Euler polynomials:

Yn,β (x; , –, ) = En(x,β);

substituting b = , k =  and a = – into (), we have the Apostol-Genocchi polynomials:

Yn,β (x; , –, ) =


Gn(x,β);

substituting β = b = k = a =  into (), we have

Yn,(x; , , ) = Bn(x),

where Bn(x) denotes the classical Bernoulli polynomials and substituting β = b = k =  and
a = – into (), we have

Yn,(x; , –, ) = En(x),

where En(x) denotes the classical Euler polynomials.

Now, the modification of () is given by

( a )
v( t )

kvetx

( β

a et – )v
=

∞∑
n=

Y (v)
n, βa

(x;k, , ) t
n

n!
. ()

The following definition provides a natural generalization and unification of λ-Stirling
numbers of the second kind, which is defined by Srivastava [, ].

Definition . Let λ ∈ C and v ∈ N. The generalized λ-Stirling type numbers of the
second kind S(n, v;λ) are defined by means of the following generating function:

fS,v(t;λ) =
(λet – )v

v!
=

∞∑
n=

S(n, v;λ) t
n

n!
. ()

Remark . By setting λ =  in (), we get

S(n, v) = S(n, v; ),

where S(n, v) denotes the Stirling numbers of the second kind. It is also well known that

xn =
n∑

v=

(
x
v

)
v!S(n, v), ()

http://www.boundaryvalueproblems.com/content/2013/1/56
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so that

S(n, ) = δn,, S(n, ) = S(n,n) =  and S(n,n – ) =
(
n


)
,

δn, being the Kronecker symbol (cf. [, , , ]).

Theorem . Let b, n and s be nonnegative integers with n≥ bs. Then we have

b(–s)a–b( – x)n–bs =
n∑

j=bs

(n
j
)

( n
bs
)S(

j,bs; β
a

)
Y (bs)
n–j, βa

( – x;k, , ),

where Y (v)
n, βa

(x;k, , ) and S(j,bs; β

a ) denote the unification Bernoulli polynomial of higher

order and β

a -Stirling numbers of the second kind, respectively.

Proof By (), we have

abxbs
( ( β

a e
t – )bs

(bs)!

)( ( a )
b( t )

bse(–x)t

( β

a et – )bs

)
=

∞∑
n=

Sn(b, s,x)
tn

n!
.

By using (), () and () in the above equation, we have

∞∑
n=

Sn(bs,x)
tn

n!
= abxbs

( ∞∑
n=

Y (bs)
n, βa

( – x;k, , e)
)( ∞∑

n=
S

(
n,bs;

β

a

)
tn

n!

)
.

From the above equation, after some calculation, we find the desired result. �

Theorem . Let b and n be nonnegative integers with n≥ b. Then we have

( – x)n =
n∑

m=

b∑
j=

(
n
m

)(
b
j

)
jmE(b)

n–m( – x), ()

where E(b)
n–m( – x) denotes the Euler polynomials of higher order.

Proof By (), we have

be(–x)t
(
et + 
et + 

)b
=

∞∑
n=

Sn(b, ,x)
tn

n!
.

From the above, we have

∞∑
n=

Sn(b, ,x)
tn

n!
= e(–x)t

(


et + 

)b(
et + 

)b

=
( ∞∑

n=

b∑
j=

(
b
j

)
jn t

n

n!

)( ∞∑
n=

E(b)
n ( – x) t

n

n!

)
.
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By using the Cauchy product in the above, after some calculation, we find the desired
result. �

We recall from the work of Gould [, Vol. , Eq. (.)] that

b∑
j=

(
b
j

)
jm = b

m∑
j=


j

(
b
j

)
Bm
j,j , ()

where

Bm
j,j = j!S(m, j).

By substituting () into (), we arrive at the following result.

Corollary . The following identity holds true:

Sn(b, ,x) =
n∑

m=

m∑
j=

(
n
m

)(
b
j

)
b–jE(b)

n–m( – x)Bm
j,j .

7 Unification of the Bernstein-type polynomials for solving high even-order
differential equations by the Bernstein-Galerkin methods

In [], Doha et al. gave an application of the Bernstein polynomials for solving high even-
order differential equations by using the Bernstein-Galerkin and the Bernstein-Petrov-
Galerkinmethods. Themethods do not contain generating functions for proving explicitly
the derivatives formula of the Bernstein polynomials of any degree and for any order in
terms of Bernstein polynomials themselves. Here, we prove this formula for the unification
of the Bernstein-type polynomialsSn(b, s,x) by a higher-order partial differential equation
and functional equations. We also give some remarks and applications related to these
polynomials and the Bernstein-Galerkin method.
We modify () as follows:

F (t,b – k, s – k : x) =
b–kxbs–k( t )

bs–ket(–x)

(bs – k)!

=
∞∑
n=

Sn(b – k, s – k,x) t
n

n!
, ()

where k ∈ N = {, , , . . .} and x ∈ [, ]. Let b, k, n and s be nonnegative integers and
n≥ bs – k ≥ , then we get

Sn(b – k, s – k,x) =
(

n
bs – k

)
xbs–k( – x)n–bs+k

b(s–)
, ()

so that, obviously,

Sn(b, s,x) =Sn(b – , s – ,x).

By using the same method as in [], we now give a higher-order partial differential
equation for the generating function F (t,b, s : x) as follows.

http://www.boundaryvalueproblems.com/content/2013/1/56
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We set

g(t,x;b, s) =
bxbs( t )

bs

(bs)!

and

h(t,x) = et(–x).

We have

F (t,b, s : x) = g(t,x;b, s)h(t,x).

By using Leibnitz’s formula for the vth derivative, with respect to x, of the product
F (t,b, s : x) of the above two functions, we obtain the following higher-order partial dif-
ferential equation:

∂vF (t,b, s : x)
∂xv

=
v∑
j=

(
v
j

)(
∂ jg(t,x;b, s)

∂xj

)(
∂v–jh(t,x)

∂xv–j

)
.

By using () in the above partial differential equation, we get the following higher order
partial differential equation:

∂vF (t,b, s : x)
∂xv

=
v∑
j=

(–)v–j
(
v
j

)
F (t,b – j, s – j : x).

By substituting () into the above equation, after some calculation, we arrive at the fol-
lowing theorem.

Theorem . Let x ∈ [a,b]. Let b, s and v be nonnegative integers with n ≥ bs. Then we
have

S(v)
n (b, s,x) = n!

(n – v)!

v∑
j=

(–)v–j
(
v
j

)
Sn–v(b – j, s – j,x),

where

S(v)
n (b, s,x) = dvSn(b, s,x)

dxv
.

Integrating equation () (by parts) with respect to x from  to  and using Theorem .,
we have

∫ 


Sn(b, s,x)dx =

b(–s)

n + 
,

for all b and s.

∫ 


S(v)

n (b, s,x)Sn(b, s,x)dx =
b(–s)n!

(n + )(n – v)!

(
n
bs

) v∑
j=

(–)v–j
(v
j
)( n

bs–j
)

( n
bs–j

) . ()

http://www.boundaryvalueproblems.com/content/2013/1/56
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We recall from the work of Doha et al. [] that if f (x) is a differentiable function of
degree m and defined on [, ], then a linear combination of the Bernstein polynomials
can be written. Therefore, we can easily have

f (x) =
m∑

b,s=
cb,s,mSm(b, s,x),

where bs ≤ m, otherwiseSm(b, s,x) =  and

m∑
b,s=

=
m∑
b=

m∑
s=

.

By using the same method as in [], we write

f (v)(x) = dvf (x)
dxv

=
m∑

b,s=
cb,s,m

dvSm(b, s,x)
dxv

,

where bs ≤ m, otherwise Sm(b, s,x) = . We now give an application for the solution of
high even-order differential equations.We also recall from the work of Doha et al. [] that
for x ∈ [, ],

f (x) = u(m) +
m–∑
j=

γju(j) + γu ()

by the following boundary conditions:

u(v)() = , u(v)() = ;  ≤ v ≤ m – 

(cf. []). By using the same method as that of Doha et al. [], we apply the unification of
the Bernstein-type polynomials Sm(b, s,x) to the Bernstein-Galerkin approximation for
solving (); that is,

Ym =
{
Sm(b, s,x) :m ≥ bs

}

and

Zm =
{
u ∈ Ym : u(v)() = ,u(v)() = ;  ≤ v≤ m – 

}
.

By applying the Bernstein-Galerkin approximation (), we find um ∈ Zm as follows. For
solving this equation, we need the following notations, which we recall from the work of
Doha et al. [, p., Eq. (.)].
The inner product 〈u, v〉 on L(I) is defined by

〈u, v〉 =
∫
I
u(x)v(x)dx.

http://www.boundaryvalueproblems.com/content/2013/1/56
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By using this inner product, we modify () as follows:

〈
f (x),gn(k,x)

〉
=

〈
u(m)
n ,gn(k,x)

〉
+

m–∑
j=

γj
〈
u(j)n ,gn(k,x)

〉
+ γ

〈
un,gn(k,x)

〉
, ()

wherem ≤ k ≤ n –m, m≤ n and

gn(k,x) =Sn(b + k, s + k,x) =
(

n
bs + k

)
xbs+k( – x)n–bs–k

b(s–)
.

The matrix representation of the above equation is given by

F =
(
A +

m–∑
j=

γjBj + γB

)
C,

where

F = (fm, fm+, . . . , fn–m)T ; fk =
〈
f (x),gn(k,x)

〉
,

un(x) =
n–m∑
k=m

akgn(k,x),

C = (am,am+, . . . ,an–m)T , A = (akj), Bj =
(
bikj

)
, m ≤ k, j ≤ n –m.

By using (), one can easily find A, Bj (j = , , , . . . , m – ); that is,

akj =
〈
g(m)
n (j,x),gn(k,x)

〉
=

∫ 


g(m)
n (j,x)gn(k,x)dx

and

bikj =
〈
g(i)n (j,x),gn(k,x)

〉
=

∫ 


g(i)n (j,x)gn(k,x)dx.

Remark . According to Doha et al. [], it is important to apply the Galerkin-spectral
Bernstein approximation for how to choose an appropriate basis forZm such that the linear
system resulting in the Bernstein-Galerkin approximation to () is possible. That is,

Zm = span
{
gn(m,x),gn(m + ,x), . . . ,gn(n –m,x)

}
,

where gn(k,x) ∈ Zm for all m ≤ k ≤ n –m. The m boundary conditions lead to the first
m, and the leastm expansion coefficients are zero.

Remark . By using the Bernstein-Galerkin and the Bernstein-Petrov-Galerkin meth-
ods, Doha et al. [] solved the following boundary value problem:

u()(x) – u(x) =
(
 – x

)
sinx + x cosx, x ∈ [, ],

http://www.boundaryvalueproblems.com/content/2013/1/56
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subject to the boundary conditions u() = u() = , with the exact solution

u(x) =
(
 – x

)
sinx

(cf. see for detail [, ]).

8 Further remarks on Bezier curves
The unification of the Bernstein-type polynomials is used to construct Bezier-type curves
which are used in computer-aided graphics design and related fields and also in the time
domain, particularly in animation and interface design (cf. [, ]).
The Bezier-type curve of degree n can be generalized by the author [] as follows:

Bn(b, s,x) =
∑

≤b,s≤n (bs≤n)
Pb,sSn(b, s,x), ()

where x ∈ [, ],Sn(b, s,x) denotes the unification of the Bernstein-type polynomials and
Pb,s are the control points.
The unification of the Bernstein-type polynomials might affect the shape of the curves.
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