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a b s t r a c t

The present paper deals with families of non-trivial solutions of the equation ( ddξw)
2
=

P w4(ξ)+ Q w2(ξ)+ R. On the basis of these solutions, a direct and generalized algebraic
algorithm is described for constructing the new solutions of some nonlinear partial
differential equations (NLPDEs). Subsequently,many newandmore general exact solutions
in terms of the Weierstrass elliptic function ℘(ξ ; g2, g3) are obtained. The method can be
applied to other NLPDEs in mathematical physics.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

As seeking exact solutions of nonlinear physics equations is important and interesting, many powerful methods have
been presented. Among these are Hirota’s bilinearmethods [1], the inverse scattering transform [1], Painlevé expansions [2],
homogeneous balance method [3,4], tanh method [5,6], extended tanh method [7,8], modified extended tanh method [9],
sine–cosine method [10–12], factorization method [13], and so on. It well known that many nonlinear evolution equations
have been shown to possess periodic solutions. Recently, somemethods have been presented for seeking periodic solutions,
such as the F-expansion method [14,15]. The F-expansion method was later extended in different manners [16–18]. More
recently, there has been available a new algebraic method for seeking exact solitary wave solutions of NLPDEs, which can
be expressed as polynomials in an element that satisfies a more general ordinary differential equation such as the Riccati
equation [19] (wξ = b0+w2), the first-kind elliptic equation [20] (w2ξ = b0+b2w

2
+b4w4), the general elliptic equation [21]

(w2ξ = b0 + b1w + b2w
2
+ b3w3 + b4w4), etc.

In Ref. [22] Huber used the solutions of (w2ξ = b0+b1w+b2w
2
+b3w3+b4w4) in terms ofWeierstrass elliptic functions;

this thus led to the calculation of a new class of solutions. Also, we know that theWeierstrass elliptic function can bewritten
in terms of the Jacobi elliptic function, and the hyperbolic and trigonometric functions are just special cases of Jacobi elliptic
functions under certain conditions.
In this paper, we will attempt to develop an algorithm in terms of the Weierstrass elliptic function ℘(ξ ; g2, g3) [22] in

order to seek for doubly periodic solutions of new types for nonlinear wave equations in mathematical physics. The method
is simply called the generalized Weierstrass elliptic function expansion method and may be performed using a computer
with the aid of symbolic computation. Moreover, we have applied it to some nonlinear wave equations. Here wewill choose
seven nonlinear wave equations to illustrate the algorithm. The results obtained show that the algorithm is more powerful
for seeking doubly periodic solutions of nonlinear wave equations.
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Also, by using a simple transformation, we have shown that the Korteweg–de Vries (KdV) equation, the (3 + 1)-
dimensional Kadomtsev–Petviashvili (KP) equation, the (2+ 1)-dimensional Boussinesq equation, the modified KdV equa-
tion, the (2+1)-dimensional modified KP equation, the nonlinear wave equation, the generalized Davey–Stewartson (GDS)
equations, the Davey–Stewartson (DS) equations, and the generalized Zakharov (GZ) equations can be reduced to one of the
following equations:

u′′(ξ)+ h1u(ξ)+ h2u2(ξ) = 0 (1.1)

or

u′′(ξ)+ k1u(ξ)+ k3u3(ξ) = 0 (1.2)

where h1, h2, k1, k3 are arbitrary constants.
The paper is organized as follows: In Section 2, first we briefly give the steps of the method. In Sections 3 and 4, we apply

the method to solve Eqs. (1.1) and (1.2). In Section 5, by using the results obtained in Sections 3 and 4, the correspond-
ing solutions of the KdV equation, (3 + 1)-dimensional KP equation, (2 + 1)-dimensional Boussinesq equation, modified
KdV equation, (2 + 1)-dimensional modified KP equation, nonlinear wave equation, GDS equations, DS equations, and GZ
equations are obtained.

2. Method and its algorithm

The main idea of this method is to use the solutionsw(ξ)which satisfy the first-order equation

w′(ξ) =
√
Pw4(ξ)+ Qw2(ξ)+ R, (2.1)

wherew′ = dw
dξ , ξ = ξ(x, y, z, t) and P,Q , R are real parameters. The solutionsw(ξ) can be expressed using theWeierstrass

elliptic function ℘(ξ ; g2, g3) satisfying a nonlinear ordinary differential equation

(℘(ξ))′
2
= 4℘(ξ)3 − g2℘(ξ)− g3, (2.2)

where g2, g3 are real parameters, called invariants [23,24], which has another equivalent form:

(℘(ξ))′′ = 6℘(ξ)2 −
1
2
g2, (2.3)

and we know that Eq. (2.1) possesses the following solution:

w1(ξ) =

√
1
P

(
℘(ξ ; g2, g3)−

Q
3

)
, (2.4)

w2(ξ) =

√
3R

3℘(ξ ; g2, g3)− Q
, (2.5)

where

g2 =
4Q 2 − 12RP

3
and g3 =

4Q (9PR− 2Q 2)
27

. (2.6)

w3(ξ) =

√
12R℘(ξ ; g2, g3)+ 2R(2Q + D1,2)

12℘(ξ ; g2, g3)+ D1,2
, (2.7)

where

D1,2 =
−5Q ±

√
9Q 2 − 36RP
2

,

g2 = −
1
12
(5QD1,2 + 4Q 2 + 33PQR),

g3 = −
1
216

(−21Q 2D1,2 − 20Q 3 + 63RPD1,2 + 27PQR).

(2.8)

w4(ξ) =
6
√
R℘(ξ ; g2, g3)+ Q

√
R

3℘ ′(ξ ; g2, g3)
, (2.9)

w5(ξ) =
3
√
1
P℘
′(ξ ; g2, g3)

6℘(ξ ; g2, g3)+ Q
, (2.10)
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where

g2 =
1
12
(Q 2 + 12RP), g3 =

1
216

(36RQP − Q 3). (2.11)

w6(ξ) =

√
−15Q
2P ℘(ξ ; g2, g3)

3℘(ξ ; g2, g3)+ Q
, (2.12)

where

R =
5Q 2

36P
, g2 =

2Q 2

9
, g3 =

Q 3

54
. (2.13)

For a given PDE with u(x, y, z, t) in four independent variables x, y, z, t ,

H(u, ut , ux, uy, uz, uxx, uxt , uyy, . . .) = 0, (2.14)

the travelling wave solution, u(x, y, z, t) = u(ξ), ξ = αx+βy+γ z−λt , reduces (2.14) to a nonlinear ordinary differential
equation

G(u, u′, u′′, . . .) = 0. (2.15)

Here the prime denotes d/dξ . We assume that solutions of Eq. (2.15) can be expressed in the form

u = a0 +
n∑
i=1

aiwi(ξ)+ biw−i(ξ)+ ciwi−1(ξ)w′(ξ)+ diw′(ξ)w−i(ξ), (2.16)

where n 6= 0, a0, ai, bi, ci, di are parameters to be determined later.
To determine n, we define a polynomial degree function as D[u] = n, and thus we have D

[ dsu
dξ s
]
= n+ s, D

[
uα
( dsu
dξ s
)γ ]
=

nα + γ (n+ s). Therefore we can determine n in (2.16) by balancing the highest degree linear term and nonlinear terms in
(2.14) or (2.15). Note that if n = 0, then the method does not work.
The process requires the following steps:

Step 1. Determine n in Eq. (2.16) by balancing the linear term of highest order with the nonlinear term in Eq. (2.15). (If n 6= 0
is not a positive integer, then we firstly make the transformation u = vn, and then we carry out this step again.)
Step 2. Substitute (2.16) with the known parameter n into the left side of the obtained ODE (2.15) along with (2.1), and
get an expression. And then take the numerator of the expression to get a polynomial equation for w′iwj (i = 0, 1; j =
0, 1, 2, 3, . . .). Set to zero the coefficients of the polynomial obtained to get a set of algebraic equations with respect to the
unknowns α, β, γ , λ, P,Q , R, a0, ai, bi, ci, di (i = 1, . . . , n).
Step 3. Solving these equations by use of Mathematica, we will obtain the explicit expressions for a0, ai, bi, ci, di (i =
1, . . . , n) and ξ . Finally, substituting these results into Eq. (2.16) and using special solutions of Eq. (2.1) gives the general
form of the travelling wave solutions.

3. Weierstrass elliptic function solutions of (1.1)

Now let us apply the method of Section 2 to Eq. (1.1). From balancing we get that n = 2, so the solution of the NLODE
(1.1) is of the form

u = a0 + a1w(ξ)+ a2w2(ξ)+
b1
w(ξ)

+
b2

w2(ξ)
+ c1w′(ξ)+ c2w(ξ)w′(ξ)+

d1w′(ξ)
w(ξ)

+
d2w′(ξ)
w2(ξ)

, (3.1)

where a0, ai, bi, ci, di (i = 1, 2) are constants to be determined, w(ξ) satisfies ODE (2.1). Substituting (3.1) into (1.1) along
with (2.1) and collecting the coefficients of thew′iwj (i = 0, 1; j = 0, 1, 2, 3, . . .) we have a set of algebraic equations which
are solved to get the following cases:
Case 1.

a1 = a2 = b1 = c1 = c2 = d1 = d2 = 0, b2 =
−6R
h2

,

a0 =
−h1 − 4Q
2h2

, P =
−h12 + 16Q 2

48R
.

(3.2)

Case 2.

a1 = b1 = b2 = c1 = c2 = d1 = d2 = 0, a2 =
−6P
h2

,

a0 =
−h1 − 4Q
2h2

, P =
−h12 + 16Q 2

48R
.

(3.3)
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Case 3.

a1 = b1 = c1 = c2 = d1 = d2 = 0, a2 =
−6P
h2

,

a0 =
−h1 − 4Q
2h2

, P =
h12 − 16Q 2

192R
.

(3.4)

Case 4.

a1 = a2 = b1 = c1 = c2 = d1 = 0, b2 =
−3R
h2

,

d2 =
3
√
R
h2

, a0 =
−h1 − Q
2h2

, P =
h12 − Q 2

12R
.

(3.5)

Case 5.

a1 = b1 = b2 = c2 = d1 = d2 = 0, a2 =
−3P
h2

,

c1 =
3
√
P
h2

, a0 =
−h1 − Q
2h2

, P =
h12 − Q 2

12R
.

(3.6)

Case 6.

a1 = b1 = c2 = d1 = 0, a2 =
−3P
h2

, b2 =
−3R
h2

, c1 =
3
√
P
h2

,

d2 =
3
√
R
h2

, a0 =
−h1 − Q + 6

√
P
√
R

2h2
, Q = −30

√
P
√
R+

√
h12 + 768PR.

(3.7)

Therefore, we get the following solutions of (3.1):

u1 =
−h1 − 4Q
2h2

−
6R

h2w2(ξ)
, (3.8)

u2 =
−h1 − 4Q
2h2

−

(
−h12 + 16Q 2

)
w2(ξ)

8Rh2
, (3.9)

u3 =
−h1 − 4Q
2h2

−
6R

h2w2(ξ)
−

(
h12 − 16Q 2

)
w2(ξ)

32Rh2
, (3.10)

u4 =
−h1 − Q
2h2

−
3R

h2w2(ξ)
+
3
√
Rw′(ξ)

h2w2(ξ)
, (3.11)

u5 =
−h1 − Q
2h2

−

(
h12 − Q 2

)
w2(ξ)

4Rh2
+

√
3
√
h12−Q 2
R w′(ξ)

2h2
, (3.12)

u6 =
−h1 + 36

√
P
√
R−

√
h12 + 768PR

2h2
−

3R
h2w2(ξ)

−
3Pw2(ξ)
h2

+
3
√
Pw′(ξ)
h2

+
3
√
Rw′(ξ)

h2w2(ξ)
, (3.13)

wherew(ξ) is one ofw1(ξ), w2(ξ), . . . , w6(ξ), which are given in Eqs. (2.4)–(2.13).

4. Weierstrass elliptic function solutions of (1.2)

We seek the solutions of Eq. (1.2) in the new and more general form by applying the previous method. From balancing
we get that n = 1; then the solutions become

u = a0 + a1w(ξ)+ b1w−1(ξ)+ c1w′(ξ)+ d1w′(ξ)w−1(ξ), (4.1)

where a0, a1, b1, c1 and d1 are constants to be determined. According to the abovementioned steps in Section 2, the following
solutions are found for (1.2):

u1 =

√
2
√
Pw(ξ)
√
−k3

, Q = −k1, (4.2)

u2 =

√
2w′(ξ)

√
−k3w(ξ)

, Q =
k1
2
, (4.3)
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Fig. 1. The surfaces show the solution u1 of Eq. (1.1) at h1 = −1, h2 = 3with (A)w(ζ ) = w1(ζ ), (B)w(ζ ) = w2(ζ ), (C)w(ζ ) = w3(ζ ), (D)w(ζ ) = w4(ζ ),
(E)w(ζ ) = w5(ζ ), (F)w(ζ ) = w6(ζ ).

u3 =

√
2
(√
R+
√
Pw2(ξ)

)
√
−k3w(ξ)

, Q = 6
√
P
√
R− k1, (4.4)

u4 =

√
2R

√
−k3w(ξ)

, Q = −k1, (4.5)

u5 =
−
√
R−
√
Pw2(ξ)− w′(ξ)

√
−2k3w(ξ)

, Q = −6
√
PR+ 2k1, (4.6)

wherew(ξ) is one ofw1(ξ), w2(ξ), . . . , w6(ξ), which are given in Eqs. (2.4)–(2.13).
For different forms of the functions w(ξ), we plot the solution u1 of Eqs. (1.1) and (1.2) as an example to show the

behaviors of its solutions (Figs. 1 and 2).

5. Exact solutions for some class of NLPDEs

In this section, by using the results obtained in the preceding sections, we will construct the corresponding solutions
of the KdV equation, (3 + 1)-dimensional KP equation, (2 + 1)-dimensional Boussinesq equation, modified KdV equation,
(2+ 1)-dimensional modified KP equation, nonlinear wave equation, GDS equations, DS equations, and GZ equations.

5.1. KdV equation

Let us consider the KdV equation [25]

ut = uxxx + 6uux, (5.1)
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Fig. 2. The surfaces show the solution u1 of Eq. (1.2) at k1 = 1, k3 = −2with (A)w(ζ ) = w1(ζ ), (B)w(ζ ) = w2(ζ ), (C)w(ζ ) = w3(ζ ), (D)w(ζ ) = w4(ζ ),
(E)w(ζ ) = w5(ζ ), (F)w(ζ ) = w6(ζ ).

Wemake the following formal travelling wave transformation:

u(x, t) = u(ξ), ξ = βx− λt, (5.2)

where β, λ are constants to be determined. Substituting (5.2) into (5.1) gives

u′′(ξ)+ h1u(ξ)+ h2u2(ξ) = 0, h1 =
λ

β3
, h2 =

3
β2
. (5.3)

Eq. (5.3) coincides with Eq. (1.1). Then the solutions of (5.1) are given by Eqs. (3.8)–(3.13).

5.2. (3+ 1)-dimensional KP equation

Let us now consider the (3+ 1)-dimensional KP equation [26]

uxt + 6u2x + 6uuxx − uxxxx − uyy − uzz = 0. (5.4)

We make the following formal travelling wave transformation:

u(x, y, z, t) = u(ξ), ξ = αx+ βy+ γ z − λt, (5.5)

where α, β, γ , λ are constants to be determined. Substituting (5.5) into (5.4) gives

u′′(ξ)+ h1u(ξ)+ h2u2(ξ) = 0, h1 =
(β2 + γ 2 + αλ)

α4
, h2 =

−3
α2
, (5.6)

where u(ξ) is given in Eqs. (3.8)–(3.13).
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5.3. (2+ 1)-dimensional Boussinesq equation

Let us consider a (2+ 1)-dimensional generalization of the Boussinesq equation [27]:

utt − uxx − uyy − (u2)xx − uxxxx = 0. (5.7)

We make the following formal travelling wave transformation:

u(x, y, z, t) = u(ξ), ξ = αx+ βy− λt, (5.8)

where α, β, λ are constants to be determined. Substituting (5.8) into (5.7) gives

u′′(ξ)+ h1u(ξ)+ h2u2(ξ) = 0, h1 =
(α2 + β2 − λ2)

α4
, h2 =

1
α2
. (5.9)

It is easy to see that Eq. (5.9) coincides with Eq. (1.1). Then solutions of Eq. (5.7) are defined in (3.8)–(3.13).

5.4. Modified KdV equation

Let us consider the modified KdV equation [25]

ut = uxxx − 6u2ux. (5.10)

We make the following formal travelling wave transformation:

u(x, t) = u(ξ), ξ = βx− λt, (5.11)

where β, λ are constants to be determined. Substituting (5.11) into (5.10) gives

u′′(ξ)+ k1u(ξ)+ k3u3(ξ) = 0, k1 =
λ

β3
, k3 =

−2
β2
, (5.12)

which has solutions (4.2)–(4.6).
The KdV andmKdV forms are related viaMiura transformation so the classes of solutions of the two equations are linked.

So the new class of solutions derived here in (4.2)–(4.6) are linked via Miura transformation.

5.5. (2+ 1)-dimensional modified KP equation

Similarly, for the (2+ 1)-dimensional modified KP equation [28]

(ut + 3αu2ux + uxxx)x + uyy = 0, (5.13)

take

u(x, t) = u(ξ), ξ = βx+ γ y− λt, (5.14)

where β, γ , λ are constants to be determined. Substituting (5.14) into (5.13) gives

u′′(ξ)+ k1u(ξ)+ k3u3(ξ) = 0, k1 =
γ 2 − βλ

β4
, k3 =

α

β2
. (5.15)

Eq. (5.15) coincides with Eq. (1.2), where u(ξ) is given by relations (4.2)–(4.6).

5.6. A nonlinear wave equation

Consider the nonlinear wave equation [29]

utt + αuxx + βu+ γ u3 = 0, (5.16)

where α, β and γ are constants. This equation contains some particularly important equations such as the Duffing, Klein–
Gordon and Landau–Ginzburg–Higgs equations. We assume that Eq. (5.16) has an exact solution in the form

u(x, t) = u(ξ), ξ = px− wt. (5.17)

Substituting Eq. (5.17) into Eq. (5.16), we have

u′′(ξ)+ k1u(ξ)+ k3u3(ξ) = 0, k1 =
β

w2 + αp2
, k3 =

γ

w2 + αp2
, (5.18)

which has solutions (4.2)–(4.6).
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5.7. GDS, DS and GZ equations

We consider a class of NLPDEs with constant coefficients [30]

iut + µ(uxx + D1uyy)+ E1|u|2u+ C1un = 0, (5.19)

D2ntt + (nxx − E2nyy)+ C2(|u|2)xx = 0, (5.20)

where µ,Di, Ei, Ci (i = 1, 2) are real constants and µ 6= 0,D1 6= 0, C1 6= 0, C2 6= 0. Eqs. (5.19) and (5.20) are a class of
physically important equations. In fact, if one takes

µ =
1
2
K 2, D1 = 2µ, E1 = α, C1 = −1,

D2 = 0, E2 = D1, C2 = −2α, K 2 = ±1,
(5.21)

then Eqs. (5.19) and (5.20) represent the Davey–Stewartson (DS) equations [31]

iut +
1
2
K 2(uxx + K 2uyy)+ α|u|2u− un = 0, (5.22)

nxx − K 2nyy − 2α(|u|2)xx = 0. (5.23)

Also, if one takes

n = n(x, t), i.e., ny = 0, µ = 1, D1 = 0, E1 = −2λ,
D2 = −1, E2 = 0, C2 = −1, C1 = 2,

(5.24)

then Eqs. (5.19) and (5.20) become the generalized Zakharov (GZ) equations [32]

iut + uxx − 2λ|u|2u+ 2un = 0, (5.25)

ntt − nxx + (|u|2)xx = 0. (5.26)

Since u is a complex function, we assume that

u(x, y, t) = φ(ξ)ei(kx+ly−Ωt), n(x, y, t) = n(ξ), ξ = px+ qy− rt, (5.27)

where both φ(ξ) and n(ξ) are real functions, k, l, p, q,Ω and r are constants to be determined later. Substituting Eq. (5.27)
into Eqs. (5.19) and (5.20), we have the following ODE for φ(ξ) and n(ξ):

µ(p2 + D1q2)φ′′(ξ)+ [Ω − µ(k2 + D1l2)]φ(ξ)+ E1φ3(ξ)
+ i[−r + 2µ(kp+ D1lq)]φ′(ξ)+ C1φ(ξ)n(ξ) = 0, (5.28)

(D2r2 + p2 − E2q2)n′′(ξ)+ C2p2(φ2(ξ))′′ = 0. (5.29)

If we set

r = 2µ(kp+ D1lq), (5.30)

then (5.28) and (5.29) reduce to

µ(p2 + D1q2)φ′′(ξ)+ [Ω − µ(k2 + D1l2)]φ(ξ)+ E1φ3(ξ)+ C1φ(ξ)n(ξ) = 0, (5.31)

(D2r2 + p2 − E2q2)n′′(ξ)+ C2p2(φ2(ξ))′′ = 0. (5.32)

Integrating (5.32) once, we get

(D2r2 + p2 − E2q2)n′(ξ)+ C2p2(φ2(ξ))′ = Ç, (5.33)

where Ç is an integration constant; then we take Ç = 0 and integrating the formula once again, we have

n(ξ) =
C

D2r2 + p2 − E2q2
−

C2p2

D2r2 + p2 − E2q2
φ2(ξ). (5.34)

Substituting (5.34) into (5.31) yields

φ′′(ξ)+ k1φ(ξ)+ k3φ3(ξ) = 0, (5.35)

where k1, k3 are defined by

k1 =
B
A
, k3 =

D
A
, A = µ(p2 + D1q2)(D2r2 + p2 − E2q2),

B = [C1C − (D2r2 + p2 − E2q2)(Ω − µ(k2 + D1l2))],
D = [E1(D2r2 + p2 − E2q2)− C1C2p2].

(5.36)
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Then the solutions of Eqs. (5.19) and (5.20) are

u(x, y, t) = φ(ξ)ei(kx+ly−Ωt),

n(x, y, t) =
C

D2r2 + p2 − E2q2
−

C2p2

D2r2 + p2 − E2q2
φ2(ξ),

r = 2µ(kp+ D1lq).

(5.37)

The expressions forφ(ξ) appearing in these solutions are given in Section 4, k1, k3 are given by (5.36) and ξ = px+qy−rt .
Then the solutions of DS equations (5.22) and (5.23) for the case

r = K 2(kp+ K 2lq), (5.38)

are

n(x, y, t) =
C

p2 − K 2q2
+

2αp2

p2 − K 2q2
φ2(ξ), u(x, y, t) = φ(ξ)ei(kx+ly−Ωt), (5.39)

where φ(ξ) satisfies

φ′′(ξ)+ k1φ(ξ)+ k3φ3(ξ) = 0, (5.40)

and k1, k3 are defined as follows:

k1 =
B
A
, k3 =

D
A
, A =

1
2
K 2(p2 + K 2q2)(p2 − K 2q2),

B = 2C + (p2 − K 2q2)(−2Ω + K 2(k2 + K 2l2)),
D = −α(p2 + K 2q2), K 2 = ±1.

(5.41)

The expressions for φ(ξ) appearing in these solutions are given in Section 4 Eqs. (4.2)–(4.6), k1, k3 are given by (5.41) and
ξ = px+ qy− rt . Finally, the solutions of the GZ equations (5.25) and (5.26) for the case

r = 2kp, (5.42)

are

n(x, t) =
C

p2 − r2
+

p2

p2 − r2
φ2(ξ), u(x, t) = φ(ξ)ei(kx−Ωt), (5.43)

where φ(ξ) satisfies

φ′′(ξ)+ k1φ(ξ)+ k3φ3(ξ) = 0, (5.44)

and k1, k3 are defined as follows:

k1 =
B
A
, k3 =

D
A
, A = p2(p2 − r2),

B = 2C − (p2 − r2)(Ω − k2),
D = 2(p2 − λ(p2 − r2)).

(5.45)

The expressions for φ(ξ) appearing in these solutions are given in Section 4 Eqs. (4.2)–(4.6), k1, k3 are given by (5.45) and
ξ = px− rt .
Some basic properties of the limited behavior of class of solutions can be realized from Figs. 3a and 3b.

Remark 1. It is easy to see that the ansatz solution (2.16) is more general than the ansatz (3) constructed by Huber in [22],
so it can be used to obtain more general solutions in terms of Weierstrass elliptic function ℘(ξ ; g2, g3). With the aid of
Mathematica,wehave verified all the solutions obtained in this paper byputting themback into the originalNLPDEs (theKdV
equation, the (3+ 1)-dimensional KP equation, the (2+ 1)-dimensional Boussinesq equation, the modified KdV equation,
the (2 + 1)-dimensional modified KP equation, the nonlinear wave equation, the generalized Davey–Stewartson (GDS)
equations, the Davey–Stewartson (DS) equations, the generalized Zakharov (GZ) equations).

Remark 2. The algorithmmentioned above succeeds with any NLPDEs reduced by travelling wave transformation to ODEs
of types (1.1) or (1.2). The NLPDEs which cannot transform to Eq. (1.1) or (1.2) may be need some restriction to ensure the
success of this algorithm.
For example the generalized Kuramoto–Sivashinsky equation [33]

φt + φνφxxxx + bφxxx + µφxx + φφx = 0,

with real parameters b, µ and ν 6= 0, has Weierstrass solutions if we put b2 − 16µν = 0.
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Fig. 3a. The surface shows the real part of solutions (5.43) with φ(ζ ) = u1, w = w1 , p = 1, r = −2,Ω = −1.λ = 2/3, k1 = 1, k3 = −2, P = 1,Q =
−1, R = 1, k = −1, A = −3, B = −3,D = 6, C = 3/2.
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Fig. 3b. The surface shows the real part of solutions (5.43) with φ(ζ ) = u1, w = w2 , p = 1, r = −2,Ω = −1, λ = 2/3, k1 = 1, k3 = −2, P = 1,Q =
−1, R = 1, k = −1, A = −3, B = −3,D = 6, C = 3/2.

6. Conclusion

In this paper, we have proposed a generalized Weierstrass elliptic function expansion method for constructing more
general exact solutions of NLPDEs. The advantage of themethod is that it can be used to obtain more general exact solutions
which cannot be obtained by the known Weierstrass elliptic function expansion methods (see, for example, Refs. [22,34]).
We have also studied the behavior of some special solutions by plotting their figures.
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