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We develoe an arithmetic triangle similar to Pascal's trizngle. The entries are inter-
preted in terms of numbers of nairs of nonintersecting paths in the first quadrant. The
main applications are resull's about the Catalan numbers and various random walk prob-
lems.

1. Introduction

In this paper we consider lattice paths in the first quadrant and derive
a triangle similar to Pascal’s triangle that involves the Catalan rnambers.
We set up this Catalan triangle in Section 2. In Section 3 we examine th:
arithmetic properties of this triangle and in Section 4 we solve some ran-
dom walk problems. In Section 5 two sequences derived from this triangle
are discussed; one is a sequence used by Cayley [2} in a discussion of
partitioning a polygoi., he other arises in a paper of Fine [3] where he
sets up an axiomatic theory of extrapolation.

We define the sequence {Cp},y-y = {1,2,5,14.42,132,429, ...} of
Catalan numbers by

o (2!1)
Co n+i\nl"

An extensive bibliography compiled by Gould [4] lists 243 references

to the Catalan numbers including the famous probiems of dividing a

polygon into triangles, associating an n-product, and summing an cven

number of plus and minus ones so as to keep all partial sums nonnegative.
These results should be useful in the further study of arithmetic

triangles, random walks, and the Cawalan numbers thernselves.
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2. Set up of the Catalan triangle

A path is a finite sequence of pairs v, = (a; , by ) of non-negative
integers such that

(i) yg i (0,0);

(ii) if vy = (@, by, then vy, = (1 +a, by ) or vy = (ag, 1 +by).

A path (v, vy, ..., v,) is said to be of length n. The distance between
{v; o = (@@, b} and {w; g = {(¢;- d}ieg 1S, — €y ). We say
two paths {v;}1. and {w; }]., intersect if v =w; for some 0 < k< n.

We wish to find the number of pairs of non-intersecting paths. Ob-
serve that if two paths of length » have distance &, then this pair can be
extended to four pairs of paths of length n + 1: one pair at distance k + 1,
two pairs at distance k, and one pair at distance £ - 1. Let B, denote
the number of pairs of non-intersecting paths of length n and distance k.
Tabulating the B,,; yields the triangle

Akl v 12013 1als 6
n
1 1
2 2

b
3 s |oai
4 14 114 6 |1
RN A |
5 42 148 127 | 8| 1
6 1132 l65 {110 |44 | 10 | 1

The recurrence relation derived from the observation above is B, =
B, { k-1 +28,_; xtB, | g+ and the boundary conditions are
BnO =0 =Bn.n+mrs m2 1.

The first reason for calling this a Catalan triangle is that the numbers
in the first column are indeed the Catalan numbers.

We now want a closed expression for B,; and trial and error suggests
B = (k/m) (,2%%) .

Proposition 2.1. B, = (k/n) (,*™).



L.W. Shapiro | A Catalan triangle 85

Proof. We nced only show that B, satisfies the recurrence relation anc
the boundary conditions.

B =fc_( .’.n)___lg_:_! (2n—-~~2)+_%l_c_( 2n-—-2 +k+l(2n-—2)
nk p\n-k] n-t\n-k) n-1\n—k- n-1\n-k-2
=Bn—l,k«l +2an—l,k +Bn-l,k :

The boundary conditions are obviously true.

A trivia LOI’O"‘]I‘Y of this is that for integers 1 < kK < n we always have
that (k/m) ( ) is an integer (see Birkhoff [1]). '

To summ.mze we have B,; = (k/n) ( nzf_'k) is the number of pairs of
non-intersecting paths of length n and distance k. Thus

I [2n\ 1 ( 2n
i ()47
"o+ l\n n\n-4u

is bo th the number of pairs of non-intersecting paths of length » and
distawce | and also the number of pairs of paths that intersect for the
first ime (excluding (0, 0)) at the (n + 1)st step. Levine [ 5] presents an
inter 'sting alternate proof of this last fact.

3. Arithmetic properties

We want to evaluate 4, = Z7_, B,;. Te ¢ c i is recall that each pair
of non-intersecting paths extends to 4 pairs of paths of length n. Thus
A,=44,_, - C,_,,where C,,_; accounts tor the paths of length n — |
that intersect at step n.

Proposition 3.1. 4, = 1(2")

Proof. It suffices to show that this 4, satisfies the recurrence relation
and to observe that 4, = 1.

~ L) 2n-2 1 {2n - 2) _2n -1 (2n~2)
44, =G —4(5(11~-I ))"-;;(nwl H n—1



86 L.W. Shapiro [ A Catalan triangle

‘)n o
Though we won't require it it is also true that X7 '}, B, rem = ).

The next proposition is analogous to the fuct that (;fi% ) = E;’ 0" (AI:’ ).

Proposition 3.2. B,; = X1\ rid GBy_jx 1

Proof. If two non-intersecting paths have distance &, then at some stage,
say the (n-j)th, they must have distance k- | for the last time. For the
remaining j steps the two paths must never become closer than at the
(n-j+ st step. Thus the two paths may be continued in (; ways and
summing over j yields B, = Z0-}V G, 4 .

The same type of proof yields the more general result that
r
S

‘s B

m=9

B =B

k+m k™ 1+r-m, E+l+r k+i "

Using Proposition 3.2 successively on the second, third. ... columns,
yields the followiag version of the Catalan triangle:

Gy

Ca GG

Cy GG+ 030y . E GGGy
ijrk=3 TR

Ci OO C0e00 B 600G L E OGO

Here all indices run over positive integers. More formally we have:

Proposition 3.3. B, =%, .i v 4i=nCi Ciy o Cip -
A converse relation between the 8, and the C; is given in the next
proposition.

mmm.m) =
Proposition 3.4. Z7" BB, =Chim 1
Procf. Consider all C,,,,, ; pairs of paths which intersect for the first
titne after x4 11 seps. At step n any such pair must have some distance
k and the remaining m steps can be considered as a parr of non-intersect-
*ing paths of length m and also of distance &
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: 5 2 n = )
rf‘l’()"ﬂry 305- uk:l (Bnk) (2"' a’ld kz] B”an‘.'l.k ( 2’1- TIIU.S

n \2
Z( 2, GG Cf =0y

Pytigt i

4. Some random walk problen:s

We can use the results in the preceding sections to do some random
walk problems. Assume for instance that a cop and a 1obber both start
at (0,9) and both walk in the first quadrant. At each lattice point they
each flip a fair coin to determine if they should then proceed north or
east to the next lattice point. It both the cop and robber move simulta-
neously, what is the chance that they will meet again after leavirg (0,0)?
Since both the cop and the robber have available 2" equal Likely paths
of length n, there are 4”7 pairs of paths of length n, 2(%(?;," )} of which do
not meet. The extra factor of 2 accounts for the fact that we have labeled
the two paths. However
) Vamn(2ne t)" I
lim —— = lim e = lim ——=0.
n-~w  An 1> (\/’27;;}( Heo l)n )2 .41 n-e o

We have used Stirling’s formula here. Thus the unfortunate robber
has probability | of meeting the cop again.

What if we change the problem to where they start at different loca-
tions but beth initial locations are # steps from (0,0)? Let us call their
initial locations I. and I, and the probubility of not meeting after starting
from I, and I, we will cull p,. Let p; be the probability of starting at
(0, 0) and going by non-intersecting paths to I, and 1,. Obviously p; > 0.
Then pyp, < chance of two paths starting 4t (0, C) and not intersecting,
so pypy = Gand thusp, = 0.

Similar reasoning says that if we allow the robber a few steps lead but
now ask that the cop (now cquipped with a bloodhound) cross the rob-
ber’s trail, then we obtain the same results.

We can pass to the classical theory of random walks as foilows. Let a
particle start at the origin and move one step east or west according as
the cop moves east or north. Simu!tw cously the particle moves one step
south or north depending on tire move of the robber east or north. A
return to the origin of this particle is equivalent to the cop and the rob-
ber meeting at a point (k. k). Thus by the classical theory of random walks
the ~op and robber must meet infimitely often at points on the diagonal
{tk.k)j.
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S. Two sequences

The second column of the Catalan triangle yields the sequence

2{ 2n \|= -
——(” ,,) ={1,4,14,4%,165,572,2002, ...} .
n — alln=3

These numbers appear in a paper of Cayley’s [2] where he discusses
dissecting polygons into smaller polygons by adding non-intersectitg
diagonals. Simplifying Cayley’s compuiations leads to

(D+2x+5x2+ 1403 +42x% +..)2 = 1 +4x+ 14x2 +48x3+ 165x4 + .. .

The proo. of this is immediate using Proposition 3.2. Similarly

(1 +2x+5x2 +14x} +42x4% + ...)" is the generating function of the nth
column of the Catalan triangle. Thus we have given a geometric inter-
pretation to these numbers of Cayley as well as their closed form.

Fine [3], in a paper where he sets up an abstract theory of extrapola-
tion. develops the number sequence {0,1,2,6,18,57,186,622,2120,
7338, ...} which he computes rccursively. Consider the set, T, of real
numbers x; < xy < x3 <..<Xx,.Asimilarity relation ~ on T is a
reflexive, symmetric relation where if x, < x, < x, and x, ~ x_, then
X, ~ xp and x; ~ x .. These requirements all seem reasonable; if ¢ is
similar to b, then b should be similar to 4. certainly every element should
be similar to itself, and if two items are similar, then every element be-
tween them should be similar to both.

We can now ask various questions. How many such similar relations
are there? What if the relation must also be transitive? What if we
require each element to be similar to some other element than itself?
What if we require this last property together with transitivity? Thz
respective answers are the Catalan numbers, {27}, Fine's sequence, and

e Fibonacci numbers.

The reason for requiring each element to be similar to some other
element is to avoid extrapolating with no similar data. Another way
that Fine’s sequence shows up is by adding diagonals in the Catalan
triangle as follows.

7
18 14 14 "6 1

[ e

57 4 38 27 8 1
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This of course is analogous to a procedure for developing the Fibonacci
numbers.
[n+1/2]}
D =2 B

n )'I‘:l H+l "j.i '

If we call the #th number of Fine’s sequence D, , then we have
2D, + D, . = C,4 - Solving this in terms of C,, yields

‘nA2-j

n
!:

This gives as a corollary that
n

]
B ;] . oy f
- ‘Z%‘mz»ﬂ <

The proof that Fine’s sequence is identical to this Fibonacci-Catalan
sequence is complicated and not included here. The details are available
from the author.

We conclude with a list of related open questions.

(1) When does B, = B, ¢, other than when n = 2k(k+1)?

(2) Do other lattices yield similar results?

(3) If we used the following lattice what results would be obtained?

r
»
e T
!
r ~~¢: cen
L
T N I

() What happens if we change to 3-space? In particular must the cop
and robber meet again with probability 17?

(S) i< there a theory of arithmetic triangles where a simple function
of ihe generating function of the first column yields the generating func-
tion of the nth column?

(6) What happens it biased coins are used in the cop and robber
protlem?

(7) When examining similarity relations what happens if we require
that each element be similar to at least 2 (or k) other elements?

(8) Is there a simple interpretation of D,, in terms of pairs of paths?

(9) Would we expect three paths in the northeast quadrant to have a
common intersection? (If we translate as in Section 4 to the ciassical
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theory of random walks, we find that the chunce of their meeting again
on the diagonal (k, &) is about 0.239. Dr. J. Komlos (unpublished) has
proved that the probability of the 3 paths meeting infinitely often is 1.
He has also proved that for 4 or more paths the chance of a common
intersection is less than one.)

We can ask similar questions about & paths in n dimensions with
various boundaries.

One interesting way many of these problems can be rephrased is in
terms of dyadic expansions. For instance, is it true that any three dyadic
expansions will. for somie n, have the same number of 1’s among the
first n digits. where each digit is chosen rendomly? This problem is equiv-
aient to (9).

Many of the above results can be rephrased in terms of matrix multi-
plication. We conclude by giving one such example.

Byy 0 1 Byy By B3y Cy C2 Cs

By B2 O 110 By By C; G G

By; Bz Bj; 0 0 Byl Ty ¢y G
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