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All Polynomials of Binomial Type Are
Represented by Abel Polynomials

GIAN-CARLO ROTA - JIANHONG SHEN

BRIAN D. TAYLOR

1. - Introduction

The umbral calculus began in the Nineteenth Century as a heuristic device
whereby a sequence of scalars ao, a2,... would be treated as a sequence
of powers 1, a, a2, ... of a variable a called an umbra. Numerical and com-
binatorial identities were guessed by this method, whose foundations remained
mysterious. One did not feel the need for justifying the method rigorously,
since all identities guessed by umbral method could later be verified directly.

In several previous papers, ending with the work of Rota and Taylor, a
rigorous foundation for the umbral calculus was given. The obvious idea was to
consider a linear functional on polynomials, called eval, so that eval(an ) = an.
One says that the umbra a represents the sequence ao, aI, a2, ...

This obvious idea must be supplemented by the notion of exchangeable
umbrae. Two umbrae a and a’ are said to be exchangeable when they represent
the same sequence.

One realizes the need for exchangeable umbrae when considering the se-
quence

This sequence cannot be represented using only the umbra a above. It requires
two exchangeable umbrae a and a’. In terms of two such umb rae representing
the same sequence ao, a I, a2, - - - we have

This is the basic idea. The details are easily worked out, and they are
given below.

A variety of computations can be carried out using the umbral calculus. The
umbral interpretation of functional composition, however, remained unknown -
even in the last century.

Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4)
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The purpose of the present work is to give an umbral interpretation of
functional composition of formal power series. The basic theory is developed
below; plenty of examples can be found in the literature.

We are honored to dedicate this paper to the memory of Ennio De Giorgi.

2. - The classical umbral calculus

In this section we review the classical umbral calculus in one variable over
a commutative ring k. The ring k will be assumed to contain the ring of
rational numbers Q. The presentation is self contained; further details on the
definition and use of the umbral calculus are given in the items listed in the
bibliography. Some of the proofs of known results are skipped, but they are
easily reconstructed or read from the references.

A classical umbral calculus consists of three types of data:

1. a polynomial ring k[A, x, y]. The variables belonging to the set will be
denoted by Greek letters, and are called umbrae.

2. a linear functional eval : k[A, x, y] ~ k[x, y] such that

(a) eval ( 1 ) = 1,

(b) ykxn yr) = eval(yk), for distinct
umbrae a, 13, ... , YEA and i, j, ..- , k, n, r are nonnegative integers.

3. A distinguished umbra, 8 E A, satisfying = where 8 is the
Kronecker delta.

A polynomial p E k[A] is called an umbral polynomial. Two umbral

polynomials p, q E k[.4] are said to be equivalent, written p -- q, when

eval(p) = eval(q).
A sequence ao, al, a2, ... in k[x) is said to be umbrally represented by an

umbra a when for all i ~ 0. This implies ao - l. More generally,
an umbral polynomial p, is said to represent the sequence eval(po), 
eval(p2), ...

Two umbral polynomials p, q are said to be exchangeable, written p - q,
when p and q represent the same sequence in k[x].

The notions of equivalence and exchangeability are extended coefficientwise
to formal power series k[,,4][[t]] with coefficients in k[A].

For any polynomial or formal power series f = ¿i ait’ with coefficients ai
in k[A], we define the support, supp(f), of f to be the set of all umbrae a for
which there exists an ai in which a appears to a positive power in a monomial
with nonzero coefficient.

Two umbral polynomials (or formal power series) are said to be unrelated
when their supports have empty intersection.

The following fact is easily established; a proof is given in [4].
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PROPOSITION 1. Given f (t) E k[A, x, t], if p, q are umbral polynomials unre-
lated to f(t), then f (p) -- f(q). 0

An important (and easy) application of the preceding proposition is the

following. If p, r E k[A, x] are unrelated and if q, S E k[A, x] are unrelated,
then p rr q and r rr s implies pr ^_~ qs and similarly, p - q and r = s implies
pr - qs and p + r - q + s. These assertions are not, in general, true when
the supports of the umbral polynomials are not disjoint. It is always true that
p-~r ^_~q-~s.

A sequence of polynomials po (x ) , p 1 (x ) , ... will always denote a sequence
of polynomials with coefficients in k such that po (x ) = 1, = x and Pn (x )
is of degree n for every positive integer n. An umbra X such that X n - Pn (x ),
where po(x), pl (x), ... is a polynomial sequence, is said to be a polynomial
umbra. By contrast, an umbra a such that eval(an ) is an element of k for

every non negative integer n will be said to be a scalar umbra.
Two umbrae a and f3 are said to be inverse when a + f3 =- E.
We will assume that the umbral calculus we deal with is saturated. A

saturated umbral calculus satisfies the following requirements. Every sequence
ao, a,, a2,... in k[x] is represented by infinitely many distinct (and thus ex-
changeable) umbrae. Necessarily, in a saturated umbral calculus, any umbra a
has infinitely many (exchangeable) inverses; it is sometimes useful to denote
one such inverse umbra by - I . a.

For any umbra a and every integer n, the auxiliary umbra, n. a stands for
one of the following umbrae:

1. when n = 0, the auxiliary umbra 0 - a denotes an umbra exchangeable
with E;

2. when n &#x3E; 0, the auxiliary umbra n - or denotes an umbra exchangeable with
the sum a’+a"+ --- + a"’ where a’,..., a "’ are n distinct umbrae each
exchangeable with a;

3. when n  0, the auxiliary umbra n - a denotes the sum of n exchangeable
umbrae f3 + + ... + f3"’, each of them being an inverse umbra to a.

Expressions such as m . n . a will not be used. It may be shown that
saturated umbral calculi exist.

3. - Operators and polynomial sequences

We summarize some known facts of finite operator calculus, rewritten in
the language of umbrae.

We denote by D the derivative operator with respect to the variable x on
the polynomial rings k[A, x] and k[x]. Thus, for a E k, the exponential eaD
is the linear operator
n

defined on the module k[x].
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A linear operator T ou k[x] which commutes with the operator for
all a E k is said to be shift-invariant. If in addition the operator T has the

property that Tl = 1, then the operator is said to be unital. Every shift-invariant
operator S on k[x] is of the form S = c Dk T , where c is an arbitrary constant
and where T is a unital operator.

For every unital operator T, there exists an umbra a, unique up to ex-
hangeability, such that

for every polynomial p(x) E k[x]. Such a unital operator satisfies T = f ( D),
where f (t) is the formal power series equivalent to eat.

A shift-invariant operator of the form Q = D T , where T is a unital

operator, is said to be a delta operator. We write Q = Df (D).
To every delta operator Q there exists a unique sequence of polynomials

po (x ) , p 1 (x ) , ... such that = and pn (o) = 0 for n &#x3E; 0. Such
a sequence is called the basic sequence of the delta operator Q. A sequence of
polynomials is said to be of binomial type whenever po(x) = 1, pi (x) = x, and

for all a E k.

Every basic sequence is of binomial type. Conversely, every sequence of
polynomials of binomial type such that po (x ) = 1 and p 1 (x ) = x is the
basic sequence for a unique delta operator.

The most important sequence of binomial type is the sequence of Abel

polynomials, namely, the sequence = x(x for a E Q. The

sequence of Abel polynomial is the basic sequence associated to the operator
De-aD. Because of the importance of this fact, we review the proof, which
amounts to the following computation:

It follows from the above verification that the sequence of Abel polynomials
is a sequence of polynomials of binomial type. The identity stating that the
sequence of polynomials pn(x) = x(x + na)n-l is of binomial type is due
to Abel.

In closing this section, we mention the central notion in the present work.
Let be two sequences of polynomials in k[x], represented by the
umbrae X, ~ respectively. Their umbral composition, Pn (q) is the sequence
of polynomials umbrally defined as p,(~), that is, the sequence of polyno-
mials rn(x) defined as rn (x ) = or equivalently the polynomial
sequence rn (x ) E k[x] such that Pn(ç).
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4. - Main result

We begin by proving two technical identities that will be used in the main
theorem below.

PROPOSITION 2. If a, y are any two distinct umbrae, and if p (t ) is any polynomial
in k[t], then

where a’ and each for 1  i  n, is an umbra exchangeable with ot..
PROOF. We have

Summing over the variable j, we obtain

as desired. 0

PROPOSITION 3. For any polynomial p(t) in k[t], for any umbra a, and for any
umbra y inverse to a, the following identity holds,

(ny + w ot)p(y -f- w a) -- 0.
PROOF. The following calculation verifies the identity, using the preceding

proposition.

where a’ is an umbra exchangeable with a. But

is a polynomial in y + a (its coefficeints lie in k[(n -1 ) ~ a’]) with zero constant
term. Since y + a =- 0, the conclusion follows. D
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THEOREM 4. If a is a scalar umbra, then the polynomial sequence Pn (x ) ^_J
x(x + n.a)n-I is of binomial type.

Conversely, for any sequence pn (x) of binomial type, there exists a scalar umbra
a such x (x +n - 0.

PROOF. Let y be an inverse umbra to the umbra a. Define a delta operator Q
by setting Q ^_~ DeY D . Clearly

for all p (x ) E k[A, x] unrelated to y. We show that

Indeed, by the preceding proposition we have

The converse is immediate. El

COROLLARY 5. Let a be a scalar umbra. Let X be a polynomial umbra,
representing a sequence of polynomials of binomial type in k[x]. Then the sequence
of polynomials umbrally represented by X (X + n. is also a sequence of
polynomials of binomial type.

PROOF. The verification that the sequence of polynomials X (X + n. a )n-1 I
is of binomial type is carried out as in the preceding theorem, replacing the
derivative relative to x by the partial derivative DX relative to x. 1:1

COROLLARY 6. In the notation of the preceding corollary, suppose that the
sequence ofpolynomials umbrally represented by X n (n = 0, 1, 2, ... ) is the basic
sequence of the delta operator f (D), and say that g(D). Then the

sequence of polynomials umbrally represented by X (X + n ~ is the basic

sequence of the delta operator g( f (D)). 0
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COROLLARY 7. Suppose that pn (x) is a sequence of binomial type associated
to a delta operator P E k[[D]]. If Q E k[[D]] is equivalent (as a formal power
series) to and if

then qn (x) is a sequence of binomial type and it is the basic sequence associated to
the operator Q.

PROOF. Immediate from Theorem 4. If p, (x) -- x (x + n. ,8 ) n -1 for some
umbra {3, then the sequence associated to Q is x(x + n. {3 + n. a)n-l. 1:1

COROLLARY 8. Suppose that Xn ̂ _- x (x + n. for all n. X (X + n .
~)n-1, then

PROOF. If is the delta operator of which Xn is the basic

sequence, apply the operator P to the left-hand side and Dx to the right-hand
side of Then set x = 0. D

The last corollary is the Lagrange inversion formula. More explicitly, if

p(t), q (t) E k[[t]] with q(O) = 0 and p(q(t)) = t, we have

Indeed, suppose p, q E k[[t]] are defined by and 
and with a, f3 as in the preceding corollary. We have

and it suffices to show that if p(q (t)) = t, then X (X + n. ~8)" ~. By
Corollary 6 we know that p(q (D)) is the delta operator associated to the

sequence of binomial type whose nth element is equivalent to X (X -f- n . ,B)n-1.
But since this operator is D,

Other versions of the Lagrange inversion formula are similarly proved.

EXAMPLE. The sequence of polynomials (x )n = x (x -1 ) (x - 2) ~ ~ ~ (x - n + 1)
is of binomial type. By the preceding theorem, there exists an umbra f3 such
that

for n = 0, 1, 2, .... Furthermore, the sequence (x )n is the basic sequence for
the difference operator A = e D - I, i.e. = p(x + 1) - p(x). By the
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proof of the above Therefore,

Hence Bn for all n, where Bn is the n-th Bernoulli number.
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