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Abstract: The object of this paper is to motivate a proof, given by Grzegorz
Rądkowski, of a formula expressing the Bernoulli numbers in terms of certain
numbers. It is also shown how the original formula may be written in terms of
Stirling numbers of the second kind.

The Bernoulli numbers Bn are defined by their generating function
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In [2] the author defines numbers an,k, n = 0, 1, 2, . . . , k = 1, 2, 3, . . . by

an,k := (−1)n
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)

(j + 1)n .(2)

He shows that

an,1 = (−1)n, a0,k = 0 for n = 0, 1, 2, . . . and for k = 2, 3, . . .(3)
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and that
an+1,k+1 = kan,k − (k + 1)an,k+1(4)

for n = 0, 1, 2, . . . and for k = 1, 2, 3, . . .. Using

1

1 + et
=

1

t

t

et − 1
−

1

t

2t

e2t − 1
=

∞
∑

n=0

Bn+1(1 − 2n+1)

n + 1

tn

n!
(5)

and showing by induction that
(
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he gets the formula
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(Note that for convergent power series F (t) =
∑

an
tn

n!
the coefficients an

are given by an = F (n)(0).)
Knowing (2) it is easy to see that (3) and (4) are satisfied. These

equations lead to (6). So the real question is how to get (2) from (3) and
(4). This topic is not touched in [2].

In the proof of the following proposition a (simple and) generic
method is demonstrated that allows the determination of the an,k by
their boundary values a0,k and an,1 and by the recursion (4).
Proposition 1. The double sequence (an,k)n=0,1,2,...

k=1,2,3,...

satisfies (3) and (4)

if, and only if, (2) is satisfied.

Proof. For k ≥ 1 put σk(t) :=
∑∞

n=0 an,kt
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Moreover, using (4) and a0,k+1 = 0, gives
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σk(t) and, by induction
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σk may be decomposed into partial fractions
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The coefficients αl may easily be determined from
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by substituting t = −1/p, 1 ≤ p ≤ k, which leads to
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Accordingly,

an,k = (−1)n
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Remark 1. The method used in the above proof has been applied in
[1, p. 207, Th. C] to determine the Stirling numbers S(n, k) of the sec-
ond kind by their boundary values S(0, 0) = 1, S(n, 0) = 0, n =
= 1, 2, . . . and S(0, k) = 0, k = 1, 2, . . . and by the recursion relation
S(n + 1, k + 1) = (k + 1)S(n, k + 1) + S(n, k). The resulting generating
function satisfies

∞
∑

n=0

S(n, k)tn =
tk

(1 − t)(1 − 2t) . . . (1 − kt)
.(13)

Both, the boundary values and the recursion relation come from the
combinatorial interpretation that S(n, k) is the number of partitions of a
set with n elements into k nonempty disjoint subsets ([1, p. 206, Def. A]).
Remark 2. The explicit formula

S(n, k) =
(−1)k
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immediately follows from decomposing τk(t) := tk

(1−t)(1−2t)...(1−kt)
into par-

tial fractions. Moreover by observing that tσk(−t) = (−1)k−1(k−1)! τk(t)
and using S(0, k) = 0 for k ≥ 1 we also get an explicit expression of an,k
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in terms of the Stirling numbers, namely

an,k = (−1)n−k+1(k − 1)! S(n + 1, k).(15)

Thus (7) expresses the Bernoulli numbers in terms of the Stirling
numbers of the second kind.

It might be interesting to note that another formula with the same
behavior exists.

Bn =
n
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This may be proved, following [1], by writing t
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and

observing (et−1)k
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.

The author wants to thank the referee for her/his helpful comments
and remarks.
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