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Abstract

We define a q-exponential operator R(bDq) which turn out to be
suitable for dealing with the Cauchy polynomials Pn(x, y) and the ho-
mogeneous Rogers-Szegö polynomials hn(x, y|q). By using this opera-
tor, we derive Mehler’s formula and Rogers formula for the polynomials
Pn(x, y) and hn(x, y|q).
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1. Introduction

In this paper we will follow the standard notations on q-series in [9] and we
always assume that |q| < 1. The q-shifted factorial is defined by:

(a; q)k =

{
1, if k = 0,
(1 − a)(1 − aq) · · · (1 − aqk−1), if k = 1, 2, 3, . . . .

We also define

(a; q)∞ =
∞∏

k=0

(1 − aqk).



6370 Husam L. Saad and Abbas A. Sukhi

The generalized basic hypergeometric series is defined by

rφs(a1, a2, . . . , ar; b1, b2, . . . , bs; q, x) = rφs

(
a1, a2, . . . , ar

b1, b2, . . . , bs
; q, x

)

=
∞∑

n=0

(a1; q)n(a2; q)n · · · (ar; q)n

(q; q)n(b1; q)n(b2; q)n · · · (bs; q)n

[
(−1)nq(

n
2)

]1+s−r

xn, (1.1)

where q �= 0 when r > s + 1. Note that

r+1φr

(
a1, a2, . . . , ar+1

b1, b2, . . . , br
; q, x

)
=

∞∑
n=0

(a1; q)n(a2; q)n · · · (ar+1; q)n

(q; q)n(b1; q)n(b2; q)n · · · (br; q)n
xn.

The following easily verified identities will be frequently used in this paper:

(x; q)n =
(x; q)∞

(qnx; q)∞
,

(a; q)n+k = (a; q)n(aqn; q)k.

We shall adopt the following notation of multiple q-shifted factorials:

(a1, a2, · · · , am; q)n = (a1; q)n(a2; q)n · · · (am; q)n,

(a1, a2, · · · , am; q)∞ = (a1; q)∞(a2; q)∞ · · · (am; q)∞.

The q-binomial coefficients is defined by:

[
n

k

]
=

⎧⎨
⎩

(q; q)n

(q; q)k(q; q)n−k
, if 0 � k � n,

0, otherwise.

One of the most classical identities in q-series is Cauchy identity

∞∑
n=0

(a; q)n

(q; q)n
xn =

(ax; q)∞
(x; q)∞

, |x| < 1.

The following is the homogeneous form of the q-shifted factorial:

Pn(x, y) = (y/x; q)nx
n = (x − y)(x − qy)(x − q2y) · · · (x − qn−1y). (1.2)

Because the polynomials Pn(x, y) occur so often in q-series, Chen et al. [7]
proposed to call them the Cauchy polynomials because they are the coeffi-
cients in the expansion of the homogeneous version of the Cauchy identity
(the generating function of Pn(x, y)):

∞∑
n=0

Pn(x, y)
tn

(q; q)n
=

(yt; q)∞
(xt; q)∞

, |xt| < 1. (1.3)
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Setting y = 0, the Cauchy identity becomes Euler’s identity:

∞∑
n=0

(xt)n

(q; q)∞
=

1

(xt; q)∞
, |xt| < 1. (1.4)

Setting x = 0, the Cauchy identity becomes, another, Euler’s identity:

∞∑
n=0

(−1)nq(
n
2)(yt)n

(q; q)n
= (yt; q)∞. (1.5)

In 1970, Goldman and Rota [10] have shown the q-binomial identity

Pn(x, y) =

n∑
k=0

[
n

k

]
Pk(x, z)Pn−k(z, y). (1.6)

Setting z = 0 in (1.6), one obtains the following identity:

Pn(x, y) =
n∑

k=0

[
n

k

]
(−1)kq(

k
2)ykxn−k. (1.7)

Note that, the Cauchy polynomials Pn(x, y) naturally arise in the q-umbral
calculus as studied by Andrews [1, 2], Goldman and Rota [10], Goulden and
Jackson [11], Ihrig and Ismail [12], Johnson [14] and Roman [17].

The usual q-differential operator, or the q-derivative operator is defined by:

Dq {f(x)} =
f(x) − f(qx)

x
. (1.8)

The Leibniz rule for Dq is the following identity:

Dn
q {f(x)g(x)} =

n∑
k=0

[
n

k

]
qk(k−n)Dk

q {f(x)}Dn−k
q

{
g(qkx)

}
. (1.9)

D0
qf(x) is understood as the identity.

In [5], Chen and Liu developed a method for deriving hypergeometric iden-
tities by parameter augmentation, which means that a hypergeometric identity
with multiple parameters may be derived from its special case obtained by re-
ducing some parameters to zero.

In [6], Chen and Liu realized the parameter augmentation by the q-exponential
operator T (bDq), which leads to considerable simplifications of some well known
q-summation and transformation formulas. The q-exponential operator is de-
fined by

T (bDq) =

∞∑
n=0

(bDq)
n

(q; q)n
.

The following operator identities were obtained:
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Theorem 1.1. (Chen and Liu [6]). Let Dq be defined as above. Then

Dk
q {xn} =

(q; q)n

(q; q)n−k
xn−k. (1.10)

Dk
q

{
1

(xt; q)∞

}
=

tk

(xt; q)∞
. (1.11)

The classical Rogers-Szegö polynomials play an important role in the the-
ory of orthogonal polynomials, particularly in the study of the Askey-Wilson
integral [4]. Some important results on the Rogers-Szegö polynomials naturally
fall into the framework of parameter augmentation such as Mehler’s formula,
Rogers formula and the linearization formula and its inverse [3, 6, 13, 15, 16,
18, 20]. The classical Rogers-Szegö polynomials are defined by:

hn(x|q) =
n∑

k=0

[
n

k

]
xk,

which has the generating function:

∞∑
n=0

hn(x|q) tn

(q; q)n
=

1

(xt, t; q)∞
, max{|xt|, |t|} < 1. (1.12)

In the same paper, Chen and Liu represented the polynomials hn(x|q) by the
augmentation operator as follows:

T (Dq) {xn} = hn(x|q).
Using the above operator definition of the Rogers-Szegö polynomials and the
augmentation argument, they easily derived Mehler’s formula and the Rogers
formula for hn(x|q).
Theorem 1.2. (Chen and Liu [6]).
The Mehler’s formula for hn(x|q) is

∞∑
n=0

hn(x|q)hn(y|q) tn

(q; q)n

=
(xyt2; q)∞

(xt, t, yt, xyt; q)∞
, (1.13)

where max {|xt|, |t|, |yt|, |xyt|} < 1.
The Rogers formula for hn(x|q) is

∞∑
n=0

∞∑
m=0

hn+m(x|q) tn

(q; q)n

sm

(q; q)m

=
(xst; q)∞

(xs, s, xt, t; q)∞
, (1.14)

where max {|xs|, |s|, |xt|, |t|} < 1.
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In 2006, Zhang and Wang [19] used the q-exponential operator T (bDq) to
some terminating summation formulas of basic hypergeometric series and q-
integrals to obtain some q-series identities and q-integrals involving 3φ2. The
following operator identity were obtained:

Theorem 1.3. (Zhang and Wang [19]). Let Dq be defined as above. Then

Dk
q

{
(xv; q)∞
(xt; q)∞

}
= tk(v/t; q)k

(xvqk; q)∞
(xt; q)∞

. (1.15)

In 2003, Chen et al. [7], introduced the homogenous q-difference operator
Dxy, which is suitable for the study of the Cauchy polynomials, acting on
function in two variables x and y:

Dxyf(x, y) =
f(x, q−1y) − f(qx, y)

x − q−1y
.

Based on the homogeneous q-difference operator, they built up the homoge-
neous q-shift operator as the q-exponential of the homogeneous q-difference
operator:

E(Dxy) =

∞∑
n=0

Dn
xy

(q; q)n
.

They also introduced the homogeneous Rogers-Szegö polynomials and derive
their generating function by using the homogeneous q-shift operator E(Dxy).
The homogeneous Rogers-Szegö polynomials are defined by:

hn(x, y|q) =
n∑

k=0

[
n

k

]
Pk(x, y),

which has the generating function:

∞∑
n=0

hn(x, y|q) tn

(q; q)n
=

(yt; q)∞
(xt, t; q)∞

, max {|xt|, |t|} < 1.

In 2007, Chen et al. [8] present an operator approach to derive Mehler’s
formula and Rogers formula for the homogeneous Rogers-Szegö polynomials
hn(x, y|q). The proofs of these results are based on parameter augmentation
with respect to the q-exponential operator T (Dq) and the homogeneous q-shift
operator E(Dxy).

In this paper, we introduce a new q-exponential operator R(bDq). We
present an operator proof for Mehler’s formula and Rogers formula for both the
Cauchy polynomials Pn(x, y) and the homogeneous Rogers-Szegö polynomials
hn(x, y|q).
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2. The q-exponential operator R(bDq)

Let Dq be defined as in (1.8). We define a q-exponential operator R(bDq) as
follows:

R(bDq) =

∞∑
k=0

(−1)kq(
k
2)bk

(q; q)k
Dk

q . (2.1)

The operator proof needs operator identities, so we derive some identities
for the q-exponential operator R(bDq). We use Ra for the operator R acting
on the variable a. The following theorem for the exponential operator Ra(bDq)
is easy to verify.

Theorem 2.1. We have

Ra(bDq)

{
1

(at; q)∞

}
=

(bt; q)∞
(at; q)∞

. (2.2)

Ra(bDq)

{
(av; q)∞
(at; q)∞

}
=

(av; q)∞
(at; q)∞

1φ1

(
v/t
av

; q, bt

)
. (2.3)

Theorem 2.2. We have

Ra(bDq)

{
(av; q)∞

(at, as; q)∞

}
=

(bs; q)∞
(as; q)∞

2φ1

(
v/t, b/a

bs
; q, at

)
. (2.4)

Proof. By using (1.9), we get

Ra(bDq)

{
(av; q)∞

(at, as; q)∞

}

=

∞∑
n=0

(−1)nq(
n
2)bn

(q; q)n

n∑
k=0

[
n

k

]
qk(k−n)Dk

q

{
(av; q)∞
(at; q)∞

}
Dn−k

q

{
1

(asqk; q)∞

}

=
∞∑

k=0

(−1)kq(
k
2)bk

(q; q)k

Dk
q

{
(av; q)∞
(at; q)∞

} ∞∑
n=0

(−1)nq(
n
2)bn

(q; q)n

Dn
q

{
1

(asqk; q)∞

}

=

∞∑
k=0

(−1)kq(
k
2)bk

(q; q)k
tk(v/t; q)k

(avqk; q)∞
(at; q)∞

Ra(bDq)

{
1

(asqk; q)∞

}
(by using (1.15))

=
∞∑

k=0

(−1)kq(
k
2)bk

(q; q)k

tk(v/t; q)k
(avqk; q)∞
(at; q)∞

(bsqk; q)∞
(asqk; q)∞

(by using (2.2))

=
(av, bs; q)∞
(at, as; q)∞

∞∑
k=0

(v/t, as; q)k

(q, av, bs; q)k
(−1)kq(

k
2)(bt)k

=
(av, bs; q)∞
(at, as; q)∞

2φ2

(
v/t, as
av, bs

; q, bt

)
.
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By Jackson’s transformation [9, Appendix III, equation (III.4)], we get the
required result.

Theorem 2.3. We have

Ra(bDq)

{
1

(as, at; q)∞

}
=

(bt; q)∞
(as, at; q)∞

1φ1

(
at
bt

; q, bs

)
. (2.5)

Proof. From (1.9), we get

Ra(bDq)

{
1

(as, at; q)∞

}

=

∞∑
n=0

(−1)nq(
n
2)bn

(q; q)n

n∑
k=0

[
n

k

]
qk(k−n)Dk

q

{
1

(as; q)∞

}
Dn−k

q

{
1

(atqk; q)∞

}

=
∞∑

n=0

(−1)nq(
n
2)bn

(q; q)n

n∑
k=0

[
n

k

]
qk(k−n) sk

(as; q)∞

(tqk)n−k

(atqk; q)∞
(by using (1.11))

=
1

(as, at; q)∞

∞∑
k=0

(−1)kq(
k
2)(bs)k

(q; q)k
(at; q)k

∞∑
n=0

(−1)nq(
n
2)(btqk)n

(q; q)n

=
1

(as, at; q)∞

∞∑
k=0

(−1)kq(
k
2)(bs)k

(q; q)k
(at; q)k(btq

k; q)∞ (by using (1.5))

=
(bt; q)∞

(as, at; q)∞

∞∑
k=0

(at; q)k

(q, bt; q)k
(−1)kq(

k
2)(bs)k

=
(bt; q)∞

(as, at; q)∞
1φ1

(
at
bt

; q, bs

)
.

Theorem 2.4. We have

Rx(yDq)

{
xn

(xt; q)∞

}
=

(yt; q)∞Pn(x, y)

(xt; q)∞(yt; q)n

. (2.6)

Proof. By using (2.1) and (1.9), we get

Rx(yDq)

{
xn

(xt; q)∞

}

=

∞∑
k=0

(−1)kq(
k
2)yk

(q; q)k

k∑
j=0

[
k

j

]
qj(j−k)Dj

q

{
1

(xt; q)∞

}
Dk−j

q

{
(xqj)n

}

=
1

(xt; q)∞

∞∑
j=0

(−1)jq(
j
2)(ytqn)j

(q; q)j

n∑
k=0

[
n

k

]
(−1)kq(

k
2)ykxn−k (by using (1.10))

=
(yt; q)∞Pn(x, y)

(xt; q)∞(yt; q)n

. (by using (1.5) and (1.7))
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3. Mehler’s formula and Rogers formula for

Pn(x, y)

By using (1.7), the Cauchy polynomials Pn(x, y) can easily be represented
by the augmentation operator as follows:

Rx(yDq) {xn} = Pn(x, y). (3.1)

Using the operator definition (3.1) of the Cauchy polynomials Pn(x, y), it
is easy to give a simple derivation for Mehler’s formula and Rogers formula for
Pn(x, y).

Theorem 3.1. (Mehler’s formula for Pn(x, y)). We have

∞∑
n=0

Pn(x, y)Pn(z, w)
tn

(q; q)n

=
(xwt; q)∞
(xzt; q)∞

1φ1

(
w/z
xwt

; q, yzt

)
, |zxt| < 1.

Proof. From (3.1), we get

∞∑
n=0

Pn(x, y)Pn(z, w)
tn

(q; q)n
= Rx(yDq)

{ ∞∑
k=0

Pn(z, w)
(xt)n

(q; q)n

}

= Rx(yDq)

{
(xwt; q)∞
(xzt; q)∞

}
(by using (1.3))

=
(xwt; q)∞
(xzt; q)∞

1φ1

(
w/z
xwt

; q, yzt

)
. (by using (2.3))

Theorem 3.2. (Rogers formula for Pn(x, y)). We have

∞∑
n=0

∞∑
m=0

Pn+m(x, y)
tn

(q; q)n

sm

(q; q)m
=

(yt; q)∞
(xs, xt; q)∞

1φ1

(
xt
yt

; q, ys

)
,

where max{|xt|, |xs|} < 1.
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Proof. From (3.1), we get

∞∑
n=0

∞∑
m=0

Pn+m(x, y)
tn

(q; q)n

sm

(q; q)m

= Rx(yDq)

{ ∞∑
n=0

(xt)n

(q; q)n

∞∑
m=0

(xs)m

(q; q)m

}

= Rx(yDq)

{
1

(xs, xt; q)∞

}
(by using (1.4))

=
(yt; q)∞

(xs, xt; q)∞
1φ1

(
xt
yt

; q, ys

)
. (by using (2.5))

4. Mehler’s formula and Rogers formula for

hn(x, y|q)

The homogeneous Rogers-Szegö polynomials hn(x, y|q) can easily be rep-
resented by the augmentation operator as follows:

Rx(yDq) {hn(x|q)} = hn(x, y|q). (4.1)

Using the operator definition (4.1) of the homogeneous Rogers-Szegö poly-
nomials hn(x, y|q), it is easy to give a simple derivation of the Mehler’s formula
and Rogers formula for hn(x, y|q).
Theorem 4.1. (Mehler’s formula for hn(x, y|q)). We have

∞∑
n=0

hn(x, y|q)hn(u, v|q) tn

(q; q)n

=
(yt, xvt; q)∞

(xt, t, xut; q)∞
3φ2

(
y, xt, v/u
yt, xvt

; q, ut

)
,

where max {|xt|, |t|, |ut|, |xut|} < 1.

Proof. From (4.1), we get

∞∑
n=0

hn(x, y|q)hn(u, v|q) tn

(q; q)n

= Rx(yDq)Ru(vDq)

{ ∞∑
n=0

hn(x|q)hn(u|q) tn

(q; q)n

}

= Rx(yDq)

{
1

(xt, t; q)∞
Ru(vDq)

{
(uxt2; q)∞

(ut, uxt; q)∞

}}
(by using (1.13))

= Rx(yDq)

{
(vxt; q)∞

(xt, t, uxt; q)∞
2φ1

(
xt, v/u

vxt
; q, ut

)}
. (by using (2.4))
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By Heine’s transformation 2φ1 series [9, Appendix III, equation (III.2)], we get

2φ1

(
xt, v/u

vxt
; q, ut

)
=

(xut, vt; q)∞
(vxt, ut; q)∞

2φ1

(
t, v/u

vt
; q, xut

)
.

Hence

∞∑
n=0

hn(x, y|q)hn(u, v|q) tn

(q; q)n

=
(vt; q)∞

(t, ut; q)∞

∞∑
n=0

(t, v/u; q)n(ut)n

(q, vt; q)n
Rx(yDq)

{
xn

(xt; q)∞

}

=
(vt, yt; q)∞

(xt, t, ut; q)∞

∞∑
n=0

(t, v/u; q)n(ut)n

(q, vt; q)n

Pn(x, y)

(yt; q)n

(by using (2.6))

=
(vt, yt; q)∞

(xt, t, ut; q)∞
3φ2

(
t, v/u, y/x

vt, yt
; q, xut

)
. (by using (1.1) and (1.2))

By transformation 3φ2 series [9, Appendix III, equation (III.9)], we get the
required result.

Theorem 4.2. (Rogers formula for hn(x, y|q)). We have

∞∑
n=0

∞∑
m=0

hn+m(x, y|q) tn

(q; q)n

sm

(q; q)m
=

(ys; q)∞
(xs, s, xt; q)∞

2φ1

(
y, xs
ys

; q, t

)
,

where max {|xs|, |s|, |xt|, |t|} < 1.

Proof. From (4.1), we get

∞∑
n=0

∞∑
m=0

hn+m(x, y|q) tn

(q; q)n

sm

(q; q)m

= Rx(yDq)

{ ∞∑
n=0

∞∑
m=0

hn+m(x|q) tn

(q; q)n

sm

(q; q)m

}

=
1

(s, t; q)∞
Rx(yDq)

{
(xst; q)∞

(xs, xt; q)∞

}
(by using (1.14))

=
1

(s, t; q)∞

(ys; q)∞
(xs; q)∞

2φ1

(
s, y/x

ys
; q, xt

)
. (by using (2.4))

By Heine’s transformation 2φ1 series [9, Appendix III, equation (III.3)], we get
desired result.
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Our derivation for Mehler’s formula and Rogers formula for hn(x, y|q) seems
shorter and simpler than the one given in [8], because we only use the q-
exponential operator R(bDq), while their proofs are based on parameter aug-
mentation with respect to the q-exponential operator T (Dq) and the homoge-
neous q-shift operator E(Dxy).
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Polynomials, J. Phys. A: Math. Theor., 40 (2007), 6071-6084.

[9] G. Gasper and M. Rahman, Basic Hypergeometric Series, Cambridge
Univ. Press, Cambridge, MA, 1990.

[10] J. Goldman and G.-C. Rota, On the foundations of combinatorial theory,
IV: Finite vector spaces and Eulerian generating functions, Stud. Appl.
Math., 49 (1970), 239-258.

[11] I.P. Goulden and D.M. Jackson, Combinatorial Enumeration, John Wiley
& Sons, Inc., 1983.

[12] E.C. Ihrig and M.E.H. Ismail, A q-umbral calculus, J. Math. Anal. Appl.,
84 (1981), 178-207.



6380 Husam L. Saad and Abbas A. Sukhi

[13] M. E. H. Ismail and D. Stanton, On the Askey-Wilson and Rogers poly-
nomials, Canad. J. Math., 40 (1988), 1025-1045.

[14] W.P. Johnson, q-Extensions of identities of Abel-Rothe type, Discrete
Math., 159 (1995), 161-177.

[15] B. K. Karande and N. K. Thakare, On certain q-orthogonal polynomials,
Indian J. Pure Appl. Math., 7 (1976), 728-736.

[16] L. J. Rogers, On a three-fold symmetry in the elements of Heine’s series,
Proc. London Math. Soc., 24 (1893), 171-179.

[17] S. Roman, The theory of the umbral calculus. I, J. Math. Anal. Appl., 87
(1982), 58-115.

[18] D. Stanton, Orthogonal polynomials and combinatorics, In: “Special
Functions 2000: Current Perspective and Future Directions”, J. Bustoz,
M. E. H. Ismail and S. K. Suslov, Eds., Kluwer, Dorchester, 2001, 389-410.

[19] Z. Z. Zhang and J. Wang, Two operator identities and their applications
to terminating basic hypergeometric series and q-integrals, J. Math. Anal.
Appl., 312 (2005), 653-665.

[20] Z. Zhang and M. Liu, Applications of operator identities to the multiple
q-binomial theorem and q-Gauss summation theorem, Discrete Math., 306
(2006), 1424-1437.

Received: April 15, 2012


