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Orthogonal Fourier-Mellin moments
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We propose orthogonal Fourier-Mellin moments, which are more suitable than Zernike moments, for scale-
and rotation-invariant pattern recognition. The new orthogonal radial polynomials have more zeros than
do the Zernike radial polynomials in the region of small radial distance. The orthogonal Fourier-Mellin
moments may be thought of as generalized Zernike moments and orthogonalized complex moments. For
small images, the description by the orthogonal Fourier-Mellin moments is better than that by the Zernike
moments in terms of image-reconstruction errors and signal-to-noise ratio. Experimental results are shown.

1. INTRODUCTION

The geometrical moments of the image are integrals of
the image function over space. The low-order moments
are related to global properties of the image and are
commonly used to determine the position, orientation,
and scale of the image. Optical generation of the geo-
metrical moments has been demonstrated. The moment
invariants' are linear combinations of the geometrical mo-
ments, used as image descriptors for scale- and rotation-
invariant pattern recognition. In general, the moment
invariants are not good image features. They are sen-
sitive to noise and suffer from information suppression,
loss, and redundancy.2

From the uniqueness theorem of moments, an image
is uniquely determined by its geometrical moments of
all orders. Low-order moments contain less information
about image detail. High-order moments are vulner-
able to noise. Interesting questions are how a finite
number of moments can work well to describe an im-
age for a particular application and what is gained by
inclusion of higher-order moments. The answers to
these questions can be found with the use of the or-
thogonal moments.3 Teh and Chin recently evaluated
various types of image moments, including geometrical
moments, Legendre moments, Zernike moments, Pseudo-
Zernike moments, Fourier-Mellin moments, and complex
moments, in terms of noise sensitivity, information redun-
dancy, and capability of image description. They found
that Zernike moments have the best overall performance.4

Zernike moments (ZM's) play a fundamental role in
the theories of optical aberration and diffraction. Teague
proposed ZM's for generating the moment invariants. 5

ZM's are orthogonal and rotation invariant. But, when
they are used for scale-invariant pattern recognition, ZM's
have difficulty in describing images of small size, as we
show in this paper.

Bhatia and Wolf pointed out that there exist an infinite
number of complete sets of polynomials that are rotation
invariant in form and arc orthogonal for the interior of
the unit circle.6 In this paper we introduce orthogonal
Fourier-Mellin moments (OFMM's), based on a new set of
radial polynomials. The new moments belong to general-

ized ZM's and to orthogonalized complex moments. We
show that OFMM's have better performance than ZM's
in terms of image description and noise sensitivity. In
Section 2 we introduce OFMM's and show their relations
to ZM's and to complex moments. In Section 3 we com-
pare the performance of OFMM's and ZM's. In Section 4
we present an experiment of rotation, scale, intensity, and
shift-invariant pattern recognition, using OFMM's.

2. ORTHOGONAL FOURIER-MELLIN
MOMENTS

A. Definition
The circular Fourier and radial Mellin transform defined
in a polar coordinate system (r, 0) is useful for scale- and
rotation-invariant pattern recognition:

Msm = f r'f (r, 0)exp(-jm0)rdrd0, (1)

where f(r,0) is the image and m = 0, +1, +2... is
the circular harmonic order. By definition, the Mellin
transform order s is complex valued. With integer
s Ž 0, Eq. (1) defines Fourier-Mellin moments (FMM's),
also called rotational moments.7 We now define the
OFMM's as

(Dnm 2 ra f7 lo f(r, O)Q(r)exp(-jmO)rdrdO,

(2)

where an is a normalization constant and Qn(r) is a poly-
nomial in r of degree n. The set of Qn(r) is orthogonal
over the range 0 c r c 1:

Qn(r)Qk(r)rdr = anon, (3)

where nk is the Kronecker symbol and r = 1 is the
maximum size of the objects that can be encountered
in a particular application. Hence the basis functions
Qn(r)exp(-jm6) of the OFMM's are orthogonal over the
interior of the unit circle.
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In OFMM's we use the radial polynomials of low de-
grees of n, which are independent of the circular harmonic
order m. We obtain the polynomials Qn(r) by applying
the Gram-Schmidt orthogonalization process to the se-
quence of natural powers of r over the range 0 c r 1:

1,r,r 2 ,... r. (4)

In Appendix A we show that the polynomials Qn(r) are
equal to

n
Qn(r) = E ansrs,

s=O

n
Qn(r)exp(-jmO) = Yj anxrs exp(-jmO)

s=o
n

= E an,,(x + jy)P (x - jy)q,
s=O

(9)

where

s-In s+m
2 q 2

(10)

The OFMM's can then be expressed as linear combina-
tions of complex moments (CM's):

(5)

with

ans W's ~(n + s + 1)! 6
=s ( 1)ns (n - s)!s!(s + 1)! (6)

and the normalization constant in Eq. (3) is an = 1/[2(n +
1)]. The explicit expressions of Qn(r) are

Qo(r) = 1,

QI(r) = -(2 - 3r),

Q2 (r) = 3 - 12r + 10r2,

Q3(r) = -(4 - 30r + 60r 2- 35r3 ),

Q4(r) = 5 - 60r + 20r - 280r + 126r4,

Q5(r) = -(6 - 105r + 560r2 - 260r3 + 1260r4 - 462r5 ),

The OFMM's are integrable when the degree of Qn(r)
n 0. On substituting from Eqs. (5) and (1) into
Eq. (2), we express the OFMM's as linear combinations
of FMM's:

nn + 1 n
Ownm afnMsm- (7)

OFMM's can be thought of as generalized ZM's. Bhatia
and Wolf have shown6 that a polynomial that is invariant
in form for any rotation of axes about the origin must be
of the form

V(r cos 0, r sin 0) = Rn(r)exp(jm0), (8)

where R(r) is a radial polynomial in r of degree n. If
V(x,y) must be polynomials in x and y, it follows that
there is one and only one orthogonal set, the set of Zernike
radial polynomials RmI(r), with n 2 Iml, Iml + 2, Iml +
4, .... Bhatia and Wolf also derived another orthogonal
set, the pseudo-Zernike polynomials Pn1mI(r), which are
the radial polynomials in r containing no powers of r lower
than Iml. The radial polynomials of the OFMM's, the
ZM's, and the pseudo-Zernike moments (PZM's) all belong
to the Jacobi polynomials. In Appendix B we show the
relations among the three radial polynomials.

By definition, the degree n of Qn(r) is independent of
the circular harmonic order m. As a result, the basis
function Q(r)exp(-jm0) is no longer polynomials in x
and y but may still be expressed as complex polynomials
in (x + jy) and (x - jy), because

(11)nn = If n, nsC(s-n2),(s+m)12 XOnm = n+1
Ir s=O

where the CM's are defined by Abu-Mostafa and Psaltis
as 2

cpq = f f(x, y) (x + jy)p (x - jyYdxdy.00 T._j~qxy (12)

By definition, the orders p and q are nonnegative integers.
In Eq. (11) the CM's are modified so that the orders p =
(s - m)/2 and q = (s + m)/2 are real valued and can
be negative. The OFMM's are therefore the orthogonal
CM's. When both p + q = s and q - p = m are integers
and s = p + q Ž 0, the modified CM's are convergent and
integrable. The OFMM's therefore may be computed in
the Cartesian coordinate system according to Eqs. (11)
and (12).

B. Properties
OFMM's have a single orthogonal set of the radial polyno-
mials Qjr) for all the circular harmonic orders m. ZM's
and PZM's have a set of orthogonal radial polynomials
for each circular order m. Only the polynomials RImI(r)
and Pml(r) with the same m are orthogonal. The de-
gree n of Qn(r) in the OFMM's can be much lower than
that of the Zernike and the pseudo-Zernike polynomials.
OFMM's can have n = 0,1,2,..., which are not permis-
sible in ZM's and PZM's if n < Iml.

The number of zeros of the radial polynomials corre-
sponds to the capability of the polynomials to describe
high-spatial-frequency components of the image. Since
the Qn(r) contains natural powers 1, r, r2 ,... , r, the equa-
tion Qn(r) = 0 has n real and distinct roots in the interior
of the interval 0 r c 1.8 It is easy to see that the equa-
tion Rnlml(r) = 0 has (n - m)/2 duplicated roots in the in-
terior of the interval 0 r c 1, apart from Rn1mI(0) = 0.
For a given degree n and circular harmonic order m, the
Qn(r) has n zeros and the Rn1mI(r) has (n - ml)/2 zeros.
For one to have the same number no of zeros, the de-
gree of the Rn'mI(r) has to be as high as 2no + Iml, much
higher than the degree n of the OFMM's. Note that the
description of an image usually requires the circular har-
monic orders Iml up to higher than 10.9

Comparing the Q(r) and the RmI(r) with the same
number of zeros, we find that the zeros of the Qn(r) are
nearly uniformly distributed over the interval 0 r 1,
whereas the zeros of the Rnllm(r) are located in the region
of large radial distance r from the origin. Figure 1(a)
shows a plot of the radial polynomials Q(r) with n =
0, 1,...,9, and Fig. 1(b) shows the Zernike polynomial
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Fig. 1. (a) Radial polynomials Q(r) of the OFMM's with
n = 0, 1,2,...,9; (b) Zernike radial polynomials Rnlml(r) with
m = 10 and n = 10,12,...,28.

Table 1. Positions of the First Zeros of Qn(r) and
R.101(r)

Q.(r) R__ _ ___(r)

n r n r

0 - 10 -

1 0.67 12 0.96

2 0.35 14 0.87
3 0.21 16 0.79
4 0.14 18 0.72

5 0.10 20 0.66
6 0.072 22 0.61

7 0.059 24 0.56
8 0.047 26 0.52

9 0.034 28 0.49

RImI(r) with ml = 10 and n = 10,12,.. .,28. Both Q9 (r)
and R2810(r) have nine zeros. The zeros of the Rn'0(r)
are in the region of large r. They are shifted to small r
with increasing degree n. The first zero, which is clos-
est to the origin, of the R2810 (r) is at r = 0.49. The first
zero of Q9(r) is at r = 0,034, as shown in Table 1. This

difference is important,.since in scale-invariant pattern
recognition the object sizes are unknown a priori and
the moments of objects of different sizes should be cal-

culated with the same basis functions. Hence, the ZM's
have difficulty in describing small images, as we show in
Section 3. The OFMM's are more suitable than the ZM's
for scale- and rotation-invariant pattern recognition.

3. PERFORMANCE

Teh and Chin have recently evaluated the image's ge-
ometrical moment, Legendre moment, ZM, PZM, FMM,
and CM. They found that the ZM and the PZM outper-
form the others in terms of overall performance for im-
age description and robustness to noise. In this section
we compare the performance of the proposed OFMM with
that of the ZM. We use measures of performance similar
to those used by Teh and Chin. The expressions of the
values are given, however, only for the OFMM.

A. Image Reconstruction
Pattern classification uses a finite number of OFMM's,
DIonm, as image features, whose sum gives a reconstructed
image:

N M
f(r, 0) = E Z 'D'nmQn(r)exp(jm0).

n=0 m=-M
(13)

Because of the orthogonality of the set Qn(r)exp( jm0),
each OFMM makes an independent contribution to the
reconstructed image. It can be shown that the partial
sum, given by relation (13), converges to the image when
the image is nonzero in a limited region, is continuous,
or has a finite number of finite jumps so that f(r, 0)
and If(r, 0)12 are integrable and the polynomials Qn(r)
are bounded over (0,1) as n becomes infinite.8 These
conditions are, in general, satisfied.

1. Reconstruction Error for Deterministic Images
We did an experiment of reconstruction of a deterministic
image. The image was a capital letter E in a 64 X 64 ma-
trix. The normalized image reconstruction error (NIRE)
is defined as

62 =
ff f (x~y) - (x, y)]2 dxdy

Jf f 2 (xy)dxdy
(14)

where f(x, y) is the reconstructed image. The NIRE is
shown in Fig. 2 as a function of the highest degree N of the
radial polynomials. In the reconstruction with OFMM's,
all the circular harmonic orders m = 0, 1,2,... M with
M = N were used. In the reconstruction with ZM's, all
the permissible orders m satisfying the condition N ' Iml
and N - Iml = even were used. With the same highest-
degree N, OFMM's yield much lower reconstruction error
than do ZM's.

Figure 3(a) shows the NIRE as a function of the total
number of moments used in the reconstruction. The
total number of OFMM's is equal to (2M + 1) (N + 1),
and we used M = N in the experiment. The total num-
ber of ZM's is equal to (N + 1) (N + 2)/2. In fact, only
approximately half of the moments are independent, be-
cause (n, -m = (n,m*. The NIRE decreases with increas-
ing number of moments. The NIRE's are almost the
same in the reconstruction of a large image E6 with the
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Figure 3(b) shows the images reconstructed with the
use of 861 OFMM's, which are 431 independent OFMM's.
The shapes of the images may be reconstructed with many
fewer OFMM's. The same OFMM's describe equally all
the continuously rotated and scaled versions of the origi-
nal image. In this sense the OFMM's are highly con-
densed image features.

Eight reconstructed images of E3 from as many as 64
independent OFMM's and from the same numbers of ZM's
are shown in Figs. 4 and 5. The images reconstructed

Fig. 2. Normalized image reconstruction error 2 for a letter E
with OFMM's and ZM's, as a function of the highest degree N of
the radial polynomials.

o OFMM(E6)
0.8 * , - - -ZM(E6)

-U- OFMM(E3)
0.6 2\: s s , ---ZM(E3)

0.4

0.2

0
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(a)

E

. I . . . Fig. 4. Reconstructed images for E3 with OFMM's. From top
200 250 left to bottom right: original image and reconstructed images

with OFMM's of N = M = 0,1,2,..., 7, with N = M = 7 cor-
responding to a total of 64 independent OFMM's. The recon-
structed images were not thresholded.

E

(b)
Fig. 3. (a) NIRE 2 for a letter E6 and a half-size letter E3
with OFMM's and ZM's, as a function of the total number of
moments used in the reconstruction; (b) reconstructed binary and
gray-level images with OFMM's of up to and including n = 20.
Left, original images; right, reconstructed images.

same number of OFMM's and ZM's. But, for image E3,
which was reduced to half the size of E6, the NIRE with
ZM's is much higher than that of OFMM's, as can be seen
from Fig. 3(a).

Fig. 5. Reconstructed images for E3 with ZM's. From top left
to bottom right: original image and reconstructed images with
ZM's of N = 0, 2,4,... 14, with N = M = 7 corresponding to a
total of 64 independent ZM's. The reconstructed images were
not thresholded.
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from the OFMM's have much better quality than those
from the ZM's.

2. Reconstruction Error of Homogeneous Random Fields
We consider the image f (x, y) a homogeneous (wide-sense
stationary) stochastic process with zero mean:

Elf (x, y)} = 0, (15)

where E{.} is the expectation in ensemble averaging.4

The normalized mean-square reconstruction error is de-
fined as

E jI [f(x,y) - f(x,y)]2dxdy}

E Iff [ f(x,y)]2dxdy}

On substituting Eq. (13) for f(x,y) into Eq. (16) and con-
sidering that the object f(x, y) can be scaled by a factor
k to f(x/k,y/k) and that the maximum size of the scaled
object is equal to k 1, we obtain the theoretical or sta-
tistical NIRE as

n=O m=-M

X r27, k aprk Cff(x, y, u, v)

Jo Jo Jo Cff (O, 0)

x Qn(r)Qn(p)cos[m(0 - 0)]rdrd0pdpd0,
(17)

where u = p cos X, v = p sin 0. The autocorrelation
Cff (x, y; u, v) of the stochastic process f(x, y) is expressed
as

Figure 7 shows the statistical NIRE as a function of
the total number of moments used in the reconstruction.
The OFMM and the ZM have similar performance for full-
size objects when k = 1.0. But for a smaller object with
k = 0.5, OFMM's yield a much smaller reconstruction
error than do ZM's. This result is in agreement with
the experimental result for reconstruction of deterministic
images shown in Subsection 3.A.1.

B. Noise Sensitivity
Sensitivity to noise is a critical issue for image moments.
We compare the OFMM and the ZM for their signal-
to-noise ratios (SNR's) and their performance for image
description in the presence of noise.

1. Signal-to-Noise Ratio
Assume that the image f(x, y) is a homogeneous random
field with zero mean and is corrupted by a zero-mean
additive white noise with the autocorrelation of the noise
as

Cnn(x,y,u,v) = cr2 6(x - uy- V) (22)

where 8(x - u, y - v) is the delta function and o 2 is the
spectral density of the noise. The statistical SNR of the

U

Cff(x,y,u,v) = Cff(0, 0)exp(-allx - ul - eX2IY - VI),
(18)

according to the experimental evidence,10 where a, and
a2 are positive constants and

Cff (0,0 ) = E{[ f (x, y)]
2} = -

'IT

1 f2, fk [f(r, 0)]2 rdrd0

(19)

is the average energy per unit area. The experiments
that led to the autocorrelation function of Eq. (18) were
made with television images. We modify Eq. (18) for the
images having no privilege-shift directions as

Cff(x,y,u,v) = Cff (0, O)exp{- a[(x - U)2 + (y - V)2]S21,

(20)

where the constant a is determined by experiments.
Figure 6 shows the function Cff (x, y; u, v) with different
values of a. The dashed curve is the autocorrelation of a
uniform unit circle. The autocorrelation of an image that
does not fill the unit circle should be below this dashed
curve. We choose a = 3 in the experiments that fol-
low. When the image is scaled by a factor k, the scaled
autocorrelation becomes

Cff (x, yu , v) = - ]

where R = [(X - U)2 + (y - v)2]"J2 .

R _ 2k (21)

R > 2k

2.0

R

Fig. 6. Autocorrelation Cff(x,y; u, v) as a function of R =
[(x - u)2 + (y - v)2 ]/ 2 with different constants a. The dashed
curve is the autocorrelation of a uniform unit circle.
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Fig. 7. Statistical NIRE 2 as a function of the total number of
the OFMM's and ZM's used in the reconstruction.
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Fig. 8. Statistical SNR of the OFMM and the ZM with constant
a = 3, image size k = 1, and order m = 0, 5, 10 as a function of
the number of zeros of their radial polynomials.
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Fig. 9. Statistical SNR of OFMM's with m = 5, n = 0, 5 and of
ZM's with m = 5, n = 5,15, with the number of zeros equal to 0
and 5 respectively, as a function of image size k.

OFMM may be defined as

=N, var{ (Dnm)f} I _ 1 vr(Dmf, (3
SNRnm var{('nm)noise} =.2 ar{(nm)f} (23)

where the variance of the OFMM's for the random signal
f(xy) is

var{(Dnm)f} =
I2r fk f27r fk
fo Jo Jo Jo Cff (x, y, u, v)Q.(r)Q.(p)

X cos[m(0 - ()]rdrd0pdpdp, (24)

with the autocorrelation of the signal Cff given by
Eq. (21).

Figure 8 shows the statistical SNR's normalized by
Cff(O, O)/uo2 of the OFMM and the ZM as a function of
the number of zeros of the radial polynomials Qn(r) and
RImI(r), which is equal to the degree n for the OFMM and
to (n - ImJ)/2 for the ZM. The SNR decreases with in-
creasing n and m. When the object size k = 1, the OFMM
and the ZM have almost the same SNR's. But when the
object size k decreases, the SNR of the ZM's decreases
much faster than that of the OFMM's, as shown in Fig. 9.
This is because the ZM decreases with decreasing object
size k faster than does the OFMM; this can be understood
from Fig. 1.

Fr

Vr

2. Noisy Image Reconstruction
Assume that an object of size k c 1 is degraded by an ad-
ditive random noise n(x, y) and that the unit circle in the
input scene is full of the noise. The OFMM's of the noisy
image are additions of the OFMM's of the object, (Dnm,
and of the OFMM's of the noise, ('nm)n. The OFMM's of
the noisy image then are used for image description and
classification, and the error of the images reconstructed
by the OFMM's of the noisy image is a measure of the ef-
fect of the noise on the pattern-recognition performance of
the OFMM.

If we assume again that the signal f (x, y) is a zero-
mean homogeneous random process and that the noise is
zero mean with variance c 2 , the statistical NIRE of the
noisy image iS

4

Sn,(N,M) =
E jff [f(x, y) - f(x, y) - h(x, y)]2dxdyI

E ff [f(x,y)]2dxdyj=s ) +Et f [h(r, 0)]2rdrdo

Elf f| [f(r, 0)]2rdrdol

Ntotal'
= 82(N,M) + Ntipa (25)

where f(r, 0) is the partial sum of the nm given by
Eq. (13), (r, 0) is the partial sum of the (nm)n, and 2 is
the statistical NIRE of the OFMM's of the image without
noise given by Eq. (17). The second term on the right-
hand side of Eq. (25) is the normalized error caused by
the noise. Nl is the total number of moments used in
the reconstruction. SNRinput is defined as

k 2 Cff (0, 0)SNRinput = (26

Figure 10 shows the statistical NIRE of the noisy im-
age sn 2 of OFMM's and ZM's as a function of the total
number of moments for the object sizes k = 0.5 and k = 1
with SNRnput = 100. The second term in Eq. (25) is the
same for OFMM's and ZM's. Only the statistical NIRE's,
e2, of the image without noise are different. For a large
object with k = 1, the OFMM and the ZM have similar
performance. For a small object with k = 0.5, the re-
construction error with OFMM's is smaller than that
with ZM's.

For a given input SNR there is an optimum number of
moments that generate the minimum NIRE for a noisy
image. The high-order moments are sensitive to noise.
Above a certain order the contribution of the noise can
exceed the contribution of the moments to the image re-
construction. The NIRE cannot be further reduced by
addition of more moments.

Figure 11 shows the experimental NIRE of the OFMM's
and ZM's for two deterministic objects, E6 and E3, with
noise. The objects E6 and E3 have binary intensities 0
and 255. The input noise was additive Gaussian noise
with zero mean and a standard deviation equal to 345

z4

. . . . . . . . . . . . . . . .. . . . . . . . . . . . . .
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Fig. 10. Statistical normalized noisy-image reconstruction er-
ror n2 with input SNR = 100 as a function of the total number
of the OFMM's and ZM's used in the reconstruction.
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Fig. 11. Normalized noisy-image reconstruction error En2 for
deterministic objects E6 and E3 with additive noise and input
SNR = 100, as a function of the total number of the OFMM's
and ZM's used in the reconstruction.

for E6 and 185 for E3. Those noise levels correspond
to the SNRix,,t defined in Eq. (26) as equal to 100 with
the variance a2 calculated according to Eq. (22). These
experimental results agree approximately with the the-
oretical results shown in Fig. 10. Figures 12 and 13
show reconstructed images E3 with up to 64 independent
OFMM's and ZM's of the noisy image, respectively. The
quality of the reconstructed images with the OFMM's is
much better than that with the ZM's.

4. PATTERN RECOGNITION

A. Normalization of the Orthogonal
Fourier-Mellin Moments
OFMM's may be normalized to be invariant to shift and
rotation and to scale and intensity changes of the image.
First we determine the center of image by using the first-
order geometrical moments. The center of image is used
as the origin of the coordinate system. All the moments
calculated in this coordinate system are shift invariant;
then we calculate the FMM's, Msm, in the Cartesian co-
ordinate system, using the corresponding modified com-
plex moments, Cpq, with p = (s - m)/2 and q = (s + m)/2;

we normalize the FMM's against changes in scale and
intensity. When an image f (r, 0) is scaled by a factor
k and its intensity is changed by a factor g, its FMM's
become

Msm = f027Tf 1 gf(r/k, 0)rsrdrd0 = gks+2M.', (27)

where Msm is the FMM of the original image. We obtain
the scale and intensity factors k and g, respectively, using

Fig. 12. Reconstructed images with the OFMM's of the E3
corrupted by an additive Gaussian noise of zero mean and

= 185. From top left to bottom right: original image and
reconstructed images with OFMM's of N = 0, 1,2. 7, with
N = 7 corresponding to a total of 64 independent OFMM's. The
reconstructed images were not thresholded.

WQ

Fig. 13. Reconstructed images with the ZM's of the E3 cor-
rupted by additive Gaussian noise of zero mean and o- = 185.
From top left to bottom right: original image and reconstructed
images with ZM's of N = 0,12,4.,714, with N = 14 correspond-
ing to a total of 64 ZM's. The reconstructed images were not
thresholded.
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use of statistical feature-selection algorithms such as the
Karhunen-Lo6ve transform.1"

Because of the scale and intensity normalization, the
OFMM's F10 and Foo are equal for all the objects. We
then classified the objects in the 23-dimensional fea-
ture space, using the weighted minimum-mean-distance
rule.12 The weighted distance was calculated as

>14

di = 
n, m=O

when m-O,nsiO,1

1/2

[I(nml - (I'Dnm )]2

(-nm)i 2 (30)

Fig. 14. Reconstructed images of the 26 English alphabet let-
ters with 25 OFMM's of n and m = 0, 1, 2,3,4.

the low-order FMM's:

K=(Mi0, Mio) (28)
K ( Moo' /( Moo ' (29)

L M0 )/( ) Moo' Mo (29)

The normalized FMM's are obtained as Mt/(gks
which are scale and intensity invariant.

When computing k and g we need to determine the
values of M10 and Moo in Eqs. (28) and (29), which are
the same for all the images in the training and testing
sets. We choose simply Moo = 1. According to Eq. (28),
the ratio M10/M00 is related to the scale k of the image.
We choose the ratio Mio/Moo slightly smaller than the
minimum Mlol/Moo' of all the images in the training set
to ensure that the normalized images remain inside the
unit circle.

Finally, we calculate the OFMM's with the normalized
FMM's, according to Eq. (7). A rotation of the image by
angle 00 results in the same phase factor exp( jm0o) for
all the Msm in Eq. (7). The modulus of the OFMM, Inm,
is shift, scale, intensity, and rotation invariant.

B. Pattern-Recognition Experiment
The training set consisted of binary images of the 26
English alphabet letters with intensities of 0 and 255
in 64 X 64 pixel matrices. We used 25 OFMM's with
n = 0, 1,2,3,4, and m = 0, 1, 2, 3,4 to describe the images.
Figure 14 shows the images reconstructed with the 25
OFMM's. We estimated that the differences among the
reconstructed images were large enough for image classi-
fication. Image reconstruction is not a necessary step of
pattern recognition. We found that it was also possible
to use fewer than 25 OFMM's in this particular pattern-
recognition experiment. In general, one can describe the
images by using a large number of OFMM's. The di-
mension of the feature space can be reduced further by

where IDnmI is the modulus of the OFMM of the testing
object, (Dnml)i is the OFMM of the reference object of class
i, and (nm)i 2 is the in-class variance of the (I(nm)i. The
(onm)i 2 is used as a weighting factor to the Euclidean
distance. The values of IDnml change with the orders
n and m. The IcDnml with large values dominated the
Euclidean distance, while the I )nmI with small values had
no effect on the classification. The weighting by (nm)i2
is to balance this effect. We rotated each reference object
by 15, 30, and 45 deg and scaled it 1.5 and 2 times to
determine the in-class variance of the OFMM's.

A testing image was classified to the class i for which
the distance di was minimum. The testing set images
were the rotated (20 and 130 deg), scaled (1.8 and 2.2
times), and intensity (3 times) changed versions of the
training-set images and without or with zero-mean addi-
tive noise of o- = 25.5 and - = 255. The testing set for
the class of letter A is shown in Fig. 15. The misclassifi-
cation rates were zero for all testing images, except for im-
ages of D, 0, and Q with a high-noise-level noise o = 255.
We see from Fig. 14 that the reconstructed images D, 0,
and Q are similar to one another. More OFMM's have
to be used to classify those images.

Figure 16 shows the misclassification rate of the
OFMM's and ZM's for noisy images, as a function of

Fig. 15. Testing images for the letter A. From top left to
bottom right: the letter A rotated by 20 and 130 deg, scaled
by k = 0.555 and 0.455, and with zero-mean additive noise of
o- = 25.5 and o = 255.
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Fig. 16. Misclassification rate of the OFMM's and the ZM's with
input noise = 25.5 and = 255 as a function of the ratio
M10/Moo that was used to calculate the scale ratio.

w(r) = rq-l(l - r)P-q

such that

f0 w(r)Gn(p, q, r)G.'(p, q, r)dr = bn(p. q)8nn',

where the normalization constant bn(p, q) is

bn(p, q) = n![(q - 1)!]2(p - q + n)! 
(q + n - 1)!(p + n -1)!(p + 2n)

The Jacobi polynomials are expressed as

n!(q- 1)

sE (n- s)! s!(q + - 1)!

the ratio M10/M00. This ratio determines the size of
the normalized images. The misclassification rate of the
ZM's increases faster than that of the OFMM's with in-
creasing M10/M00. This is because, with the influence
of the input noise, the size of the normalized images can
exceed the unit circle and cause significant errors. ZM's
are more sensitive than OFMM's to noise. The misclas-
sification rate of the ZM's also increases when the ratio
M10/M00 < 0.05, because ZM's are not good at describing
small images. The performance of the OFMM's is not
affected by a small value of Mol/Moo.

5. CONCLUSIONS

We have introduced the orthogonal Fourier-Mellin mo-
ments based on a new set of radial polynomials of low
degree. We showed that the orthogonal Fourier-Mellin
moments are the generalized Zernike moments and
the orthogonalized complex moments. The new radial
polynomials have more zeros than do the Zernike ra-
dial polynomials of the same degree. Compared with a
high-degree Zernike polynomial that has the same num-
ber of zeros as the new polynomial, the new polynomial
has more zeros in the region of small radial distance.
The orthogonal Fourier-Mellin moments are therefore
more suitable than the Zernike moments for scale- and
rotation-invariant pattern recognition, in which small
objects are described in the same way as large objects.
We showed that for small objects the performance of the
orthogonal Fourier-Mellin moments is superior to that of
the Zernike moments in terms of image-reconstruction er-
ror, signal-to-noise ratio, and noisy-image-reconstruction
error. A scale-, rotation-, shift-, and intensity-invariant
pattern-recognition example with use of the orthogonal
Fourier-Mellin moments has been shown.

The orthogonal polynomials before normalization Qn(r)
satisfy

(A6)J Q.(r)Qk(r)rdr = anank,

where 8
nk is the Kronecker symbol and an is a normaliza-

tion constant. From Eqs. (A3) and (A2) we have, with
the Jacobi polynomials of p = q = 2,

f 1
foG.(2,2,r)Gk(2,2,r)rdr = 2(n + 1)3 8 nk - (A7)

Hence

Qn(r) = an' 2[2(n + 1)3]J 2Gn(2, 2, r). (A8)

We choose the normalization so that Qn(r) = 1 for r = 1.
The value Gn(2, 2,1) may be obtained from the generating
function of the Jacobi polynomials:

{z - 1 + [1 - 2z(1 - 2t) + z2)]1/2}m
(2zt)m[1 - 2z(1 - 2t) + Z2]1/2

( s )Gs(m + 1, m + 1, t)zs. (A9)

If we let t = r and r = 1, the left-hand side of Eq. (A9)
reduces to (1 + z)-1. Setting m = 1, we obtain

Gn(2,2,1) = (n 1)n (A10)

Hence the normalization constant is

(All)(an) 1/2 = (2 )

APPENDIX A: POLYNOMIALS Qn(r)

We obtain the well-known Jacobi polynomials Gn(p, q, r)
by orthogonalizing the sequence1, r, r2,.*.*.*.r" (Al)

over the interval 0 ' r ' 1 with a general weighting
function,

On substituting for an into Eq. (A8), we have

Q,(r) (-)n(n + 1 )G(2,2, r).

But from Eq. (AS) the Jacobi polynomials are

0

U

(A2)

(A3)

(A4)

(A5)

(A12)
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G(22r) = 1 E( 1 \S (n +S+ 1)! rS.L.+ , ' (n - s)!s!Ws + 1)! (A13)

Thus Qn(r) is obtained as

Qn (2, 2,r) -)n Y (- 1)s -(n + s + 1)! A4
s=O (n - s)! s!(s + 1)! rS. (A14)

APPENDIX B: RELATIONS AMONG
THE Qn(r), Rnlml(r), AND Pnlml(r)

The generating function of the Jacobi polynomials is

{z - 1 + [1 - 2z(1 - 2t) + z2]1 /2}m
(2zt)m[1 - 2z(1 - 2t) + Z2]1/2

= ( s )Gs(m + 1,m + 1,t)zs. (Bi)

The orthogonal polynomials Qn(r) for the OFMM's are
expressed in Eq. (A12):

Qn(r) = ( 1)n n 1Gn(22 r)- (B2)

Multiplying the two sides of Eq. (Bi) by r and setting
t = r and z = -z, we obtain the generating function for
the pseudo-Zernike polynomials:

{z + 1 - [1 + 2z(1 - 2r) + 2
]YS}

2
m+l x

(2Z)2 m+lrm+l[1 + 2(1 - 2r) + Z2 ]"2 i
(B7)

A comparison of Eqs. (B3) and (B5) shows the relation
between the Qn(r) and the Zernike polynomials:

rQ.(r2) = R +1(r), (B8)

and a comparison of Eqs. (B3) and (B7) shows the relation
between the Qn(r) and the pseudo-Zernike polynomials:

Qn(r) = Pno(r). (B9)

Also, a comparison of Eqs. (B5) and (B7) shows the
relation between the Zernike and the pseudo-Zernike
polynomials:

rPl-(r 2) = R 2ln+jl(r).

Setting m = 1 and t = r and z = -z in Eq. (B1), we obtain
the generating function for Qn(r) as

z + 1-[1 + 2z(1-2r) + Z2]1/2

2zr[1 + 2z(1 - 2r) + Z2 =12
= s rZ" (B3)

the Jacobi polynomials by

Rm,+2(r) = (-S) (m+ )rmGs(m + 1,m + 1,r2 ). (B4)

Multiplying the two sides of Eq. (Bi) by rml and setting
t = r2 and z = -z, we obtain the generating function for
the Zernike polynomials:

{z + 1 - [1 + 2z(1 - 2r2 ) + z)1/ 2}m - ,1ml r)ZS
(2zr)m[1 + 2z(1 - 2r2 ) + Z2 '1/2 Rm+2S=O

(B5)

With n = m + s, the pseudo-Zernike polynomials are re-
lated to the Jacobi polynomials by

Pm-+'(r) = (1)s 2m+s + 1rmG,(2m + 2,2m + 2,r).

(B6)

(B10)
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