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functions of the twisted Euler numbers and polynomials associated with their interpola-
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1. Introduction and notations

Throughout this paper, we use the following notations. By Zp we denote the ring of p-adic
rational integers,Q denotes the field of rational numbers, Qp denotes the field of p-adic
rational numbers, C denotes the complex numbers field, and Cp denotes the completion
of algebraic closure of Qp. Let νp be the normalized exponential valuation of Cp with
|p|p = p−νp(p) = p−1. When one talks of q-extension, q is considered in many ways such
as an indeterminate, a complex number q ∈ C, or p-adic number q ∈ Cp. If q ∈ C, one
normally assumes that |q| < 1. If q ∈ Cp, we normally assume that |q− 1|p < p−1/(p−1) so
that qx = exp(x logq), for |x|p ≤ 1.

[x]q = [x : q]= 1− qx
1− q

(
cf. [1–18]

)
. (1.1)
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Hence, limq→1[x]= x for any x with |x|p ≤ 1 in the present p-adic case. Let d be a fixed
integer and let p be a fixed prime number. For any positive integer N , we set

X = lim←−
N

(
Z

dpNZ

)
,

X∗ =
⋃

0<a<dp
(a,p)=1

(a+dpZp),

a+dpNZp =
{
x ∈ X | x ≡ a(moddpN

)}
,

(1.2)

where a∈ Z lies in 0≤ a < dpN . For any positive integer N ,

μq
(
a+dpNZp

)= qa
[
dpN

]
q

(1.3)

is known to be a distribution on X (cf. [1–18]).
For

g ∈UD(Zp
)= {g | g : Zp → Cp is a uniformly differentiable function

}
, (1.4)

the p-adic q-integral was defined by [1, 2, 6–18]

Iq(g)=
∫

Zp
g(x)dμq(x)= lim

N→∞
1

[
pN
]
∑

0≤x<pN
g(x)qx. (1.5)

Note that

I1(g)= lim
q→1

Iq(g)=
∫

Zp
g(x)dμ1(x)= lim

N→∞
1
pN

∑

0≤x<pN
g(x) (1.6)

(see [1, 2, 6–18]). For q ∈ [0,1], certain q-deformed bosonic operators may be introduced
which generalize the undeformed bosonic ones (corresponding q = 1); see [1, 2, 6–18].

For g ∈UD(Zp)

∫

Zp
g(x)dμ1(x)=

∫

X
g(x)dμ1(x) (1.7)

(see [6–18] for details).
We assume that q ∈ C with |1− q|p < 1. Using definition, we note that I1(g1)= I1(g) +

g′(x), where g1(x)= g(x+ 1).
Let

Tp =
⋃

m≥1

Cpm = lim
m→∞Cpm , (1.8)

where Cpm = {w | wpm = 1} is the cyclic group of order pm. For w ∈ Tp, we denote by
φw : Zp → Cp the locally constant function x �−→ wx. If we take f (x)= φw(x)etx, then we
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easily see that
∫

Zp
φw(x)etxdμ1(x)= t

wet − 1
. (1.9)

Kim [8] treated the analog of Bernoulli numbers, which is called twisted Bernoulli num-
bers. We define the twisted Bernoulli polynomials Bn,w(x)

ext
t

wet − 1
=

∞∑

n=0

Bn,w(x)
tn

n!
. (1.10)

Using Taylor series of etx in the above equation, we obtain
∫

Zp
xnφw(x)dμ1(x)= Bn,w, (1.11)

where Bn,w = Bn,w(0).
The Euler numbers En are usually defined by means of the following generating func-

tion:

eEt = 2
et + 1

=
∞∑

n=0

En
tn

n!

(
cf. [1–18]

)
, (1.12)

where the symbol En is interpreted to mean that En must be replaced by En when we
expand the one on the left. These numbers are classical and important in mathematics
and in various places like analysis, number theory. Frobenius extended such numbers as
En to the so-called Frobenius-Euler numbers Hn(u) belonging to an algebraic number u
with |u| > 1. Let u be an algebraic number. For u ∈ C with |u| > 1, the Frobenius-Euler
numbers Hn(u) belonging to u are defined by the generating function

eH(u)t = 1−u
et −u =

∞∑

n=0

Hn(u)
tn

n!

(
cf. [6–10]

)
, (1.13)

with the usual convention of symbolically replacing Hn by Hn. The Euler polynomials
En(x) are defined by

eE(x)t = 2
et + 1

ext =
∞∑

n=0

En(x)
tn

n!

(
cf. [6–16]

)
. (1.14)

For u∈ C with |u| > 1, the Frobenius-Euler polynomials Hn(u,x) belonging to u are de-
fined by

eH(u,x)t = 1−u
et −ue

xt =
∞∑

n=0

Hn(u,x)
tn

n!

(
cf. [6–18]

)
. (1.15)

Kim gave a relation between Bn,w and Hn(u), with nth Euler numbers as follows:

Bn,w = n

w− 1
Hn−1(w−1), if w �= 1. (1.16)
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Now, we consider the case q ∈ (−1,0) corresponding to q-deformed fermionic certain
and annihilation operators and the literature given therein [6–18]. The expression for the
Iq(g) remains the same, so it is tempting to consider the limit q→−1. That is,

I−1(g)= lim
q→−1

Iq(g)=
∫

Zp
g(x)dμ−1(x)= lim

N→∞

∑

0≤x<pN
g(x)(−1)x. (1.17)

Let g1(x) be translation with g1(x)= g(x+ 1). Then we see that

I−1
(
g1
)=− lim

N→∞

pN−1∑

x=0

g(x)(−1)x + 2g(0)=−I−1( f ) + 2g(0). (1.18)

Therefore, we obtain the following lemma.

Lemma 1.1. For g ∈UD(Zp), one has

I−1
(
g1
)

+ I−1(g)= 2g(0). (1.19)

From (1.19), we can easily derive the following theorem.

Theorem 1.2. For g ∈UD(Zp), n∈N, one has

I−1
(
gn
)= (−1)nI−1(g) + 2

n−1∑

l=0

(−1)n−1−lg(l), (1.20)

where gn(x)= g(x+n).

Corollary 1.3. For g ∈UD(Zp), n(= odd)∈N, one has

I−1
(
gn
)

+ I−1(g)= 2
n−1∑

l=0

(−1)lg(l). (1.21)

By Lemma 1.1, we can consider twisted Euler numbers. If we take g(z) = φw(z)etz,
(w ∈ Tp), then we have

I−1
(
φw(z)etz

)= 2
wet + 1

=
∞∑

n=0

En,w
tn

n!
. (1.22)

Now we define twisted Euler numbers En,w as follows:

Fw(t)= 2
wet + 1

=
∞∑

n=0

En,w
tn

n!
. (1.23)

Using Taylor series of ezt above, we obtain

En,w =
∫

Zp
wzzndμ−1(z). (1.24)
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For w ∈ Tp, we introduce the twisted Euler polynomials En,w(z). Twisted Euler poly-
nomials En,w(z) are defined by means of the generating function

Fw(t,z)= 2
wet + 1

ezt = I−1
(
φw(x)et(z+x))=

∞∑

n=0

En,w(z)
tn

n!
, (1.25)

where En,w(0)= En,w. Using Taylor series of etx in the above equation, we have

En,w(x)=
∫

Zp
φw(x)(x+ z)ndμ−1(x)=

n∑

k=0

(
n

k

)

zn−k
∫

Zp
φw(x)xkdμ−1(x). (1.26)

Thus we easily see that

En,w(z)=
n∑

k=0

(
n

k

)

zn−kEk,w. (1.27)

Let χ be the Dirichlet character with conductor f (= odd)∈N. Ryoo et al. [16] studied
the generalized Euler numbers and polynomials. The generalized Euler numbers associ-
ated with χ, En,χ, were defined by means of the generating function

Fχ(t)= 2
∑ f−1

a=0 χ(a)(−1)aeat

e f t + 1
=

∞∑

n=0

En,χ
tn

n!
. (1.28)

Generalized Euler polynomials, En,χ(x), were also defined by means of the generating
function

Fχ(t,z)= 2
∑ f−1

a=0 χ(a)(−1)aeat

e f t + 1
ezt =

∞∑

n=0

En,χ(z)
tn

n!
. (1.29)

Substituting g(x)= χ(x)φw(x)etx into (1.21), then the generalized twisted Euler numbers
En,χ,w are defined by means of the generating functions

Fχ,w(t)=
∫

X
φw(x)etxχ(x)dμ−1(x)

= 2
∑ f−1

a=0 e
ta(−1)aχ(a)φw(a)

φw( f )e f t + 1
=

∞∑

n=0

En,χ,w
tn

n!
.

(1.30)

Using the above equation, En,χ,w are defined by

En,χ,w =
∫

X
φw(x)xnχ(x)dμ−1(x). (1.31)

Generalized twisted Euler polynomials, En,χ,w(z), are defined by

Fχ,w(t,z)= Fχ,w(t)ezt =
∫

X
φw(x)etxχ(x)dμ−1(x)etz

=
(

2
∑ f−1

a=0 e
ta(−1)aχ(a)φw(a)

φw( f )e f t + 1

)

ezt =
∞∑

n=0

En,χ,w(z)
tn

n!
.

(1.32)
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We set

Fχ,w(t,z)= 2
∑ f−1

a=0 (−1)aχ(a)φw(a)e(a+z)t

φw( f )e f t + 1
. (1.33)

Using the above equation, we have

∞∑

n=0

En,χ,w(z)
tn

n!
=
∫

X
φw(x)etxχ(x)dμ−1(x)etz

=
∫

X
φw(x)et(x+z)χ(x)dμ−1(x)

=
∞∑

n=0

(∫

X
φw(x)(x+ z)nχ(x)dμ−1(x)

)
tn

n!

=
∞∑

n=0

( n∑

k=0

(
n

k

)

zn−k
∫

X
φw(x)xkχ(x)dμ−1(x)

)
tn

n!
.

(1.34)

Using the comparing coefficients tn/n!, we easily see that

En,χ,w(z)=
n∑

k=0

(
n

k

)

zn−kEk,χ,w. (1.35)

We have the following remark.

Remark 1.4. Note that
(1) if w→ 1, then Fχ,w(t,z)→ Fχ(t,z) and En,χ,w(z)→ En,χ(z);
(2)

∞∑

n=0

En,χ,w(z)
tn

n!
=
(

2
∑ f−1

a=0 e
ta(−1)aχ(a)φw(a)

φw( f )e f t + 1

)

ezt

=
∞∑

n=0

En,χ,w(z)
tn

n!

∞∑

n=0

zn
tn

n!
.

(1.36)

Using the Cauchy product in the right-hand side of the above equation in (2), we obtain

∞∑

n=0

En,χ,w(z)
tn

n!
=

∞∑

n=0

n∑

k=0

Ek,χ,w
zn−ktn

k!(n− k)!
. (1.37)

Comparing the coefficients tn on both sides of the above equation, we arrive at (1.35).

2. Twisted zeta function

In this section, we introduce the twisted Euler zeta function and twisted Hurwitz-Euler
zeta function. We derive a new twisted Hurwitz-type l-function which interpolates the
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generalized Euler polynomials En,χ,w(x). We give the relation between twisted Euler num-
bers and twisted l-functions at nonpositive integers. Let χ be the Dirichlet character with
conductor f (= odd)∈N. We set

Fχ,w(t)= 2
∑ f−1

a=0 e
ta(−1)aχ(a)φw(a)

φw( f )e f t + 1
,
(
− π

f
− logw < t <

π

f
− log

)
. (2.1)

By (2.1), we see that

Fχ,w(t)= 2
∞∑

m=1

χ(m)wm(−1)metm. (2.2)

From (1.30) and (2.2), we note that

dk

dtk
Fχ,w(t)|t=0 = 2

∞∑

m=1

χ(m)wm(−1)mmk (k ∈N). (2.3)

Therefore, we obtain the following theorem.

Theorem 2.1. For k ∈N, one has

Ek,χ,w = 2
∞∑

m=1

χ(m)wm(−1)mmk (k ∈N). (2.4)

Thus we define the twisted Dirichlet-type l-series as follows.

Definition 2.2. For s∈ C, define the Dirichlet-type l-series related to twisted Euler num-
bers,

lw(s,χ)= 2
∞∑

n=1

χ(n)(−1)nwn

ns
. (2.5)

Theorem 2.3. For k ∈N, one has

lw(−k,χ)= Ek,χ,w. (2.6)

Next, we introduce the Hurwitz-type twisted Euler zeta function. Since

Fw(t,z)= 2
wet + 1

ezt =
∞∑

n=0

En,w(z)
tn

n!
, (2.7)

we obtain

Fw(t,z)= 2
∞∑

n=0

(−1)nwne(n+z)t . (2.8)

From (2.8), we note that

dk

dtk
Fw(t,z)|t=0 = 2

∞∑

n=0

(−1)nwn(n+ z)k (k ∈N). (2.9)
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Therefore, we have the following theorem.

Theorem 2.4. For k ∈N, one has

Ek,w(z)= 2
∞∑

n=0

(−1)nwn(n+ z)k (k ∈N). (2.10)

Thus the twisted Hurwitz-Euler zeta function is defined as follows.

Definition 2.5. Let s∈ C. Then

ζE,w(s,z)= 2
∞∑

n=0

(−1)nwn

(n+ z)s
. (2.11)

By Theorem 2.4 and Definition 2.5, we have the following theorem.

Theorem 2.6. For k ∈N, one obtains

ζE,w(−k,z)= Ek,w(z). (2.12)

Let us define two-variable twisted Euler numbers attached to χ as follows. By (1.33),
we see that

Fχ,w(t,z)= 2
∞∑

n=0

(−1)nχ(n)wne(n+z)t . (2.13)

From (2.13), we note that

dk

dtk
Fχ,w(t,z)|t=0 = 2

∞∑

n=0

(−1)nχ(n)wn(n+ z)k (k ∈N). (2.14)

Therefore, we obtain the following theorem.

Theorem 2.7. For k ∈N, one has

Ek,χ,w(z)= 2
∞∑

n=0

(−1)nχ(n)wn(n+ z)k (k ∈N). (2.15)

Hence we define two-variable twisted l-series as follows.

Definition 2.8. For s∈ C. Then

lw(s,χ | z)= 2
∞∑

n=0

(−1)nχ(n)wn

(n+ z)s
. (2.16)

The relation between lw(−k,χ | z) and Ek,χ,w(z) is given by the following theorem.

Theorem 2.9. For k ∈N, one obtains

lw(−k,χ | z)= Ek,χ,w(z). (2.17)
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Note that

lw(s,χ | z)= 2
∞∑

n=0

(−1)nχ(n)wn

(n+ z)s

= f −s
f−1∑

a=0

(−1)awaχ(a)ζE,w f

(
s,
a+ z
f

)
.

(2.18)

The relation between lw(s,χ | z) and ζE,w(s,z) is given by the following theorem.

Theorem 2.10. For s∈ C,

lw(s,χ | z)= 1
f s

f−1∑

a=0

(−1)awaχ(a)ζE,w f

(
s,
a+ z
f

)
. (2.19)

Observe that, substituting z = 0 into (2.19),

lw(s,χ)= f −s
f−1∑

a=0

(−1)awaχ(a)ζE,w f

(
s,
a

f

)
. (2.20)

Substituting s=−n with n∈N,

lw(−n,χ | z)= f n
f−1∑

a=0

(−1)awaχ(a)ζE,w f

(
−n,

a+ z
f

)
. (2.21)

By Theorem 2.6 and (2.21), we have

lw(−n,χ | z)= f n
f−1∑

a=0

(−1)awaχ(a)En,w f

(
a+ z
f

)
. (2.22)

Using (1.27), we get

lw(−n,χ | z)= f n
f−1∑

a=0

(−1)awaχ(a)
n∑

k=0

(
n

k

)

f k−n(a+ z)n−kEk,w f

= f n
f−1∑

a=0

(−1)awaχ(a)
n∑

k=0

(
n

k

)

f k−n
n−k∑

j=0

(
n− k
j

)

zn−k− ja jEk,w f

=
n∑

k=0

n−k∑

j=0

(
n

k

)(
n− k
j

)

f kzn−k− jEk,w f Sw,χ( j),

(2.23)

where

Sw,χ( j)=
f−1∑

a=0

(−1)awaχ(a)aj . (2.24)

By Theorem 2.9 and (2.23), we arrive at the following theorem.
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Theorem 2.11. For n∈ Z+, one obtains

En,χ,w(z)=
n∑

k=0

n−k∑

j=0

(
n

k

)(
n− k
j

)

f kzn−k− jEk,w f Sw,χ( j). (2.25)

3. Twisted q-Euler zeta function and twisted q-analog Dirichlet l-function

Our primary goal of this section is to define generating functions of the twisted q-Euler
numbers and polynomials. Using these functions, twisted q-zeta function and twisted q-
l-functions are defined. These functions interpolate twisted q-Euler numbers and gener-
alized twisted q-Euler numbers, respectively. Now, we introduce the generating functions
Fq(t) and Fq(x, t). Ryoo et al. [15] treated the analog of Euler numbers, which is called
q-Euler numbers in this paper. Using p-adic q-integral, we defined the q-Euler numbers
as follows:

En,q =
∫

Zp
[t]nqdμ−q(t), for n∈N. (3.1)

Thus we obtain

En,q = [2]q

(
1

1− q
)n n∑

l=0

(
n

l

)

(−1)l
1

1 + ql+1
, (3.2)

where
(
n
i

)
is the binomial coefficient (see [1–18]). Using the above equation, we have

Fq(t)= [2]q
∞∑

m=0

(−1)mqme[m]qt . (3.3)

Thus q-Euler numbers, En,q, are defined by means of the generating function

Fq(t)= [2]q
∞∑

n=0

(−1)nqne[n]qt . (3.4)

Note that

∞∑

n=0

En,q
tn

n!
=
∫

Zp

∞∑

n=0

[x]nq
n!

tndμ−q(x)=
∫

Zp
e[x]qtdμ−q(x). (3.5)

Thus we have
∫

Zp
e[x]qtdμ−q(x)= [2]q

∞∑

n=0

(−1)nqne[n]qt . (3.6)

Similarly, the generating function Fq(t,z) of the q-Euler polynomials En,q(z) is defined
analogously as follows:

Fq(t,z)=
∞∑

n=0

En,q(z)
tn

n!
= [2]q

∞∑

n=0

(−1)nqne[n+z]qt . (3.7)



C. S. Ryoo et al. 11

Now, we introduce twisted q-Euler numbers En,q,w. For w ∈ Tp, we define twisted q-Euler
numbers as follows:

En,q,w =
∫

Zp
[x]nqw

xdμ−q(x), for n∈N. (3.8)

Using (3.8), we obtain

En,q,w = [2]q

(
1

1− q
)n n∑

l=0

(
n

l

)

(−1)l
1

1 +wql+1
. (3.9)

Note that

Fq,w(t)=
∞∑

n=0

En,q,w
tn

n!

= [2]q
∞∑

n=0

((
1

1− q
)n n∑

l=0

(
n

l

)

(−1)l
1

1 +wql+1

)
tn

n!

= [2]q
∞∑

n=0

∞∑

m=0

(−1)mqmwm[m]nq
tn

n!

= [2]q
∞∑

m=0

(−1)mqmwme[m]qt .

(3.10)

Thus we obtain the generating function of twisted q-Euler numbers En,q,w as follows:

Fq,w(t)= [2]q
∞∑

n=0

(−1)nqnwne[n]qt =
∞∑

n=0

En,q,w
tn

n!
. (3.11)

Observe that limq→1En,q,w = En,w. Using (3.11), we easily see that

Fq,w(t)=
∞∑

n=0

En,q,w
tn

n!
=

∞∑

n=0

∫

Zp
wx[x]nqdμ−q(x)

tn

n!

=
∫

Zp

∞∑

n=0

[x]nq
n!

tndμ−q(x)=
∫

Zp
wxe[x]qtdμ−q(x).

(3.12)

Hence we obtain
∫

Zp
wxe[x]qtdμ−q(x)= [2]q

∞∑

n=0

(−1)nqnwne[n]qt . (3.13)

From (3.11), we note that

dk

dtk
Fq,w(t,z)|t=0 = [2]q

∞∑

n=0

(−1)nqnwn[n]kq (k ∈N). (3.14)

Using the above equation, we are now ready to define twisted q-Euler zeta functions.
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Definition 3.1. Let s∈ C. Then

ζq,w(s)= [2]q
∞∑

n=1

(−1)nqnwn

[n]sq
. (3.15)

Note that ζE,w(s) is a meromorphic function on C. The relation between ζq,w(s) and
Ek,q,w is given by the following theorem.

Theorem 3.2. For k ∈N, one has

ζq,w(−k)= Ek,q,w. (3.16)

Observe that ζq,w(s) function interpolates Ek,q,w numbers at nonnegative integers. Us-
ing p-adic q-integral, we defined the twisted q-Euler polynomials as follows:

En,q,w(z)=
∫

Zp
wx[x+ z]nqdμ−q(x), for n∈N. (3.17)

Since [x+ z]q = [z]q + qz[x]q, we have

En,q,w(z)=
∫

Zp
wx[x+ z]nqdμ−q(x)

=
∫

Zp
wx

n∑

l=0

(
n

l

)

qlz[x]lq[z]n−lq dμ−q(x)

=
n∑

l=0

(
n

l

)

qlz[z]n−lq

∫

Zp
wx[x]lqdμ−q(x)

=
n∑

l=0

(
n

l

)

qlzEl,q,w[z]n−lq

= (qzEq,w + [z]q
)n

,

(3.18)

where the symbol Ek,q,w is interpreted to mean that Ekq,w must be replaced by Ek,q,w. Using
(3.17), we have

En,q,w(z)= [2]q

(
1

1− q
)n n∑

l=0

(
n

l

)

(−1)lqlz
1

1 +wql+1
. (3.19)
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Note that

Fq,w(t,z)=
∞∑

n=0

En,q,w(z)
tn

n!

= [2]q
∞∑

n=0

((
1

1− q
)n n∑

l=0

(
n

l

)

(−1)lqlz
1

1 +wql+1

)
tn

n!

= [2]q
∞∑

n=0

∞∑

m=0

(−1)mqmwm[m+ z]nq
tn

n!

= [2]q
∞∑

m=0

(−1)mqmwme[m+z]qt .

(3.20)

Hence we have the generating function of twisted q-Euler polynomials En,q,w(z) as fol-
lows:

Fq,w(t,z)= [2]q
∞∑

m=0

(−1)mqmwme[m+z]qT . (3.21)

Observe that limq→1En,q,w(z)= En,w(z). From (3.21), we note that

dk

dtk
Fq,w(t,z)|t=0 = [2]q

∞∑

n=0

(−1)nqnwn[n+ z]kq (k ∈N). (3.22)

Using the above equation, we are now ready to define the twisted Hurwitz q-Euler zeta
functions.

Definition 3.3. Let s∈ C. Then

ζq,w(s,z)= [2]q
∞∑

n=1

(−1)nqnwn

[n+ z]sq
. (3.23)

Note that ζE,w(s,z) is a meromorphic function on C. The relation between ζq,w(s,z)
and Ek,q,w(z) is given by the following theorem.

Theorem 3.4. For k ∈N, one has

ζq,w(−k,z)= Ek,q,w(z). (3.24)

Observe that ζq,w(−k,z) function interpolates Ek,q,w(z) numbers at nonnegative inte-
gers.

4. Distribution and structure of the zeros

In this section, we investigate the zeros of the twisted q-Euler polynomials En,q,w(z) by
using computer. Let w = e2πi/N in C. We plot the zeros of En,q,w(x), x ∈ C, for N = 1,
q = 1/2 (see Figures 4.1, 4.2, 4.3, and 4.4).
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Figure 4.1. Zeros of E10,q,w(x).
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)

Figure 4.2. Zeros of E20,q,w(x).

Next, we plot the zeros of En,q,w(x), x ∈ C, for N = 2, q = 1/2 (see Figures 4.5, 4.6, 4.7,
and 4.8).
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Figure 4.3. Zeros of E30,q,w(x).
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Figure 4.4. Zeros of E40,q,w(x).

Finally, we plot the zeros of En,q,w(x), x ∈ C, for N = 4, q = 1/3 (see Figures 4.9, 4.10,
4.11, and 4.12).
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Figure 4.5. Zeros of E10,q,w(x).
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Figure 4.6. Zeros of E20,q,w(x).

Our numerical results for numbers of real and complex zeros of En,q,w(x), q = 1/2 are
displayed in Table 4.1.
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Figure 4.7. Zeros of E30,q,w(x).
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Figure 4.8. Zeros of E40,q,w(x).

We will consider the more general open problem. In general, how many roots does
En,q,w(x) have? Prove or disprove: En,q(x) has n distinct solutions. Find the numbers of
complex zeros CEn,q,w(x) of En,q,w(x), Im(x) �= 0. Prove or give a counterexample.
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Figure 4.9. Zeros of E10,q,w(x).
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Figure 4.10. Zeros of E20,q,w(x).

Conjecture. Since n is the degree of the polynomial En,q,w(x), the number of real zeros
REn,q,w(x) lying on the real plane Im(x) = 0 is then REn,q,w(x) = n−CEn,q,w(x), where CEn,q,w(x)
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Figure 4.11. Zeros of E30,q,w(x).
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Figure 4.12. Zeros of E40,q,w(x).

denotes complex zeros. See Table 4.1 for tabulated values of REn,q,w(x) and CEn,q,w(x). The
authors have no doubt that investigation along this line will lead to a new approach



20 Journal of Inequalities and Applications

Table 4.1. Numbers of real and complex zeros of En,q,w(x).

w = e2πi/2 w = e2πi/4

Degree n Real zeros Complex zeros Real zeros Complex zeros

1 1 0 0 1

2 0 2 0 2

3 1 2 0 3

4 0 4 0 4

5 1 4 0 5

6 0 6 0 6

7 1 6 0 7

8 0 8 0 8

9 1 8 0 9

10 0 10 0 10

Table 4.2. Approximate solutions of En,q,w(x)= 0, w = e2πi/2.

Degree n x

1 −0.584963

2 −0.403677− 0.708194i, −0.403677 + 0.708194i

3 −0.683972, −0.111459− 1.05549i, −0.111459 + 1.05549i

4
−0.635616− 0.40476i, −0.635616 + 0.40476i, 0.158518− 1.26338i,

0.158518 + 1.26338i

5
−0.746907, −0.510667− 0.673i, −0.510667 + 0.673i,

0.39548− 1.40175i, 0.39548 + 1.40175i

6
−0.728973− 0.291464i, −0.728973 + 0.291464i, −0.368723− 0.86325i,

−0.368723 + 0.86325i, 0.603353− 1.50045i, 0.603353 + 1.50045i

employing numerical method in the field of research of the En,q,w(x) to appear in mathe-
matics and physics. The reader may refer to [11, 14–16] for the details. We calculated an
approximate solution satisfying En,q,w(x), N = 2,4, q = 1/2, x ∈ C. The results are given
in Tables 4.2 and 4.3.

5. Further remarks and observations

Using p-adic q-fermionic integral, Rim and Kim [13] studied explicit p-adic expan-
sion for alternating sums of powers. In the recent paper [10], Kim and Rim constructed
(h,q)-extensions of the twisted Euler numbers and polynomials. They also defined (h,q)-
generalizations of the twisted zeta function and L-series. These numbers and polynomials
are considered as the (h,q)-extensions of their previous results. However, these (h,q)-
Euler numbers and generating functions do not seem to be natural extension of Euler
numbers and polynomials. By this reason, we consider the natural q-extension of Euler
numbers and polynomials. In this paper, we include the numerical computations for our
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Table 4.3. Approximate solutions of En,q,w(x)= 0, w = e2πi/4.

Degree n x

1 0.117233 + 0.315473i

2 −0.349486− 0.000392286i, 0.499266 + 0.489888i

3 −0.434656− 0.317986i, −0.214323 + 0.325767i, 0.807131 + 0.571069i

4
−0.491443 + 0.120881i, −0.384977− 0.598516i, −0.0235844 + 0.482636i

1.06026 + 0.618831i

5
−0.573494− 0.129254i, −0.422702 + 0.36838i, −0.282405− 0.820568i,

0.164523 + 0.577386i, 1.27487 + 0.650419i

6
−0.578686− 0.346326i, −0.569935 + 0.151674i, −0.330723 + 0.532678i,

−0.160255− 0.9957i, 0.339376 + 0.642424i, 1.46114 + 0.672881i

twisted q-Euler numbers and polynomials and the Euler numbers and polynomials which
are treated in this paper. In [9], many interesting integral equations related to fermionic
p-adic integrals on Zp are known. We proceed by first constructing generating functions
of the twisted q-Euler polynomials and numbers. Then, by applying Mellin transforma-
tion to these generating functions, integral representations of the twisted q-Euler zeta
function (and l-functions) are obtained, which interpolate the (generalized) twisted q-
Euler numbers at nonpositive integers.
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