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 Abstract- By using the generating functions for the generalized Stirling type numbers, 

Eulerian type polynomials and numbers of higher order, we derive various functional 

equations and differential equations. By using these equation, we derive some relations 

and identities related to these numbers and polynomials. Furthermore, by applying p -

adic Volkenborn integral to these polynomials, we also derive some new identities for 

the generalized  -Stirling type numbers of the second kind, the generalized array type 

polynomials and the generalized Eulerian type polynomials.  
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1.  INTRODUCTION 

 

Recently the generating functions for the special numbers and polynomials have many 

applications in many branches of Mathematics and Mathematical Physics. These 

functions are used to investigate many properties and relations for the special numbers 

and polynomials. Although, in the literature, one can find extensive investigations 

related to the generating functions for the Bernoulli, Euler and Genocchi numbers and 

polynomials and also their generalizations, the generalized  -Stirling numbers of the 

second kind, the generalized array type polynomials and the Eulerian type polynomials, 

related to nonnegative real parameters, have not been studied  in detail, yet (cf. [31]). 

Throughout this paper, we need the following notations: 

{1,2,3,= ... } , {0,1,2,3,=0 ... {0}=}   and 3,2,1,{=  ... } . Here,   

denotes the set of integers, R  denotes the set of real numbers and C  denotes the set of 

complex numbers. We assume that )(ln z  denotes the principal branch of the multi-

valued function )(ln z  with the imaginary part  )(ln z  constrained by 

   .)(ln<   z  

Furthermore,  
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     ,)1...(1)(= and,,1=0  jzzzzz j  

where j  and Cz  (cf. [16]). 

 

The organization of this paper is given as follows:  

 

In Section 2, we give some generating functions for the special numbers and 

polynomials. We give some basic properties of these functions. We derive partial 

differential equations (PDEs) for the generating functions. Using these PDEs, we drive 

some identities, which are  realted to  -Stirling type numbers of the second kind and 

array type polynomials. 

In Section3, We study on generalized Eulerian type numbers and polynomials and their 

generating functions. 

In Section 4, In this section, we derive some new identities related to the generalized 

Bernoulli polynomials and numbers, the Eulerian type polynomials and the generalized 

Stirling type polynomials. 

In Section 5, We give some applications the p -adic integral to the family of the 

normalized polynomials and the generalized  -Stirling type numbers. 

 

2.  GENERATING FUNCTIONS 

 

The Stirling numbers are used in combinatorics, in number theory, in discrete 

probability distributions for finding higher order moments, etc. The Stirling number of 

the second kind, denoted by ),( knS , is the number of ways to partition a set of n  

objects into k  groups. These numbers occur in combinatorics and in the theory of 

partitions (cf. [31], [16], [33]). 

In [31], we constructed a new generating function, related to nonnegative real 

parameters, for the generalized  -Stirling type numbers of the second kind. We derived 

some elementary properties including recurrence relations of these numbers. Therefore, 

the following definition provides a natural generalization and unification of the  -

Stirling numbers of the second kind: 

 

Definition 1 (cf. [31]) Let a , Rb  ( ba   and 1a ), C  and 0v . The 

generalized  -Stirling type numbers of the second kind );,;,( bavnS  are defined by 

means of the following generating function: 
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Remark 1 Substituting 1=a  and eb =  into (1), we have  

 );,(=);;1,,(  vnSevnS  

which are defined by means of the following generating function: 
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 (cf. [16], [33]). Substituting 1=  into above equation, we have the Stirling numbers of 

the second kind 

 ),,(=;1),( vnSvnS  

cf. ([16], [33]). These numbers have the following well known properties: 

 ,=,0)( ,0nnS   

 

 1=),(=,1)( nnSnS  

and 

 ,
2

=1),( 









n
nnS  

where ,0n  denotes the Kronecker symbol (cf. [16], [33]).  

 

By using (1), we obtain the following theorem (cf. [31]): 

 

Theorem 1 The following formulas hold true: 
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By using the formula (2), we can compute some values of the numbers );,;,( bavnS  as 

follows (cf. [31]): 

 1,=);,(0,0; baS   0,=);,(1,0; baS  ,ln=);,(1,1; 








a

b
ba



S  0,=);,(2,0; baS  

    ,lnln=);,(2,1;
22

abba S        ,lnlnln
2

=);,(2,2;
2222

2

aabbba  


S  

0,=);,(3,0; baS      ,lnln=);,(3,1;
33

abba S  
 

,
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v
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v


S  

,0=);,,0;( nban S  and     .lnln=);,,1;(
nn

abban S  

By differentiating both sides of the Equation (1) with respect to t , we obtain the 

following PDE (cf. [31]): 

 ).;,;(ln);,;()(ln=);,;( 1,,,  batfa
a

b
batfbvbatf

t
vS

t

vSvS 












 (4) 

 

By differentiating both sides of the Equation (4) with respect to  , we obtain the 

following PDE: 
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Using (1) and (5), we obtain the following theorem: 

 

Theorem 2 Let vn, . Then we have 
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We need the following theorem in Section 4. 

 

Theorem 3 (cf. [31]) Let 0k  and C . Then we have 
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Remark 2 Substituting 0=a  and eb =  into (6), we have the following result which is 

given by Luo and Srivastava [16, Theorem 9]: 

 ),;,(!=
0=

 lnSl
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x
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nx












 

where 0n  and  . For 1= , the above formula is reduced to 
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cf. ([4], [8], [16]).  

 

3.  GENERALIZED EULERIAN TYPE NUMBERS AND 

POLYNOMIALS 

 

In [31], we provided generating functions, related to nonnegative real parameters, for 

the generalized Eulerian type polynomials and numbers (generalized Apostol-type 

Frobenius-Euler polynomials and numbers of higher-order). We derived fundamental 

properties, recurrence relations and many new identities for these polynomials and 

numbers based on the generating functions, functional equations and differential 

equations. 

The following definition gives us a natural generalization of the Eulerian polynomials of 

higher-order: 

 

Definition 2 (cf. [31]) Let ,a  Rb  ),( ba   ,, ZR  mx  C  and  -Cu . 

The generalized Eulerian type polynomials of higher order );,,;;()( cbauxm

n  are 

defined by means of the following generating function: 
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By substituting 0=x  into (7), we obtain 

 ),;,,;(=);,,;(0; )()(  cbaucbau m

n

m

n   

where );,,;( cbaun  denotes the generalized Eulerian type numbers of higher order. 

 

Remark 3 Substituting 1=m  into (7), we have 

 );,,;,(=);,,;;((1)  cbauxcbaux nn   

a result due to the author [31]. In their special case when 1== m  and ecb == , the 

generalized Eulerian type polynomials );,;1,;( cbuxn  are reduced to the Eulerian 

polynomials or Frobenius Euler polynomials which are defined by means of the 

following generating function: 
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 (8) 

with, of course, )(=)(0; uHuH nn  denotes the so-called Eulerian numbers. Substituting 

1= u , into (8), we have 

 )(=1);( xExH nn   

where )(xEn  denotes Euler polynomials which are defined by means of the following 

generating function: 
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 (9) 

 (cf. [1]-[36]).  

 

The following elementary properties of the generalized Eulerian type polynomials and 

numbers are derived from (7). 

 

Theorem 4 (cf. [31]) (Recurrence relation for the generalized Eulerian type numbers): 

For 0=n , we have 
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For 0>n , the usual convention of symbolically replacing  nbau );,;(   by 

);,;( baun . Then  we have 

     .ln=);,;();,;(ln
n

n

n
abauubaub     

  

Theorem 5  The following explicit representation formula holds true: 
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with, of course, 

 );(=);(0, )()( auYauY m

n

m

n  

also 

 );(=);((1) auYauY nn  

(cf. [31], [30]). 

By using (10), we get 
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By using (10), we get 
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We need the following generating function for the generalized Apostol-Bernoulli 

polynomials, which is defined by Srivastava et al. [35, pp. 254, Eq. (20)]: 

 

Definition 3 Let Rcba ,,  with ,ba   Rx  and 0n . Then the generalized 

Bernoulli polynomials ),,;;()( cbaxn B  of order C  are defined by means of the 

following generating functions: 
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where 

  2<ln)(ln 
b

a
t  

and 

 1.=1  

  

Observe that if we set 1=  in (11), we have 
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If we set 0=x  in (12), we obtain 

 ,
!

),(= )(

0= n

t
ba

ab

t n

n

n
tt





B












 (13) 

with of course, ),(=),,;( )()( bacbax nn

 BB . If we set 1=  in (13) and (12), we have 
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which have been studied by Luo et al. [17]-[18]. Moreover, by substituting 1=a  and 

ecb ==  into (11), then we arrive at the Apostol-Bernoulli polynomials );( xn , 

which are defined by means of the following generating function 
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These polynomials );( xn  have been introduced and investigated by many 

Mathematicians. By substituting 1== a  and ecb ==  into (14) and (15), ),( banB  

and ),,;( cbaxnB  are reduced to the classical Bernoulli numbers and the classical 

Bernoulli polynomials, respectively, (cf. [1]-[36]). 

 

Remark 4 The constraints on t , which we have used in Definition 3 and (9), are meant 

to ensure that the generating function in (12)and (9) are analytic throughout the 

prescribed open disks in complex t -plane (centred at the origin 0=t ) in order to have 

the corresponding convergent Taylor-Maclaurin series expansion (about the origin 

0=t ) occurring on the their right-hand side (with a positive radius of convergence) (cf.  

[36]).  

 

4.  NEW IDENTITIES 

 

In this section, we derive some new identities related to the generalized Bernoulli 

polynomials and numbers, the Eulerian type polynomials and the generalized Stirling 

type polynomials. 

We derive the following functional equation: 

 ).;,();,,,;,();,;(!=);,,,;,( , maufmcbauxtFbatfuvvmcbauxtF YvS
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  (16) 

By using the above functional equation, we get the following theorem: 

 

Theorem 6  The following relationship holds true: 
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Therefore 
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Thus, by using the Cauchy product in the above equation and then equating the 

coefficients of 
!n

t n

 on both sides of the above equation, we arrive at the desired result.  

 

5.  APPLICATIONS THE p -ADIC INTEGRAL TO THE FAMILY OF THE 

NORMALIZED POLYNOMIALS AND THE GENERALIZED  -STIRLING 

TYPE NUMBERS 

 

By using the p -adic integrals on p , we derive some new identities related to the 

Bernoulli numbers, the Euler numbers, the generalized Eulerian type numbers and the 

generalized  -Stirling type numbers. 

In order to prove the main results in this section, we recall each of the following known 

results related to the p -adic integral. 

Let p  be a fixed prime. It is known that 
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is a distribution on p  for pq C  with 1<|1| pq , (cf.  [8]). Let  
pUD   be the set of 

uniformly differentiable functions on p .  

The p -adic q -integral of the function  
pUDf   is defined by Kim [8] as follows: 
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From the above equation, the bosonic p -adic integral ( p -adic Volkenborn integral) 

was defined by (cf. [8]): 
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where 
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N

p
px   

The p -adic q -integral is used in many branch of mathematics, mathematical physics 

and other areas (cf. [8], [10], [22], [23], [26], [27], [34]). 
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By using (17), we have the Witt’s formula for the Bernoulli numbers nB  as follows: 
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 (cf. [8], [9], [11], [22]). 

The fermionic p -adic integral on p  is defined by (cf. [9]) 
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(cf. [9]). By using (19), we have the Witt’s formula for the Euler numbers nE  as 

follows: 
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n

p

Exdx  


 (20) 

 (cf. [9], [11], [27], [34]). 

The Volkenborn integral in terms of the Mahler coefficients is given by the 

following Theorem: 
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Proof of Theorem 7 was given by Schikhof [22]. 

 

Theorem 8  
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Proof of Theorem 8 was given by Schikhof [22].  

 

Theorem 9 The following relationship holds true: 

 ;1).;1,,(
1

!
1)(

ln

1
=

0=

bjm
j

j

b
B j

m

j
mm S


  (21) 

  

Proof. If we substitute 1== a  in Theorem 3, we have 
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By applying the p -adic Volkenborn integral with Theorem 8 to both sides of the above 

equation, we arrive at the desired result.  

 

Remark 5 By substituting 1=b  into (21), we have  
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where ),( jmS  denotes the Stirling numbers of the second kind (cf. [12]).  

 

Theorem 10  The following relationship holds true: 
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Proof. By using Theorem 5, we have 
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By applying Volkenborn integral in (17) to the both sides of the above equation, we get 
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By substituting (18) into the above equation, we easily arrive at the desired result.  

 

Remark 6 By substituting ecb ==  and 1== a  into Theorem 10, we arrive at the 

following nice identity: 
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Theorem 11  The following relationship holds true: 

     n

n

j

jjn
n

j

EcuEca
j

n
)ln(lnln

0=








 

  

      .);,,;(ln);,,;(ln=
0=

jjn

jnj
n

j

Ecbauubcbauc
j

n
 











   

  

Proof. Proof of Theorem 11 is same as that of Theorem 10. Combining (19), (22) and 

(20), we easily arrive at the desired result.  
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