hacettepe Journal of Mathematics and Statistics Volume 42(3)(2013), 211-222

SOME NEW IDENTITIES CONCERNING GENERALIZED FIBONACCI AND LUCAS NUMBERS

Zafer Şiar^{*}, Refik Keskin[†]

Received 09:08:2012 : Accepted 08:05:2012

Abstract

In this paper we obtain some identities containing generalized Fibonacci and Lucas numbers. Some of them are new and some are well known. By using some of these identities we give some congruences concerning generalized Fibonacci and Lucas numbers such as

 $V_{2mn+r} \equiv (-(-t)^m)^n V_r \pmod{V_m},$ $U_{2mn+r} \equiv (-(-t)^m)^n U_r \pmod{V_m},$ $V_{2mn+r} \equiv (-t)^{mn} V_r \pmod{U_m},$

and

$$U_{2mn+r} \equiv (-t)^{mn} U_r \pmod{U_m}.$$

Keywords: Generalized Fibonacci numbers; Generalized Lucas numbers 2000 AMS Classification: 11B37, 11B39, 40C05

1. Introduction

Let k and t be nonzero real numbers. Generalized Fibonacci sequence $\{U_n\}$ is defined by $U_0 = 0$, $U_1 = 1$, and $U_{n+1} = kU_n + tU_{n-1}$ for $n \ge 1$ and generalized Lucas sequence $\{V_n\}$ is defined by $V_0 = 2$, $V_1 = k$, and $V_{n+1} = kV_n + tV_{n-1}$ for $n \ge 1$. U_n and V_n are called generalized Fibonacci numbers and generalized Lucas numbers respectively.

For k = t = 1, we have classical Fibonacci and Lucas sequences $\{F_n\}$ and $\{L_n\}$. For k = 2 and t = 1, we have Pell and Pell-Lucas sequences $\{P_n\}$ and $\{Q_n\}$. For more

^{*}Bilecik Şeyh Edebali University, Faculty of Science and Arts, Department of Mathematics, Bilecik, Turkey.

E-Mail (Corresponding author): zafer.siar@bilecik.edu.tr

[†]Sakarya University, Faculty of Science and Arts, Department of Mathematics, 54187 Sakarya, Turkey.

E-Mail: rkeskin@sakarya.edu.tr

information about generalized Fibonacci and Lucas numbers one can consult [1], [2], [3], and [4]. For t = 1, the sequence $\{U_n\}$ has been investigated in [5] and [6].

Generalized Fibonacci and Lucas numbers for negative subscript are defined as

(1.1)
$$U_{-n} = \frac{-U_n}{(-t)^n}$$
 and $V_{-n} = \frac{V_n}{(-t)^n}$

respectively.

Now assume that $k^2 + 4t > 0$. Then it is well known that

(1.2)
$$U_n = \frac{\alpha^n - \beta^n}{\alpha - \beta}$$
 and $V_n = \alpha^n + \beta^n$

where $\alpha = (k + \sqrt{k^2 + 4t})/2$ and $\beta = (k - \sqrt{k^2 + 4t})/2$. The above identities are known as Binet formulae. Let α and β be the roots of the equations $x^2 - kx - t = 0$. Clearly $\alpha + \beta = k, \ \alpha - \beta = \sqrt{k^2 + 4t}$, and $\alpha\beta = -t$. Moreover, it can be seen that

(1.3)
$$V_n = U_{n+1} + tU_{n-1} = kU_n + 2tU_{n-1}$$

and

(1.4)
$$(k^2 + 4t)U_n = V_{n+1} + tV_{n-1}$$

for every $n \in \mathbb{Z}$

For t = 1, $\mp (U_n, V_n)$ are all the integer solutions of the equation $x^2 - (k^2 + 4)y^2 = \mp 4$ and for t = -1, $\mp (U_n, V_n)$ are all the integer solutions of the equation $x^2 - (k^2 - 4)y^2 = 4$. Also, for t = 1, $\mp (U_n, U_{n-1})$ are all the integer solutions of the equation $x^2 - kxy - y^2 = \mp 1$ and for t = -1, $\mp (U_n, U_{n-1})$ are all the integer solutions of the equation $x^2 - kxy + y^2 = 1$ (see[7],[8], and [9]).

Many identities concerning generalized Fibonacci and Lucas numbers can be proved by using Binet formulae, induction and matrices. In the literature, the matrices

0	1]	and	$\begin{bmatrix} k \end{bmatrix}$	t
t	$k \ $		1	0

are used in order to produce identities (see[4],[10]). Since

$$\left[\begin{array}{cc} k & t \\ 1 & 0 \end{array}\right] \text{ and } \left[\begin{array}{cc} 0 & 1 \\ t & k \end{array}\right]$$

are similar matrices, they give the same identities.

In this study we will characterize all the 2×2 matrices X satisfying the relation $X^2 = kX + tI$. Then we will obtain different identities by using this property. In fact the matrices

$$\left[\begin{array}{cc} k & t \\ 1 & 0 \end{array}\right] \text{ and } \left[\begin{array}{cc} 0 & 1 \\ t & k \end{array}\right]$$

are special cases of the 2×2 matrices X satisfying $X^2 = kX + tI$.

2. Main Theorems

2.1. Theorem. If X is a square matrix with $X^2 = kX + tI$, then $X^n = U_nX + tU_{n-1}I$ for every $n \in \mathbb{Z}$.

Proof. If n = 0, then the proof is obvious. It can be shown by induction that $X^n = U_n X + tU_{n-1}I$ for every $n \in \mathbb{N}$. We now show that $X^{-n} = U_{-n}X + tU_{-n-1}I$ for every $n \in \mathbb{N}$. Let $Y = kI - X = -tX^{-1}$. Then

$$Y^{2} = (kI - X)^{2} = k^{2}I - 2kX + X^{2}$$

= $k^{2}I - 2kX + kX + tI = k(kI - X) + tI = kY + tI.$

Thus $Y^n = U_n Y + t U_{n-1} I$ and this shows that

$$(-t)^{n} X^{-n} = U_{n} Y + t U_{n-1} I = U_{n} (kI - X) + t U_{n-1} I$$
$$= (kU_{n} + tU_{n-1})I - U_{n} X = -U_{n} X + U_{n+1} I.$$

Then we get $X^{-n} = \frac{-U_n X}{(-t)^n} + \frac{U_{n+1}I}{(-t)^n}$. This implies that $X^{-n} = U_{-n}X + tU_{-n-1}I$ by (1.1). This completes the proof.

2.2. Theorem. Let X be an arbitrary 2×2 matrix. Then $X^2 = kX + tI$ if and only if X is of the form

$$X = \left[\begin{array}{cc} a & b \\ c & k-a \end{array} \right] \text{ with } \det X = -t$$

or
$$X = \lambda I$$
 where $\lambda \in \{\alpha, \beta\}$, where $\alpha = (k + \sqrt{k^2 + 4t})/2$ and $\beta = (k - \sqrt{k^2 + 4t})/2$.

Proof. Assume that $X^2 = kX + tI$. Then the minimum polynomial of X must divides $x^2 - kx - t$. Therefore it must be $x - \alpha$ or $x - \beta$ or $x^2 - kx - t$. In the first case $X = \alpha I$, in the second case $X = \beta I$, and in the third case, since X is 2×2 matrix, its characteristic polynomial must be $x^2 - kx - t$, so its trace is k and its determinant is -t. The argument reverses.

2.3. Corollary. If
$$X = \begin{bmatrix} a & b \\ c & k-a \end{bmatrix}$$
 is a matrix with det $X = -t$, then $X^n = \begin{bmatrix} aU_n + tU_{n-1} & bU_n \\ cU_n & U_{n+1} - aU_n \end{bmatrix}$.

Proof. Since $X^2 = kX + tI$, the result follows from Theorem 2.1.

2.4. Corollary. $\alpha^n = \alpha U_n + tU_{n-1}$ and $\beta^n = \beta U_n + tU_{n-1}$ for every $n \in \mathbb{Z}$.

Proof. Take $X = \begin{bmatrix} \alpha & 0 \\ 0 & \beta \end{bmatrix}$ with det $X = \alpha\beta = -t$. Then by Theorem 2.1, it follows that

$$X^{n} = \begin{bmatrix} \alpha^{n} & 0\\ 0 & \beta^{n} \end{bmatrix} = \begin{bmatrix} \alpha U_{n} + tU_{n-1} & 0\\ 0 & \beta U_{n} + tU_{n-1} \end{bmatrix}.$$

implies that $\alpha^{n} = \alpha U_{n} + tU_{n-1}$ and $\beta^{n} = \beta U_{n} + tU_{n-1}.$

2.5. Corollary. $U_n = \frac{\alpha^n - \beta^n}{\alpha - \beta}$ and $V_n = \alpha^n + \beta^n$ for every $n \in \mathbb{Z}$.

Proof. The result follows from Corollary 2.4.

This

2.6. Corollary. Let $S = \begin{bmatrix} k/2 & (k^2 + 4t)/2 \\ 1/2 & k/2 \end{bmatrix}$. Then $S^n = \begin{bmatrix} V_n/2 & (k^2 + 4t)U_n/2 \\ U_n/2 & V_n/2 \end{bmatrix}$ for every $n \in \mathbb{Z}$.

Proof. Since $S^2 = kS + tI$, the proof follows from Corollary 2.3.

2.7. Corollary. Let $X = \begin{bmatrix} k & t \\ 1 & 0 \end{bmatrix}$. Then $X^n = \begin{bmatrix} U_{n+1} & tU_n \\ U_n & tU_{n-1} \end{bmatrix}$.

Proof. Since $X^2 = kX + tI$, the proof follows from Corollary 2.3.

2.8. Lemma. Let a, b, and ka + b be nonzero real numbers and let $k^2 + 4t$ be not a perfect square. Then

$$\sum_{j=0}^{n} \binom{n}{j} a^{j} b^{n-j} U_{j+r} = -(-t)^{r} \sum_{j=0}^{n} \binom{n}{j} (-a)^{j} (ka+b)^{n-j} U_{j-r}$$

and

$$\sum_{j=0}^{n} \binom{n}{j} a^{j} b^{n-j} V_{j+r} = (-t)^{r} \sum_{j=0}^{n} \binom{n}{j} (-a)^{j} (ka+b)^{n-j} V_{j-r}.$$

Proof. Let $\mathbb{Z}[\alpha] = \{a\alpha + b \mid a, b \in \mathbb{Z}\}$. Define $\varphi : \mathbb{Z}[\alpha] \to \mathbb{Z}[\alpha]$ by $\varphi(a\alpha + b) = a\beta + b = a(k - \alpha) + b = -a\alpha + ka + b$. Then it can be shown that φ is ring homomorphism. Moreover, it can be shown that φ is injective. On the other hand, we get

$$-\alpha U_n + U_{n+1} = -\alpha U_n + kU_n + tU_{n-1} = \varphi(\alpha U_n + tU_{n-1})$$
$$= \varphi(\alpha^n) = \beta^n = (-t)^n \alpha^{-n}.$$

Then it is seen that

$$\begin{split} \varphi((a\alpha+b)^{n}\alpha^{r}) &= \varphi((a\alpha+b)^{n})\varphi(\alpha^{r}) = (-a\alpha+ka+b)^{n}(-t)^{r}\alpha^{-r} \\ &= (-t)^{r}\sum_{j=0}^{n} \binom{n}{j}(-a\alpha)^{j}(ka+b)^{n-j}\alpha^{-r} \\ &= (-t)^{r}\sum_{j=0}^{n} \binom{n}{j}(-a)^{j}(ka+b)^{n-j}\alpha^{j-r} \\ &= (-t)^{r}\sum_{j=0}^{n} \binom{n}{j}(-a)^{j}(ka+b)^{n-j}(\alpha U_{j-r}+tU_{j-r-1}) \\ &= \alpha \left((-t)^{r}\sum_{j=0}^{n} \binom{n}{j}(-a)^{j}(ka+b)^{n-j}U_{j-r} \right) \\ &+ \left(-(-t)^{r+1}\sum_{j=0}^{n} \binom{n}{j}(-a)^{j}(ka+b)^{n-j}U_{j-r-1} \right) \end{split}$$

On the other hand, we have

$$\begin{split} \varphi((a\alpha+b)^{n}\alpha^{r}) &= \varphi\left(\sum_{j=0}^{n} \binom{n}{j}a^{j}b^{n-j}\alpha^{j+r}\right) \\ &= \varphi\left(\sum_{j=0}^{n} \binom{n}{j}a^{j}b^{n-j}(\alpha U_{j+r} + tU_{j+r-1})\right) \\ &= \alpha\left(-\sum_{j=0}^{n} \binom{n}{j}a^{j}b^{n-j}U_{j+r}\right) \\ &+ \left(\sum_{j=0}^{n} \binom{n}{j}a^{j}b^{n-j}(kU_{j+r} + tU_{j+r-1})\right) \\ &= \alpha\left(-\sum_{j=0}^{n} \binom{n}{j}a^{j}b^{n-j}U_{j+r}\right) + \left(\sum_{j=0}^{n} \binom{n}{j}a^{j}b^{n-j}U_{j+r+1}\right). \end{split}$$
e proof follows.

Then the proof follows.

2.9. Theorem. Let $m, r \in \mathbb{Z}$ with $m \neq 0$ and $m \neq 1$. Then

$$U_{mn+r} = \sum_{j=0}^{n} \binom{n}{j} U_m^j U_{m-1}^{n-j} U_{j+r} t^{n-j}$$

and

$$V_{mn+r} = \sum_{j=0}^{n} \binom{n}{j} U_m^j U_{m-1}^{n-j} V_{j+r} t^{n-j}.$$

Proof. From Corollary 2.6, it follows that

$$S^{mn+r} = \begin{bmatrix} \frac{V_{mn+r}}{2} & \frac{(k^2 + 4t)U_{mn+r}}{2} \\ \frac{U_{mn+r}}{2} & \frac{V_{mn+r}}{2} \end{bmatrix}.$$

On the other hand, $S^m = U_m S + t U_{m-1} I$ and therefore

$$S^{mn+r} = (S^{m})^{n}S^{r} = (U_{m}S + tU_{m-1}I)^{n}S^{r} = \sum_{j=0}^{n} \binom{n}{j}U_{m}^{j}U_{m-1}^{n-j}t^{n-j}S^{j+r}$$
$$= \begin{bmatrix} \frac{1}{2}\sum_{j=0}^{n} \binom{n}{j}U_{m}^{j}U_{m-1}^{n-j}t^{n-j}V_{j+r} & \frac{(k^{2}+4t)}{2}\sum_{j=0}^{n} \binom{n}{j}U_{m}^{j}U_{m-1}^{n-j}t^{n-j}U_{j+r} \\ \frac{1}{2}\sum_{j=0}^{n} \binom{n}{j}U_{m}^{j}U_{m-1}^{n-j}t^{n-j}U_{j+r} & \frac{1}{2}\sum_{j=0}^{n} \binom{n}{j}U_{m}^{j}U_{m-1}^{n-j}t^{n-j}V_{j+r} \end{bmatrix}.$$
e proof follows.

Then the proof follows.

2.10. Corollary. Let $m, r \in \mathbb{Z}$ with $m \neq 0$ and $m \neq 1$. If $k^2 + 4t$ is not a perfect square, then

$$U_{mn+r} = -(-t)^r \sum_{j=0}^n \binom{n}{j} (-U_m)^j U_{m+1}^{n-j} U_{j-r}$$

and

$$V_{mn+r} = (-t)^r \sum_{j=0}^n \binom{n}{j} (-U_m)^j U_{m+1}^{n-j} V_{j-r}.$$

Proof. The proof follows from Lemma 2.8 and Theorem 2.9 by taking $a = U_m$ and $b = tU_{m-1}$

2.11. Corollary.
$$V_n^2 - (k^2 + 4t)U_n^2 = 4(-t)^n$$
 for every $n \in \mathbb{Z}$.

Proof. From Theorem 2.9, it follows that

 $\det S^n = \left(\det S\right)^n = \left(-t\right)^n$

and

$$\det S^{n} = \frac{V_{n}^{2} - (k^{2} + 4t)U_{n}^{2}}{4}.$$

Then the proof follows.

2.12. Theorem. Let $n \in \mathbb{N}$ and m be a nonzero integer. Then

$$(2.1) \qquad 2^{n}V_{mn+r} = \sum_{j=0}^{\lfloor \frac{n}{2} \rfloor} {\binom{n}{2j}} U_{m}^{2j} V_{m}^{n-2j} (k^{2}+4t)^{j} V_{r} + \\ \sum_{j=0}^{\lfloor \frac{n-1}{2} \rfloor} {\binom{n}{2j+1}} U_{m}^{2j+1} V_{m}^{n-2j-1} (k^{2}+4t)^{j+1} U_{r}$$

and

$$(2.2) \qquad 2^{n}U_{mn+r} = \frac{1}{2^{n}} \sum_{j=0}^{\lfloor \frac{n}{2} \rfloor} {n \choose 2j} U_{m}^{2j} V_{m}^{n-2j} (k^{2} + 4t)^{j} U_{r} + \\ \sum_{j=0}^{\lfloor \frac{n-1}{2} \rfloor} {n \choose 2j+1} U_{m}^{2j+1} V_{m}^{n-2j-1} (k^{2} + 4t)^{j} V_{r}$$

Proof. Let $K = S + tS^{-1} = \begin{bmatrix} 0 & k^2 + 4t \\ 1 & 0 \end{bmatrix}$. Then $K^{2j} = (k^2 + 4t)^j I$ and $K^{2j+1} = (k^2 + 4t)^j K$. Since

$$S^m = \frac{1}{2}(V_m I + U_m K),$$

it follows that

$$S^{mn+r} = (S^m)^n S^r = \left(\frac{1}{2}(V_m I + U_m K)\right)^n S^r = \frac{1}{2^n} \left(\sum_{j=0}^n \binom{n}{j} U_m^j K^j V_m^{n-j}\right) S^r$$

and therefore

$$2^{n}S^{mn+r} = \sum_{j=0}^{\lfloor \frac{n}{2} \rfloor} {n \choose 2j} U_{m}^{2j}V_{m}^{n-2j}K^{2j}S^{r} + \sum_{j=0}^{\lfloor \frac{n-1}{2} \rfloor} {n \choose 2j+1} U_{m}^{2j+1}V_{m}^{n-2j-1}K^{2j+1}S^{r}$$
$$= \sum_{j=0}^{\lfloor \frac{n}{2} \rfloor} {n \choose 2j} U_{m}^{2j}V_{m}^{n-2j}(k^{2}+4t)^{j}S^{r}$$
$$+ \sum_{j=0}^{\lfloor \frac{n-1}{2} \rfloor} {n \choose 2j+1} U_{m}^{2j+1}V_{m}^{n-2j-1}(k^{2}+4t)^{j}KS^{r}$$

216

Since

$$KS^{r} = \begin{bmatrix} \frac{(k^{2} + 4t)U_{r}}{2} & \frac{(k^{2} + 4t)V_{r}}{2} \\ \frac{V_{r}}{2} & \frac{(k^{2} + 4t)U_{r}}{2} \end{bmatrix}$$

and

$$S^{mn+r} = \begin{bmatrix} \frac{V_{mn+r}}{2} & \frac{(k^2 + 4t)U_{mn+r}}{2} \\ \frac{U_{mn+r}}{2} & \frac{V_{mn+r}}{2} \end{bmatrix}$$

the proof follows.

2.13. Theorem.

(2.3) $U_{m+n} = U_m U_{n+1} + t U_{m-1} U_n$ and (2.4) $(-t)^{n-1} U_{m-n} = U_{m-1} U_n - U_m U_{n-1}$

for every $m, n \in \mathbb{Z}$.

Proof. Let $X = \begin{bmatrix} k & t \\ 1 & 0 \end{bmatrix}$. Then from Corollary 2.7, it follows that

$$X^{m+n} = X^m X^n = \begin{bmatrix} U_{m+1} & tU_m \\ U_m & tU_{m-1} \end{bmatrix} \begin{bmatrix} U_{n+1} & tU_n \\ U_n & tU_{n-1} \end{bmatrix}$$

and

$$X^{m-n} = X^{m} (X^{n})^{-1} = \begin{bmatrix} U_{m+1} & tU_{m} \\ U_{m} & tU_{m-1} \end{bmatrix} \begin{bmatrix} U_{n+1} & tU_{n} \\ U_{n} & tU_{n-1} \end{bmatrix}^{-1} \\ = \begin{bmatrix} U_{m+1} & tU_{m} \\ U_{m} & tU_{m-1} \end{bmatrix} \frac{1}{(-t)^{n}} \begin{bmatrix} tU_{n-1} & -tU_{n} \\ -U_{n} & U_{n+1} \end{bmatrix}.$$

Then the proof follows.

Now we give some identities, which we will use later. All the given identities can be shown by using the previously obtained formulae for S^n and X^n .

- $(2.5) U_n V_{m+1} + t U_{n-1} V_m = V_{n+m}$
- (2.6) $V_m V_n (k^2 + 4t) U_m U_n = 2(-t)^n V_{m-n}$
- (2.7) $U_m V_n U_n V_m = 2(-t)^n U_{m-n}$
- (2.8) $V_m V_n = V_{m+n} + (-t)^n V_{m-n}$
- (2.9) $(k^2 + 4t)U_m U_n = V_{m+n} (-t)^n V_{m-n}$
- $(2.10) \quad U_m V_n = U_{m+n} + (-t)^n U_{m-n}$
- $(2.11) \quad (-t)^{n} V_{m-n} = U_{m+1} V_n V_{n+1} U_m$
- $(2.12) \quad V_r V_{r+2} V_{r+1}^2 = (-t)^r (k^2 + 4t)$

2.14. Theorem. Let $m, n, r \in \mathbb{Z}$ with $r \neq 0$. Then

$$U_{r}U_{m+n+r} = U_{m+r}U_{n+r} - (-t)^{r}U_{m}U_{n},$$

$$U_{r}U_{m+n-r} = U_{m}U_{n} - (-t)^{r}U_{m-r}U_{n-r},$$

and

$$U_r U_{m+n} = U_m U_{n+r} - (-t)^r U_{m-r} U_n.$$

217

Proof. Take $a = \frac{U_{r+1}}{U_r}$ and consider $A = \begin{bmatrix} a & b \\ c & k-a \end{bmatrix}$ with det A = -t. Then by Corollary 2.3, we get

$$A^{n} = \begin{bmatrix} aU_{n} + tU_{n-1} & bU_{n} \\ cU_{n} & U_{n+1} - aU_{n} \end{bmatrix} = \begin{bmatrix} \frac{U_{r+1}}{U_{r}}U_{n} + tU_{n-1} & bU_{n} \\ cU_{n} & U_{n+1} - \frac{U_{r+1}}{U_{r}}U_{n} \end{bmatrix}.$$

Using (2.3) and (2.4) we see that

$$A^{n} = \begin{bmatrix} \frac{U_{n+r}}{U_{r}} & bU_{n} \\ cU_{n} & \frac{-(-t)^{r}U_{n-r}}{U_{r}} \end{bmatrix}.$$

Since det A = -t and $a = \frac{U_{r+1}}{U_r}$, it follows that

$$bc = \frac{kU_rU_{r+1} + tU_r^2 - U_{r+1}^2}{U_r^2} = \frac{U_r(kU_{r+1} + tU_r) - U_{r+1}^2}{U_r^2}$$
$$= \frac{U_rU_{r+2} - U_{r+1}^2}{U_r^2} = \frac{-(-t)^r}{U_r^2}$$

by (2.4). If we consider the matrix multiplication $A^n A^m = A^{m+n}$, then we get the result.

2.15. Corollary. $U_{n+r}U_{n-r} - U_n^2 = -(-t)^{n-r}U_r^2$ for all $n, r \in \mathbb{Z}$.

Proof. Since det A = -t, det $A^n = (\det A)^n = (-t)^n$. Moreover, since

$$\det A^n = -(-t)^r \frac{U_{n+r}}{U_r} \frac{U_{n-r}}{U_r} - bcU_n^2 = -(-t)^r \left(\frac{U_{n+r}U_{n-r} - U_n^2}{U_r^2}\right) = (-t)^n,$$

it can be seen that $U_{n+r}U_{n-r} - U_n^2 = -(-t)^{n-r}U_r^2.$

2.16. Theorem. Let $m, n, r \in \mathbb{Z}$. Then

$$V_r V_{m+n+r} = V_{m+r} V_{n+r} + (-t)^r (k^2 + 4t) U_m U_n,$$

$$V_r V_{m+n-r} = (k^2 + 4t) U_m U_n + (-t)^r V_{m-r} V_{n-r},$$

and

$$V_r U_{m+n} = U_n V_{m+r} + (-t)^r V_{n-r} U_m$$

Proof. Take $a = \frac{V_{r+1}}{V_r}$ and consider $B = \begin{bmatrix} a & b \\ c & k-a \end{bmatrix}$ with det B = -t. Then by Corollary 2.3, we get

$$B^{n} = \begin{bmatrix} aU_{n} + tU_{n-1} & bU_{n} \\ cU_{n} & U_{n+1} - aU_{n} \end{bmatrix} = \begin{bmatrix} \frac{V_{r+1}}{V_{r}}U_{n} + tU_{n-1} & bU_{n} \\ cU_{n} & U_{n+1} - \frac{V_{r+1}}{V_{r}}U_{n} \end{bmatrix}$$

Using (2.5) and (2.11) we see that

$$B^{n} = \begin{bmatrix} \frac{V_{n+r}}{V_{r}} & bU_{n} \\ cU_{n} & \frac{(-t)^{r}V_{n-r}}{V_{r}} \end{bmatrix}.$$

Since det B = -t and $a = \frac{V_{r+1}}{V_r}$, it follows that

Some new identities concerning generalized Fibonacci and Lucas numbers

$$bc = \frac{kV_rV_{r+1} + tV_r^2 - V_{r+1}^2}{V_r^2} = \frac{V_r(kV_{r+1} + tV_r) - V_{r+1}^2}{V_r^2}$$
$$= \frac{V_rV_{r+2} - V_{r+1}^2}{V_r^2} = \frac{(-t)^r(k^2 + 4t)}{V_r^2}$$

by (2.12). If we consider the matrix multiplication $B^n B^m = B^{m+n}$, then we get the result. \square

2.17. Corollary.
$$V_{n+r}V_{n-r} - (k^2 + 4t)U_n^2 = (-t)^{n-r}V_r^2$$
 for all $n, r \in \mathbb{Z}$.

Proof. Since det B = -t, det $B^n = (\det B)^n = (-t)^n$. Moreover, since

$$\det B^n = (-t)^r \frac{V_{n+r}}{V_r} \frac{V_{n-r}}{V_r} - bcU_n^2 = (-t)^r \left(\frac{V_{n+r}V_{n-r}}{V_r^2} - \frac{(k^2 + 4t)U_n^2}{V_r^2}\right) = (-t)^n,$$

be seen that $V_{n+r}V_{n-r} - (k^2 + 4t)U_n^2 = (-t)^{n-r}V_r^2.$

it can be seen that $V_{n+r}V_{n-r} - (k^2 + 4t)U_n^2 = (-t)^r$ V_r^2 .

3. Sums and Congruences

Now we will give some sums containing generalized Fibonacci and Lucas numbers. Then we will give some congruences concerning generalized Fibonacci and Lucas numbers. Firstly, we will prove a lemma to use in the following theorems. It can be seen that

(3.1)
$$\alpha^{2n} = \alpha^n V_n - (-t)^n$$

and

(3.2)
$$\alpha^{2n} = \alpha^n U_n \sqrt{k^2 + 4t} + (-t)^n$$

by (1.2). Now we can give the following lemma.

3.1. Lemma.

(3.3)
$$S^{2n} = S^n V_n - (-t)^n I$$

and

(3.4)
$$S^{2n} = U_n K S^n + (-t)^n I$$

for every $n \in \mathbb{N}$, where K is as in Theorem 2.12.

Proof. Let $\mathbb{Z}[\alpha] = \{a\alpha + b \mid a, b \in \mathbb{Z}\}$ and $\mathbb{Z}[S] = \{aS + b \mid a, b \in \mathbb{Z}\}$. We define a function $\varphi : \mathbb{Z}[\alpha] \to \mathbb{Z}[S]$, given by $\varphi(a\alpha + b) = aS + bI$. Then φ is ring homomorphism. Moreover it is clear that $\varphi(\alpha) = S$ and therefore we get $\varphi(\alpha^n) = (\varphi(\alpha))^n = S^n$. Thus from (3.1), we get

$$S^{2n} = (\varphi(\alpha))^{2n} = \varphi(\alpha^{2n}) = \varphi(\alpha^n V_n - (-t)^n) = S^n V_n - (-t)^n I.$$

That is, $S^{2n} = S^n V_n - (-t)^n I$. Also from (3.2), we get

$$S^{2n} = (\varphi(\alpha))^{2n} = \varphi(\alpha^{2n}) = \varphi(U_n \sqrt{k^2 + 4t\alpha^n} + (-t)^n) = U_n \varphi\left(\sqrt{k^2 + 4t}\right) S^n + (-t)^n I.$$

Since

$$\varphi\left(\sqrt{k^2+4t}\right) = \varphi(2\alpha-k) = 2S - kI = \begin{bmatrix} 0 & k^2+4t \\ 1 & 0 \end{bmatrix} = K,$$

$$S^{2n} = U_{-}KS^n + (-t)^n I$$

we get S^2 $^{n} = U_{n}KS^{n} + (-t)^{n}I.$ 219

3.2. Theorem. Let $m, r \in \mathbb{Z}$. Then

$$U_{2mn+r} = (-(-t)^m)^n \sum_{j=0}^n \binom{n}{j} V_m^j U_{mj+r} (-(-t)^m)^{-j}$$

and

$$V_{2mn+r} = (-(-t)^m)^n \sum_{j=0}^n \binom{n}{j} V_m^j V_{mj+r} (-(-t)^m)^{-j}$$

for every $n \in \mathbb{N}$.

Proof. It is known that

(3.5)
$$S^{2m} = S^m V_m - (-t)^m I$$

by (3.3). Taking the *n*-th power of (3.5), we get

$$S^{2mn} = (S^m V_m - (-t)^m I)^n = \sum_{j=0}^n \binom{n}{j} V_m^j (-(-t)^m)^{n-j} S^{mj}.$$

Multiplying both sides of this equation by S^r , we obtain

$$S^{2mn+r} = (-(-t)^m)^n \sum_{j=0}^n \binom{n}{j} V_m^j (-(-t)^m)^{-j} S^{mj+r}.$$

Thus it follows that

$$U_{2mn+r} = (-(-t)^m)^n \sum_{j=0}^n \binom{n}{j} V_m^j U_{mj+r} (-(-t)^m)^{-j}$$

and

$$V_{2mn+r} = (-(-t)^m)^n \sum_{j=0}^n \binom{n}{j} V_m^j V_{mj+r} (-(-t)^m)^{-j}$$

by Corollary 2.6.

3.3. Corollary. Let k and t be integers. Then for all $n, m \in \mathbb{N} \cup \{0\}$ and $r \in \mathbb{Z}$ such that $mn + r \ge 0$ if $t \ne \pm 1$, we get

$$U_{2mn+r} \equiv (-(-t)^m)^n U_r \pmod{V_m}$$

and

$$V_{2mn+r} \equiv (-(-t)^m)^n V_r \pmod{V_m}$$

3.4. Theorem. Let $m, r \in \mathbb{Z}$ and m be nonzero integer. Then

$$U_{2mn+r} = (-t)^{mn} \sum_{j=0}^{\lfloor \frac{n}{2} \rfloor} {n \choose 2j} U_m^{2j} U_{2mj+r} D^j t^{-2mj} + (-t)^{mn} \sum_{j=0}^{\lfloor \frac{n-1}{2} \rfloor} {n \choose 2j+1} U_m^{2j+1} V_{2mj+m+r} D^j (-t)^{m(-2j-1)}$$

and

$$V_{2mn+r} = (-t)^{mn} \sum_{j=0}^{\lfloor \frac{n}{2} \rfloor} {n \choose 2j} U_m^{2j} V_{2mj+r} D^j t^{-2mj} + (-t)^{mn} \sum_{j=0}^{\lfloor \frac{n-1}{2} \rfloor} {n \choose 2j+1} U_m^{2j+1} U_{2mj+m+r} D^{j+1} (-t)^{m(-2j-1)}$$

for every $n \in \mathbb{N}$, where $D = k^2 + 4t$.

Proof. It is known that

$$S^{2m} = U_m K S^m + (-t)^m I$$

by (3.4). It is clear that

$$S^{2mn+r} = (U_m K S^m + (-t)^m I)^n S^r = \sum_{j=0}^n \binom{n}{j} U_m^j K^j ((-t)^m)^{n-j} S^{mj+r}$$

On the other hand, it can be seen that $K^{2j} = D^j I$ and $K^{2j+1} = D^j K$. Therefore, we get

$$S^{2mn+r} = (-t)^{mn} \sum_{j=0}^{\lfloor \frac{n}{2} \rfloor} {\binom{n}{2j}} U_m^{2j} K^{2j} t^{-2mj} S^{2mj+r} + (-t)^{mn} \sum_{j=0}^{\lfloor \frac{n-1}{2} \rfloor} {\binom{n}{2j+1}} U_m^{2j+1} K^{2j+1} (-t)^{m(-2j-1)} S^{2mj+m+r} = (-t)^{mn} \sum_{j=0}^{\lfloor \frac{n}{2} \rfloor} {\binom{n}{2j}} U_m^{2j} D^j t^{-2mj} S^{2mj+r} + (-t)^{mn} \sum_{j=0}^{\lfloor \frac{n-1}{2} \rfloor} {\binom{n}{2j+1}} U_m^{2j+1} D^j (-t)^{m(-2j-1)} K S^{2mj+m+r}.$$

The proof follows from Corollary 2.6.

3.5. Corollary. Let k and t be integers. Then for all $n, m \in \mathbb{N}$ and $r \in \mathbb{Z}$ such that $mn + r \geq 0$ if $t \neq \pm 1$, we get

$$U_{2mn+r} \equiv (-t)^{mn} U_r \pmod{U_m}$$

and

$$V_{2mn+r} \equiv (-t)^{mn} V_r \pmod{U_m}.$$

References

- [1] P. Ribenboim, My numbers, My Friends, (Springer-Verlag New York, Inc., 2000).
- [2] S. Rabinowitz, Algorithmic Manipulation of Fibonacci Identities, Applications of Fibonacci Numbers 6, Kluwer Academic Pub., Dordrect, The Netherlands, 389–408, 1996.
- [3] J. B. Muskat, Generalized Fibonacci and Lucas Sequences and Rootfinding Methods, Mathematics of Computation, 61, Number 203, 365–372, July 1993.
- [4] D. Kalman and R. Mena, The Fibonacci Numbers-Exposed, Mathematics Magazine 76, 167–181, 2003.
- [5] S. Falcon and A. Plaza, The k-Fibonacci Sequence and The Pascal 2-Triangle, Chaos, Solitions and Fractals 33, 38–49, 2007.

Z. Şiar, R. Keskin

- [6] S. Falcon and A. Plaza, On The Fibonacci k-numbers, Chaos, Solitions and Fractals 32, 1615–1624, 2007.
- [7] R. Keskin and B. Demirtürk, Solutions of Some Diophantine Equations Using Generalized Fibonacci and Lucas Sequences, Ars Combinatoria (in press).
- [8] J. P. Jones, Representation of Solutions of Pell equations Using Lucas Sequences, Acta Academia Pead. Agr., Sectio Mathematicae 30, 75–86, 2003.
- M. E. H. Ismail, One Parameter Generalizations of the Fibonacci and Lucas Numbers, The Fibonacci Quarterly 46-47, 167–180, 2009.
- [10] T.-X. He and P. J. S. Shiue, On Sequences of Numbers and Polynomials Defined By Linear Recurrence Relations of Order 2, International Journal of Mathematics and Mathematical Sciences 2009, 21 page, 2009.
- [11] R. Keskin and B. Demirtürk, Some New Fibonacci and Lucas Identities by Matrix Methods, International Journal of Mathematical Education in Science and Technology, 1-9, 2009.