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ORTHOGONAL POLYNOMIALS ON THE UNIT CIRCLE
ASSOCIATED WITH THE LAGUERRE POLYNOMIALS

LI-CHIEN SHEN

(Communicated by Hal L. Smith)

Abstract. Using the well-known fact that the Fourier transform is unitary,
we obtain a class of orthogonal polynomials on the unit circle from the Fourier
transform of the Laguerre polynomials (with suitable weights attached). Some
related extremal problems which arise naturally in this setting are investigated.

1. Introduction

This paper deals with a class of orthogonal polynomials which arise from an
application of the Fourier transform on the Laguerre polynomials.

We shall briefly describe the essence of our method.
Let Π+ denote the upper half plane {z : z = x+ iy, y > 0} and let

H(Π+) = {f : f is analytic in Π+ and sup
0<y<∞

∫ ∞
−∞
|f(x+ yi)|2 dx <∞}.

It is well known that, from the Paley-Wiener Theorem [4, p. 368], the Fourier
transform provides a unitary isometry between the spaces L2(0, ∞) and H(Π+).
Since the Laguerre polynomials form a complete orthogonal basis for

L2([0, ∞), xαe−x dx),

the application of Fourier transform to the Laguerre polynomials (with suitable
weight attached) generates a class of orthogonal rational functions which are com-
plete in H(Π+); and by composition of which with the fractional linear transfor-
mation (which maps Π+ conformally to the unit disc)

z = (2t− i)/(2t+ i),

we obtain a family of polynomials which are orthogonal with respect to the weight
sinα t

2 dt on the boundary |z| = 1 of the unit disc.
Some similar approaches of linking the classical orthogonal polynomials with or-

thoganal polynomials of greater generality via various transforms have been inves-
tigated recently. For example, using the Fourier transform, Koelink [1] established
the connection between the Jacobi polynomials and the continuous Hahn polyno-
mials; and in [2] Koornwinder established the link between the Meixner-Polleczek
polynomials and the Laguerre polynomials from the Mellin transform.
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We thank the referee for many detailed suggestions in revising the original man-
uscript as well as for drawing our attention to papers [1] and [2].

2. Key results

We assume that the reader is reasonably familiar with the basic properties of
the Laguerre polynomials which can be found in Chapter 4 of [3].

We say a few words about our notation. The Fourier transform of an integrable
function f is defined as

f̂(t) =
∫ ∞
−∞

eixt f(x) dx,

(a)n = a(a+1)(a+2) . . . (a+n−1) and F (a, b; c; z) is the standard hypergeometric
series.

Let

Lαn(x) =
(α+ 1)n

n!

n∑
k=0

(−n)kxk

k!(α+ 1)k
(α > −1)

be the Laguerre polynomial of degree n associated with the weight e−xxα dx, and
let

lαn(x) =

{
Lαn(x) e−x/2 xα/2, x ≥ 0,
0, x < 0.

We now compute the Fourier transform of lαn(x). First, we observe that

l̂α0 (t) =
∫ ∞

0

eixt e−x/2 xα/2 dx = Γ
(α

2
+ 1
)(1

2
− it

)−α2−1

,(2.1)

(−iD)n l̂α0 (t) =
∫ ∞

0

eixt e−x/2 xα/2+n dx =
(α

2
+ 1
)
n

(
1
2
− it

)−n
l̂α0 (t),(2.2)

where (−iD)n = (−i)n dn

dtn and t is a complex number with imaginary part> − 1
2 . It

is easy to justify the differentiation behind the integral sign because of the absolute
convergence of the integral. From (2.1) and (2.2), we obtain

l̂αn (t) =
∫ ∞

0

eixt xα/2 e−x/2Lαn(x) dx = Lαn(−iD)l̂α0 (t)

=
(1 + α)n

n!
l̂α0 (t)

n∑
k=0

(−n)k
(
α
2 + 1

)
k

k!(α+ 1)k

(
1

1
2 − it

)k
=

(1 + α)n
n!

l̂α0 (t)F
(
−n, α

2
+ 1; α+ 1;

1
1
2 − it

)
.

Now let z = (2t− i)/(2t+ i) and recall that

F (−n, a; c; x) =
(c− a)n

(c)n
F (−n, a; a− n− c+ 1; 1− x).

We can write

l̂αn (t) = Γ
(α

2
+ 1
) (1 + α)n

n!
(1− z)

α
2 +1F

(
−n, α

2
+ 1; α+ 1; 1− z

)
= Γ

(α
2

+ 1
)

(1− z)
α
2 +1 gαn(z),
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where

gαn(z) =
(α/2)n
n!

F
(
−n, α

2
+ 1; −n− α

2
+ 1; z

)
(2.3)

=
(1 + α)n

n!
F
(
−n, α

2
+ 1; α+ 1; 1− z

)
is a polynomial of degree n. For brevity, we let gn(z) = gαn(z). We choose the
branch of (1− z)

α
2 +1 which takes the value 1 at z = 0. Therefore l̂αn , as a function

of z, is analytic in the complex plane cut along [1, ∞). Moreover, from the fact
that the Fourier transform preserves the inner product (the Parseval’s identity), we
deduce that

2α
Γ2
(
α
2 + 1

)
2π

∫ 2π

0

gn(eiθ) gm(eiθ) sinα
θ

2
dθ(2.4)

=
Γ2
(
α
2 + 1

)
2πi

∫
|z|=1

gn(z) gm(z) |1− z|α dz
z

= −
Γ2
(
α
2 + 1

)
2πi

∫
|z|=1

gn(z) gm(z) (1− z)
α
2 +1(1− z̄)α2 +1(1 − z)−2dz

=
1

2π

∫ ∞
−∞

l̂αn (t) l̂αm(t) dt

=
∫ ∞

0

lαn(x) lαm(x) dx (Parseval’s identity)

=
∫ ∞

0

Lαn(x)Lαm(x) e−x xα dx

=

{
Γ(n+α+1)

n! n = m

0 n 6= m.
([3, p. 84]).

We summarize our result in

Theorem 1. The polynomials {gαn(z)}∞n=0 form a complete orthogonal basis for

H2
µ =

{
f : f is analytic in |z| < 1 and

∫ 2π

0

|f(eiθ)|2dµ <∞
}
,

where dµ = 1
2π sin

α θ
2 dθ.

The completeness follows immediately from the completeness of lαn(x) in L2 [0, ∞)
[5, p. 108], the Paley-Wiener Theorem and the fact that the Fourier transform
preserves the basis.

It is interesting to note that for α = 0, gn(z) = zn. And for α = 2,

gn(z) =
n∑
k=0

(k + 1)zn

which is the nth partial sum of the familiar power series

(1− z)−2 =
∞∑
k=0

(k + 1) zk.
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Remark 1. We note that for α > 0, (−n)k/
(
−n− α

2 + 1
)
k
> 0 for n > k > 0.

Hence, from (2.3), we conclude that

max
|z|6R

|gn(z)| = gn(R).

Similarly,

max
|z|6R

|g(k)
n (z)| = g(k)

n (R).

In particular,

gn(1) = (α+ 1)n/n! and g(k)
n (1) =

(α
2

+ 1
)
k

(α+ 1)n/((α+ 1)k(n− k)!).

Remark 2. The reproducing kernel KN (z, w) with respect to the measure dµ for
the polynomials of degree 6 N is defined as

KN(z, w) =
N∑
n=0

cngn(z)gn(w),

where

cn = aαn!/(α+ 1)n and aα = 2αΓ2
(α

2
+ 1
)
/Γ(α+ 1).

The significance of the term “reproducing kernel” will be made clear in the next
section. Then, from the above remark, we have

max
|w|61

KN(w, w) = KN (1, 1) = aα

N∑
n=0

(α+ 1)n/n!.

More generally, let

MN,k(w) =
N∑
n=k

cn|g(k)
n (w)|2.

Then

max
|w|6R

MN,k(w) = MN,k(R).

3. Extremal problems

Let PN be the set of all polynomials of degree 6 N . It follows from the orthog-
onality (2.4) that if p ∈ PN , then

p(w) =
∫
|z|=1

KN (z, w)p(z) dµ.

More generally, by differentiating the above identity k times, we have

p(k)(w) =
∫
|z|=1

D
k
KN(z, w)p(z) dµ

(
D̄ =

∂

∂w̄

)
.(3.1)

Applying the Schwarz inequality to (3.1), we deduce (with the help of orthogo-
nality)

|p(k)(w)| 6 ‖p‖µMN,k(w) for p ∈ PN ,(3.2)

where ‖p‖2µ =
∫
|z|=1 |p(z)|2 dµ.
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Therefore, we have

Theorem 2. If p ∈ PN , then

sup
‖p‖µ=1

|p(k)(w)| = MN,k(w),

and the equality is achieved by the polynomial

p(z) =
N∑
n=k

cngn(z) g(k)
n (w)/MN,k(w).

We comment that this extremal function p(z) is essentially unique. To see this,
we recall that [2, p. 63] in Schwarz inequality

|(f, g)| ≤ ‖f‖ ‖g‖,

the equality holds if and only if f = cg a.e. Hence, the equality in (3.2) holds if and
only if p(z) = c D̄kKN (z, w); and c = a/MN,k(w), |a| = 1, if we further require
that ‖p‖µ = 1.

Corollary. If p ∈ PN and ‖p‖µ = 1, then

|p(w)| 5 2α
Γ
(
α
2 + 1

)
Γ(α+ 1)

·
N∑
n=0

(α+ 1)n
n!

for |w| = 1.

From (3.2), we can also establish that if p ∈ PN , then

inf
‖p(k)‖∞=1

‖p‖µ = 1/MN,k(R),

where ‖p(k)‖∞ = max|z|=R |p(k)(z)|.
The proof is simple and it goes as follows. Choose a point w on the circle |z| = R,

so that |p(k)(w)| = ‖p(k)‖∞ = 1. Then, according to (3.2) and Remark 2,

‖p‖µ > 1/MN,k(w) > 1/MN,k(R),

and again the equality holds for

p(z) =
N∑
n=k

cngn(z)g(k)
n (R)/MN,k (R).

We remark that the extremal problems (the Bernstein-Markoff type inequalities)
concerning the norm of the derivatives of a polynomial subject to certain given
constraint have been studied by numerous authors and some of the more recent
results of this nature have appeared in [6] and [7].

4. Connection with the Gegenbauer polynomials

To see the connection of gαn(z) with the Gegenbauer polynomial Cλn(x), we write
(−n− α

2 + 1)k = (−1)k(α/2)n /(α/2)n−k; then

gαn(z) =
n∑
k=0

(
α
2 + 1

)
k

(
α
2

)
n−k

k!(n− k)!
zk.
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We recall that the definition for the generating function for Cλn(cos θ) is
∞∑
n=0

Cλn(cos θ)rn = 1/(1− 2r cos θ + r2)λ.

Now write

(1− reiθ)−1(1− 2r cos θ + r2)−
α
2 = 1/(1− re−iθ)α2 (1− reiθ)α2 +1.

Then the series expansion for the left-hand side is( ∞∑
n=0

ein θrn

)( ∞∑
n=0

Cα/2n (cos θ)rn
)

=
∞∑
n=0

rnein θ
n∑
k=0

C
α/2
k (cos θ)e−ik θ,

and the series expansion for the right-hand side is( ∞∑
n=0

(
α
2 + 1

)
n

n!
rnein θ

)( ∞∑
n=0

(
α
2

)
n

n!
rne−in θ

)

=
∞∑
n=0

rne−in θ
n∑
k=0

(
α
2 + 1

)
k

(
α
2

)
n−k

k!(n− k)!
e2ik θ =

∞∑
n=0

rne−in θ gαn(e2i θ).

We note that the series are absolutely convergent for |r| < 1.
Equating the corresponding terms in both series, we have

gαn(e2i θ) =
n∑
k=0

C
α/2
k (cos θ)e(2n−k) iθ.

We can derive a second relation with the Gegenbauer polynomials by writing

(1− reiθ)−1(1 − 2r cos θ + r2)−α/2 = (1 − re−iθ)(1 − 2r cos θ + r2)−α/2−1

= (1− re−iθ)
∞∑
n=0

C
α
2 +1
n (cos θ)rn

= C
α
2 +1

0 (cos θ) +
∞∑
n=1

(C
α
2 +1
n (cos θ)− e−iθC

α
2 +1
n−1 (cos θ))rn.

Then

gαn(e2iθ) = einθ(C
α
2 +1
n (cos θ)− eiθC

α
2 +1
n−1 (cos θ)),

and

gα0 (e2iθ) = C
α
2 +1

0 (cos θ).
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