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Abstract

In this paper we give the generating functions of q-Bernoulli numbers and q-Bernoulli polynomials. Next, we consider the
q-zeta function which interpolates the q-Bernoulli numbers and q-Bernoulli polynomials. Finally we investigate the roots of the
q-Bernoulli polynomials Bn,qr (x) for values of the index n by using a computer.
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1. Introduction

Bernoulli polynomials and Bernoulli numbers are of significant importance in mathematics and physics. The reason
is that Bernoulli polynomials and Bernoulli numbers arise in many applications. q-Bernoulli polynomials and q-
Bernoulli numbers possess many interesting properties and arise in many areas of mathematics and physics (see [1–4,
6–9]). Many mathematicians have studied q-Bernoulli polynomials and q-Bernoulli numbers. In the case of Bernoulli
polynomials and Bernoulli numbers, there are several results, such as those of Whittaker and Waston [11], and
Erdelyi [5]. For q-Bernoulli polynomials and q-Bernoulli numbers, several results have been studied by Carlitz [4],
Kim [6,7], Kobilitz [8,9], and Todorov [10]. First, we introduce the ordinary Bernoulli numbers and Bernoulli
polynomials. For any complex number x , it is well known that the familiar Bernoulli polynomials Bn(x) are defined
by means of the following generating function:

F(x, t) := t

et − 1
ext =

∞∑
n=0

Bn(x)
tn

n! , |t| < 1. (1)

Note that, by substituting x = 0 into (1), Bn(0) = Bn is the familiar nth Bernoulli number defined by

eBt =
∞∑

n=0

Bn
tn

n! = t

et − 1
, |t| < 1

where the symbol Bk is interpreted to mean that Bk must be replaced by Bk when we expand the one on the left. This
relation can be written as

e(B+1)t − eBt = t .
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Hence we obtain

B0 = 1, (B + 1)k − Bk =
{

1, if k = 1,

0, if k > 1,

with the usual convention about replacing Bk by Bk , (i ≥ 0). The Hurwitz zeta function

ζ(s, x) =
∞∑

k=0

1

(k + x)s
(2)

is a meromorphic function of s. We give the generating functions of q-Bernoulli numbers and q-Bernoulli
polynomials. Next, we consider the q-analogue of this Hurwitz zeta function. The paper is organized as follows. In
the following section, we define the q-zeta functions, q-Hurwitz zeta functions, and we consider the q-zeta function
which interpolates the q-Bernoulli numbers and q-Bernoulli polynomials. In Section 3, we describe the beautiful zeros
of the Bn,qr (x) using a numerical investigation.

2. q-Bernoulli numbers and polynomials

In this section we define the q-Bernoulli numbers βn,qr and polynomials βn,qr (x) and investigate their properties.
Throughout this paper we use the following notations. By Z we denote the ring of rational integers, Q denotes the
field of rational numbers, C denotes the complex number field,

[x]q = 1 − qx

1 − q
for any real x .

We assume that q ∈ C with |q| < 1. First, we introduce the q-Bernoulli polynomials using a generating function
(cf. [6,7]). Let

Fqr (t) = qr − 1

r log q
e

t
1−qr − t

∞∑
n=0

qrne[n]qr t , |t| < 1. (3)

Consider the Taylor expansion at t = 0.

Fqr (t) = β0,qr + β1,qr
t

1! + β2,qr
t2

2! + · · · + βn,qr
tn

n! + · · · .
The coefficients βn,qr are called the nth q-Bernoulli numbers. Note that

1

t

(
Fqr (t) − qr − 1

r log q
e

t
1−qr

)
= −

∞∑
k=0

( ∞∑
n=0

qrn[n]k
qr

)
tk

k! . (4)

Now we consider the generating function of the q-Bernoulli polynomials as follows:

∞∑
n=0

βn,qr (x)
tn

n! = Fqr (x, t) = qr − 1

r log q
e

t
1−qr − t

∞∑
n=0

qrn+rx e[n+x]qr t . (5)

Note that

t = et Fqr (qr t) − Fqr (t) =
∞∑

n=0

{
(qrβqr + 1)n − βn,qr

} tn

n! .

By comparing the coefficients on both sides, we obtain

(qrβqr + 1)k − βk,qr =
{

1, if k = 1,

0, if k > 1.

By simple calculations, we have the following remark.

Remark 1. Note that
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(1) limq→1 Fqr (x, t) = t
et −1 ext = F(x, t),

(2) βn,qr = 1
1−qrn

∑n−1
k=0

n!
k!(n−k)! q

rkβk,qr , for n > 1,
(3) βn,qr (0) = βn,qr ,
(4) limq→1 βn,qr = Bn, limq→1 βn,qr (x) = Bn(x).

(5) βn,qr (x) = 1
(1−qr )n

∑n
j=0

(
n
j

)
(−1) j (qr )x j j

[ j ]qr
.

Now we define the q-Bernoulli numbers Bn,qr as

Gqr (t) = Fqr (t) − qr − 1

r log q
e

t
1−qr =

∞∑
n=0

Bn,qr
tn

n! , cf. [7]. (6)

We have

qr − 1

r log q

(
1

1 − qr

)n

+ Bn,qr = βn,qr .

We also consider the q-Bernoulli polynomials Bn,qr (x) given by

Gqr (x, t) = Fqr (x, t) − qr − 1

r log q
e

t
1−qr =

∞∑
n=0

Bn,qr (x)
tn

n! .

Then we obtain

Bn,qr (x) = βn,qr (x) − qr − 1

r log q

(
1

1 − qr

)n

. (7)

Note that

Gqr (−qr t) = qr t
∞∑

n=0

qrne[n]qr (−qr t). (8)

By (6), we see that
∞∑

n=0

Bn,qr (x)
tn

n! = −t
∞∑

n=0

qrn+rx e([x]qr +qrx [n]qr )t = e[x]qr t Gqr (qrx t).

Thus we have
∞∑

n=0

Bn,qr (x)
tn

n! = Gqr (x, t) = e[x]qr t Gqr (qrx t) =
∞∑

n=0

(
n∑

m=0

( n

m

)
qrmx Bm,qr [x]n−m

qr

)
tn

n! .

Hence, we obtain the following theorem:

Theorem 2. For n ≥ 0,

Bn,qr (x) =
n∑

j=0

(
n

j

)
qr j x B j,qr [x]n− j

qr

Bn,qr (x) are called the nth q-Bernoulli polynomials. Note that Bn,qr (0) = Bn,qr .
Let �(s) be the gamma function. By (8), for s ∈ C, we obtain

1

�(s)

∫ ∞

0
Gqr (−qr t)e−t dt =

∞∑
n=0

qrn+r 1

�(s)

∫ ∞

0
ts−2e−[n+1]qr t t s−1dt =

∞∑
n=1

qrn

[n]s
qr

.

Using (8), we define the functions ζq(s, x) and ζq(s) as follows.

Definition 3. For x ∈ R, s ∈ C, we define the Hurwitz q-zeta function as

ζq(s, x) =
∞∑

n=0

qrn+rx

[n + x]s
qr

.
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Fig. 1. Shape of Bn,q5 .

Remark 4. Note that ζq(s, x) has an analytic continuation on C with only one simple pole at s = 1. Let us define the
q-zeta function as ζq(s) = ζq(s, 1).

Using (7), we have

1

�(s)

∫ ∞

0
ts−2Gqr (x,−t)dt =

∞∑
n=0

qrn+rx 1

�(s)

∫ ∞

0
e−[n+x]qr t t s−1dt = ζq(s, x).

We also obtain

ζq(s, x) =
∞∑

n=0

(−1)n Bn,qr (x)

n!
1

�(s)

∫ ∞

0
ts−2+ndt .

Hence, we have the following theorem.

Theorem 5. For n ∈ N, we have

ζq(1 − n, x) = − Bn,qr (x)

n
, ζq(1 − n) = − Bn,qr

n
.

3. Beautiful zeros of the q-Bernoulli numbers and polynomials

Over the years, there has been increasing interest in solving mathematical problems with the aid of computers.
Recently, Woon [2] and Veselov and Ward [3] observed the regular behaviour of the real roots of Bernoulli polynomials
using a numerical investigation. Using computer experiments, Woon [2] verifies a remarkably regular structure of the
complex roots of Bernoulli polynomials. Also, Veselov and Ward [3] proved the regular lattice behaviour of almost
all of the real roots of the Bernoulli polynomials. However, to this point there have been no such investigations
for q-Bernoulli polynomials Bn,qr (x) and q-Bernoulli numbers Bn,qr . In this section, we display the shapes of the
q-Bernoulli numbers and polynomials. Next, we investigate the zeros of the q-Bernoulli polynomials by using a
computer.

For n = 1, . . . , 10, 5
10 ≤ q ≤ 9

10 , we can draw a plot of the q-Bernoulli numbers Bn,qr , respectively. This shows
the ten plots combined into one. We display the shapes of the q-Bernoulli numbers Bn,qr (Figs. 1 and 2).

For n = 1, . . . , 10, we can draw a plot of the q-Bernoulli polynomials Bn,qr (x), respectively. This shows the ten
plots combined into one. We describe the shapes of the q-Bernoulli polynomials Bn,qr (x) for n = 1, . . . , 10, 0 ≤ x ≤
1, q = 1

2 (Figs. 3 and 4).

We plot the zeros of the q-Bernoulli polynomials B20,qr (x), x ∈ C, q = 1
2 (Figs. 5–8).
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Fig. 2. Shape of Bn,q7 .

Fig. 3. Shape of Bn,q5(x).

Fig. 4. Shape of Bn,q7(x).
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Fig. 5. Zeros of B20,q (x).

Fig. 6. Zeros of B20,q2 (x).

In Figs. 5 and 8, for r = 1, 5, Bn,qr (x), x ∈ C, has Im(x) = 0 reflection symmetry. This translates to
the following open problem. Prove that Bn,qr (x), x ∈ C, has Im(x) = 0 reflection symmetry, r ∈ No, where
No = {x | x is a odd number }. Our numerical results for approximate solutions of real zeros of the Bn,qr (x), r = 1, 5,
q = 1

2 are displayed in Tables 1 and 2. Using computer experiments, we verify a remarkably regular structure of the
real roots of q-Bernoulli polynomials Bn,qr (x) (see Table 1).

Finally, we shall consider the more general problems. Prove or disprove: since n is the degree of the polynomial
Bn,qr (x), the number of real zeros reBn,qr (x) lying on the real plane Im(x) = 0 is then reBn,qr (x) = r(n − 1) −
cBn,qr (x)(n > 1), where cBn,qr (x) denotes complex zeros. See Table 1 for tabulated values of reBn,qr (x) and cBn,qr (x).
In general, how many roots does Bn,qr (x) have? Find the numbers of complex zeros cBn,qr (x) of the Bn,qr (x), the
equation of envelope curves bounding the real zeros lying on the plane, and the equation of a trajectory curve running
through the complex zeros on any one of the arcs. It would be very interesting to find a mathematical explanation
for this. In any case, these calculations are too complicated to compute by hand, so we have to use a computer. The
author has no doubt that investigations along this line will lead to a new approach employing numerical methods in
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Fig. 7. Zeros of B20,q4 (x).

Fig. 8. Zeros of B20,q5 (x).

Table 1
Numbers of real and complex zeros of Bn,qr (x)

Degree n r = 1 r = 5
Real zeros Complex zeros Real zeros Complex zeros

2 1 0 1 0
3 0 2 0 10
4 1 2 1 14
5 0 4 0 20
6 1 5 1 24
7 0 6 0 30
8 1 6 1 34

the field of research of the q-Bernoulli polynomials Bn,qr (x) to appear in mathematics and physics. For related topics
the interested reader is referred to [1–3].
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Table 2
Approximate solutions of Bn,q5(x) = 0, x ∈ R

Degree n Real zeros

2 −0.00887882
3 ×
4 −0.0769761
5 ×
6 −0.113251
7 ×
8 −0.132542
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