# A note on $q$-Bernoulli numbers and polynomials 

Cheon Seoung Ryoo<br>Department of Mathematics, Hannam University, Daejeon 306-791, Republic of Korea

Received 10 May 2006; accepted 24 May 2006


#### Abstract

In this paper we give the generating functions of $q$-Bernoulli numbers and $q$-Bernoulli polynomials. Next, we consider the $q$-zeta function which interpolates the $q$-Bernoulli numbers and $q$-Bernoulli polynomials. Finally we investigate the roots of the $q$-Bernoulli polynomials $B_{n, q^{r}}(x)$ for values of the index $n$ by using a computer.


(C) 2006 Elsevier Ltd. All rights reserved.

Keywords: Bernoulli polynomials; Bernoulli numbers; Zeta function; $q$-Bernoulli polynomials; $q$-Bernoulli numbers; $q$-Zeta function

## 1. Introduction

Bernoulli polynomials and Bernoulli numbers are of significant importance in mathematics and physics. The reason is that Bernoulli polynomials and Bernoulli numbers arise in many applications. $q$-Bernoulli polynomials and $q$ Bernoulli numbers possess many interesting properties and arise in many areas of mathematics and physics (see [1-4, $6-9]$ ). Many mathematicians have studied $q$-Bernoulli polynomials and $q$-Bernoulli numbers. In the case of Bernoulli polynomials and Bernoulli numbers, there are several results, such as those of Whittaker and Waston [11], and Erdelyi [5]. For $q$-Bernoulli polynomials and $q$-Bernoulli numbers, several results have been studied by Carlitz [4], Kim [6,7], Kobilitz [8,9], and Todorov [10]. First, we introduce the ordinary Bernoulli numbers and Bernoulli polynomials. For any complex number $x$, it is well known that the familiar Bernoulli polynomials $B_{n}(x)$ are defined by means of the following generating function:

$$
\begin{equation*}
F(x, t):=\frac{t}{\mathrm{e}^{t}-1} \mathrm{e}^{x t}=\sum_{n=0}^{\infty} B_{n}(x) \frac{t^{n}}{n!}, \quad|t|<1 . \tag{1}
\end{equation*}
$$

Note that, by substituting $x=0$ into (1), $B_{n}(0)=B_{n}$ is the familiar $n$th Bernoulli number defined by

$$
\mathrm{e}^{B t}=\sum_{n=0}^{\infty} B_{n} \frac{t^{n}}{n!}=\frac{t}{\mathrm{e}^{t}-1}, \quad|t|<1
$$

where the symbol $B_{k}$ is interpreted to mean that $B^{k}$ must be replaced by $B_{k}$ when we expand the one on the left. This relation can be written as

$$
\mathrm{e}^{(B+1) t}-\mathrm{e}^{B t}=t .
$$

[^0]Hence we obtain

$$
B_{0}=1, \quad(B+1)^{k}-B^{k}= \begin{cases}1, & \text { if } k=1, \\ 0, & \text { if } k>1,\end{cases}
$$

with the usual convention about replacing $B^{k}$ by $B_{k},(i \geq 0)$. The Hurwitz zeta function

$$
\begin{equation*}
\zeta(s, x)=\sum_{k=0}^{\infty} \frac{1}{(k+x)^{s}} \tag{2}
\end{equation*}
$$

is a meromorphic function of $s$. We give the generating functions of $q$-Bernoulli numbers and $q$-Bernoulli polynomials. Next, we consider the $q$-analogue of this Hurwitz zeta function. The paper is organized as follows. In the following section, we define the $q$-zeta functions, $q$-Hurwitz zeta functions, and we consider the $q$-zeta function which interpolates the $q$-Bernoulli numbers and $q$-Bernoulli polynomials. In Section 3, we describe the beautiful zeros of the $B_{n, q^{r}}(x)$ using a numerical investigation.

## 2. $q$-Bernoulli numbers and polynomials

In this section we define the $q$-Bernoulli numbers $\beta_{n, q^{r}}$ and polynomials $\beta_{n, q^{r}}(x)$ and investigate their properties. Throughout this paper we use the following notations. By $\mathbb{Z}$ we denote the ring of rational integers, $\mathbb{Q}$ denotes the field of rational numbers, $\mathbb{C}$ denotes the complex number field,

$$
[x]_{q}=\frac{1-q^{x}}{1-q} \quad \text { for any real } x
$$

We assume that $q \in \mathbb{C}$ with $|q|<1$. First, we introduce the $q$-Bernoulli polynomials using a generating function (cf. [6,7]). Let

$$
\begin{equation*}
F_{q^{r}}(t)=\frac{q^{r}-1}{r \log q} \mathrm{e}^{\frac{t}{1-q^{r}}}-t \sum_{n=0}^{\infty} q^{r n} \mathrm{e}^{[n]_{q^{r} t}}, \quad|t|<1 . \tag{3}
\end{equation*}
$$

Consider the Taylor expansion at $t=0$.

$$
F_{q^{r}}(t)=\beta_{0, q^{r}}+\beta_{1, q^{r}} \frac{t}{1!}+\beta_{2, q^{r}} \frac{t^{2}}{2!}+\cdots+\beta_{n, q^{r}} \frac{t^{n}}{n!}+\cdots
$$

The coefficients $\beta_{n, q^{r}}$ are called the $n$th $q$-Bernoulli numbers. Note that

$$
\begin{equation*}
\frac{1}{t}\left(F_{q^{r}}(t)-\frac{q^{r}-1}{r \log q} \mathrm{e}^{\frac{t}{1-q^{r}}}\right)=-\sum_{k=0}^{\infty}\left(\sum_{n=0}^{\infty} q^{r n}[n]_{q^{r}}^{k}\right) \frac{t^{k}}{k!} \tag{4}
\end{equation*}
$$

Now we consider the generating function of the $q$-Bernoulli polynomials as follows:

$$
\begin{equation*}
\sum_{n=0}^{\infty} \beta_{n, q^{r}}(x) \frac{t^{n}}{n!}=F_{q^{r}}(x, t)=\frac{q^{r}-1}{r \log q} \mathrm{e}^{\frac{t}{1-q^{r}}}-t \sum_{n=0}^{\infty} q^{r n+r x} \mathrm{e}^{[n+x] q_{r^{r}}} . \tag{5}
\end{equation*}
$$

Note that

$$
t=\mathrm{e}^{t} F_{q^{r}}\left(q^{r} t\right)-F_{q^{r}}(t)=\sum_{n=0}^{\infty}\left\{\left(q^{r} \beta_{q^{r}}+1\right)^{n}-\beta_{n, q^{r}}\right\} \frac{t^{n}}{n!}
$$

By comparing the coefficients on both sides, we obtain

$$
\left(q^{r} \beta_{q^{r}}+1\right)^{k}-\beta_{k, q^{r}}= \begin{cases}1, & \text { if } k=1 \\ 0, & \text { if } k>1\end{cases}
$$

By simple calculations, we have the following remark.
Remark 1. Note that
(1) $\lim _{q \rightarrow 1} F_{q^{r}}(x, t)=\frac{t}{\mathrm{e}^{t}-1} \mathrm{e}^{x t}=F(x, t)$,
(2) $\beta_{n, q^{r}}=\frac{1}{1-q^{r n}} \sum_{k=0}^{n-1} \frac{n!}{k!(n-k)!} q^{r k} \beta_{k, q^{r}}$, for $n>1$,
(3) $\beta_{n, q^{r}}(0)=\beta_{n, q^{r}}$,
(4) $\lim _{q \rightarrow 1} \beta_{n, q^{r}}=B_{n}, \lim _{q \rightarrow 1} \beta_{n, q^{r}}(x)=B_{n}(x)$.
(5) $\beta_{n, q^{r}}(x)=\frac{1}{\left(1-q^{r}\right)^{n}} \sum_{j=0}^{n}\binom{n}{j}(-1)^{j}\left(q^{r}\right)^{x j} \frac{j}{\left[j q_{q^{r}}\right.}$.

Now we define the $q$-Bernoulli numbers $B_{n, q^{r}}$ as

$$
\begin{equation*}
G_{q^{r}}(t)=F_{q^{r}}(t)-\frac{q^{r}-1}{r \log q} \mathrm{e}^{\frac{t}{1-q^{r}}}=\sum_{n=0}^{\infty} B_{n, q^{r}} \frac{t^{n}}{n!}, \quad \text { cf. [7]. } \tag{6}
\end{equation*}
$$

We have

$$
\frac{q^{r}-1}{r \log q}\left(\frac{1}{1-q^{r}}\right)^{n}+B_{n, q^{r}}=\beta_{n, q^{r}}
$$

We also consider the $q$-Bernoulli polynomials $B_{n, q^{r}}(x)$ given by

$$
G_{q^{r}}(x, t)=F_{q^{r}}(x, t)-\frac{q^{r}-1}{r \log q} \mathrm{e}^{\frac{t}{1-q^{r}}}=\sum_{n=0}^{\infty} B_{n, q^{r}}(x) \frac{t^{n}}{n!} .
$$

Then we obtain

$$
\begin{equation*}
B_{n, q^{r}}(x)=\beta_{n, q^{r}}(x)-\frac{q^{r}-1}{r \log q}\left(\frac{1}{1-q^{r}}\right)^{n} . \tag{7}
\end{equation*}
$$

Note that

$$
\begin{equation*}
G_{q^{r}}\left(-q^{r} t\right)=q^{r} t \sum_{n=0}^{\infty} q^{r n} \mathrm{e}^{[n]_{q^{r}}\left(-q^{r} t\right)} \tag{8}
\end{equation*}
$$

By (6), we see that

$$
\sum_{n=0}^{\infty} B_{n, q^{r}}(x) \frac{t^{n}}{n!}=-t \sum_{n=0}^{\infty} q^{r n+r x} \mathrm{e}^{\left([x]_{q^{r}}+q^{r x}[n]_{\left.q^{r}\right) t}\right.}=\mathrm{e}^{[x]_{q^{r t}}} G_{q^{r}}\left(q^{r x} t\right)
$$

Thus we have

$$
\sum_{n=0}^{\infty} B_{n, q^{r}}(x) \frac{t^{n}}{n!}=G_{q^{r}}(x, t)=\mathrm{e}^{[x]_{q^{r}}} G_{q^{r}}\left(q^{r x} t\right)=\sum_{n=0}^{\infty}\left(\sum_{m=0}^{n}\binom{n}{m} q^{r m x} B_{m, q^{r}}[x]_{q^{r}}^{n-m}\right) \frac{t^{n}}{n!} .
$$

Hence, we obtain the following theorem:
Theorem 2. For $n \geq 0$,

$$
B_{n, q^{r}}(x)=\sum_{j=0}^{n}\binom{n}{j} q^{r j x} B_{j, q^{r}}[x]_{q^{r}}^{n-j}
$$

$B_{n, q^{r}}(x)$ are called the nth $q$-Bernoulli polynomials. Note that $B_{n, q^{r}}(0)=B_{n, q^{r}}$.
Let $\Gamma(s)$ be the gamma function. By (8), for $s \in \mathbb{C}$, we obtain

$$
\frac{1}{\Gamma(s)} \int_{0}^{\infty} G_{q^{r}}\left(-q^{r} t\right) \mathrm{e}^{-t} \mathrm{~d} t=\sum_{n=0}^{\infty} q^{r n+r} \frac{1}{\Gamma(s)} \int_{0}^{\infty} t^{s-2} \mathrm{e}^{-[n+1]_{q^{r} t}} t^{s-1} \mathrm{~d} t=\sum_{n=1}^{\infty} \frac{q^{r n}}{[n]_{q^{r}}^{s}} .
$$

Using (8), we define the functions $\zeta_{q}(s, x)$ and $\zeta_{q}(s)$ as follows.
Definition 3. For $x \in \mathbb{R}, s \in \mathbb{C}$, we define the Hurwitz $q$-zeta function as

$$
\zeta_{q}(s, x)=\sum_{n=0}^{\infty} \frac{q^{r n+r x}}{[n+x]_{q^{r}}^{s}}
$$



Fig. 1. Shape of $B_{n, q^{5}}$.
Remark 4. Note that $\zeta_{q}(s, x)$ has an analytic continuation on $\mathbb{C}$ with only one simple pole at $s=1$. Let us define the $q$-zeta function as $\zeta_{q}(s)=\zeta_{q}(s, 1)$.

Using (7), we have

$$
\frac{1}{\Gamma(s)} \int_{0}^{\infty} t^{s-2} G_{q^{r}}(x,-t) \mathrm{d} t=\sum_{n=0}^{\infty} q^{r n+r x} \frac{1}{\Gamma(s)} \int_{0}^{\infty} \mathrm{e}^{-[n+x]_{q^{r}}} t^{s-1} \mathrm{~d} t=\zeta_{q}(s, x) .
$$

We also obtain

$$
\zeta_{q}(s, x)=\sum_{n=0}^{\infty} \frac{(-1)^{n} B_{n, q^{r}}(x)}{n!} \frac{1}{\Gamma(s)} \int_{0}^{\infty} t^{s-2+n} \mathrm{~d} t
$$

Hence, we have the following theorem.
Theorem 5. For $n \in \mathbb{N}$, we have

$$
\zeta_{q}(1-n, x)=-\frac{B_{n, q^{r}}(x)}{n}, \quad \zeta_{q}(1-n)=-\frac{B_{n, q^{r}}}{n} .
$$

## 3. Beautiful zeros of the $q$-Bernoulli numbers and polynomials

Over the years, there has been increasing interest in solving mathematical problems with the aid of computers. Recently, Woon [2] and Veselov and Ward [3] observed the regular behaviour of the real roots of Bernoulli polynomials using a numerical investigation. Using computer experiments, Woon [2] verifies a remarkably regular structure of the complex roots of Bernoulli polynomials. Also, Veselov and Ward [3] proved the regular lattice behaviour of almost all of the real roots of the Bernoulli polynomials. However, to this point there have been no such investigations for $q$-Bernoulli polynomials $B_{n, q^{r}}(x)$ and $q$-Bernoulli numbers $B_{n, q^{r}}$. In this section, we display the shapes of the $q$-Bernoulli numbers and polynomials. Next, we investigate the zeros of the $q$-Bernoulli polynomials by using a computer.

For $n=1, \ldots, 10, \frac{5}{10} \leq q \leq \frac{9}{10}$, we can draw a plot of the $q$-Bernoulli numbers $B_{n, q^{r}}$, respectively. This shows the ten plots combined into one. We display the shapes of the $q$-Bernoulli numbers $B_{n, q^{r}}$ (Figs. 1 and 2).

For $n=1, \ldots, 10$, we can draw a plot of the $q$-Bernoulli polynomials $B_{n, q^{r}}(x)$, respectively. This shows the ten plots combined into one. We describe the shapes of the $q$-Bernoulli polynomials $B_{n, q^{r}}(x)$ for $n=1, \ldots, 10,0 \leq x \leq$ $1, q=\frac{1}{2}$ (Figs. 3 and 4).

We plot the zeros of the $q$-Bernoulli polynomials $B_{20, q^{r}}(x), x \in \mathbb{C}, q=\frac{1}{2}$ (Figs. 5-8).


Fig. 2. Shape of $B_{n, q^{7}}$.


Fig. 3. Shape of $B_{n, q^{5}}(x)$.


Fig. 4. Shape of $B_{n, q^{7}}(x)$.


Fig. 5. Zeros of $B_{20, q}(x)$.


Fig. 6. Zeros of $B_{20, q^{2}}(x)$.

In Figs. 5 and 8, for $r=1,5, B_{n, q^{r}}(x), x \in \mathbb{C}$, has $\operatorname{Im}(x)=0$ reflection symmetry. This translates to the following open problem. Prove that $B_{n, q^{r}}(x), x \in \mathbb{C}$, has $\operatorname{Im}(x)=0$ reflection symmetry, $r \in \mathbb{N}_{o}$, where $\mathbb{N}_{o}=\{x \mid x$ is a odd number $\}$. Our numerical results for approximate solutions of real zeros of the $B_{n, q^{r}}(x), r=1,5$, $q=\frac{1}{2}$ are displayed in Tables 1 and 2. Using computer experiments, we verify a remarkably regular structure of the real roots of $q$-Bernoulli polynomials $B_{n, q^{r}}(x)$ (see Table 1).

Finally, we shall consider the more general problems. Prove or disprove: since $n$ is the degree of the polynomial $B_{n, q^{r}}(x)$, the number of real zeros $\mathrm{re}_{B_{n, q^{r}}(x)}$ lying on the real plane $\operatorname{Im}(x)=0$ is then $\mathrm{re}_{B_{n, q^{r}}(x)}=r(n-1)-$ $c_{B_{n, q^{r}}(x)}(n>1)$, where $c_{B_{n, q^{r}}(x)}$ denotes complex zeros. See Table 1 for tabulated values of re ${B_{n, q^{r}}(x)}$ and $c_{B_{n, q^{r}}(x)}$. In general, how many roots does $B_{n, q^{r}}(x)$ have? Find the numbers of complex zeros $c_{B_{n, q^{r}}(x)}$ of the $B_{n, q^{r}}(x)$, the equation of envelope curves bounding the real zeros lying on the plane, and the equation of a trajectory curve running through the complex zeros on any one of the arcs. It would be very interesting to find a mathematical explanation for this. In any case, these calculations are too complicated to compute by hand, so we have to use a computer. The author has no doubt that investigations along this line will lead to a new approach employing numerical methods in


Fig. 7. Zeros of $B_{20, q^{4}}(x)$.


Fig. 8. Zeros of $B_{20, q^{5}}(x)$.

Table 1
Numbers of real and complex zeros of $B_{n, q^{r}}(x)$

| Degree $n$ | $r=1$ | $r=5$ |  |  |
| :--- | :--- | :--- | :--- | :---: |
|  | Real zeros | Complex zeros | Real zeros | Complex zeros |
| 2 | 1 | 0 | 1 | 0 |
| 3 | 0 | 2 | 0 | 10 |
| 4 | 1 | 2 | 1 | 14 |
| 5 | 0 | 4 | 0 | 20 |
| 6 | 1 | 6 | 1 | 24 |
| 7 | 0 | 6 | 0 | 30 |
| 8 | 1 | 1 | 34 |  |

the field of research of the $q$-Bernoulli polynomials $B_{n, q^{r}}(x)$ to appear in mathematics and physics. For related topics the interested reader is referred to [1-3].

Table 2
Approximate solutions of $B_{n, q^{5}}(x)=0, x \in \mathbb{R}$

| Degree $n$ | Real zeros |
| :--- | :---: |
| 2 | -0.00887882 |
| 3 | $\times$ |
| 4 | -0.0769761 |
| 5 | $\times$ |
| 6 | -0.113251 |
| 7 | $\times$ |
| 8 | -0.132542 |

## Acknowledgement

This work was supported by Hannam University Research Fund, 2006.

## References

[1] C.S. Ryoo, T. Kim, R.P. Agarwal, A numerical investigation of the roots of $q$-polynomials, Int. J. Comput. Math. 83 (2) (2006) $223-234$.
[2] S.C. Woon, Analytic Continuation of Bernoulli Numbers, a New Formula for the Riemann Zeta Function, and the Phenomenon of Scattering of Zeros, (1997), DAMTP-R-97/19.
[3] A.P. Veselov, J.P. Ward, On the real zeroes of the Hurwitz zeta-function and Bernoulli polynomials, (2002), math.GM/0205183.
[4] L. Carlitz, $q$-Bernoulli numbers and polynomials, Duke Math. J. 15 (1948) 987-1000.
[5] A. Erdelyi, Higher Transcendental Functions, vol. 1-3, McGraw-Hill, 1953.
[6] T. Kim, On $p$-adic $q$ - $L$-function and sums of powers, Discrete Math. 252 (2002) 179-187.
[7] T. Kim, Analytic continuation of multiple $q$-zeta functions and their values at negative integers, Russ. J. Math. Phys. 11 (2004) 71-76.
[8] N. Koblitz, A new proof of certain formulas for p-adic $L$-functions, Duke Math. J. 46 (1979) 455-468.
[9] N. Koblitz, On Carlitz's $q$-Bernoulli numbers, J. Number Theory 14 (1982) 332-339.
[10] P.G. Todorov, On the theory of the Bernoulli polynomials and numbers, J. Math. Anal. Appl. 104 (1984) 175-180.
[11] E.T. Whittaker, G.N. Waston, A Course of Morden Analysis, Cambridge Univ. Press, 1963.


[^0]:    E-mail address: ryoocs@hannam.ac.kr.

