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1. INTRODUCTION

Cumulants were first defined and studied by Danish scientist T. N. Thiele.
He called them semi-invariants. The importance of cumulants comes from
the observation that many properties of random variables can be better
represented by cumulants than by moments. We refer to Brillinger [3] and
Gnedenko and Kolmogorov [4] for further detailed probabilistic aspects
on this topic.

Given a random variable X with the moment generating function g(t), its
nth cumulant Kn is defined as

Kn=
d n

dtn } t=0

log g(t).
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That is,

:
n�0

mn

n!
tn= g(t)=exp \ :

n�1

Kn

n!
tn+ , (1)

where, mn is the n th moment of X.
Generally, if _ denotes the standard deviation, then

K1=m1 , K2=m2&m2
1=_2.

Cumulants of some important and familiar random distributions are listed
as follows. For the Poisson distribution with mean *,

Kn #*, n�1.

The exponential distribution with mean + has cumulants

Kn=(n&1)! +n, n�1.

The Gaussian distribution N(+, _) possesses the simplest list of cumulants:

K1=+, K2=_2, Kn=0, n�3.

These classical examples clearly demonstrate the simplicity and efficiency
of cumulants for describing random variables. It is apparently not fortuitous
for cumulants to encode the most important information of the associated
random variables. The underlying reason may well reside in the following
two invariant properties (which are in fact related to each other).

v (Translation Invariance) Let Kn(X ) denote the nth cumulant of a
random variable X. Then, for any constant c,

K1(X+c)=c+K1(X ), Kn(X+c)=Kn(X ), n�2.

v (Additivity) Let X and Y be any two independent random variables.
Then,

Kn(X+Y )=Kn(X)+Kn(Y ), n�1.

Our combinatorial interests in cumulants are very much inspired by
these algebraic properties, especially the translation invariance. Notice that
these are truly algebraic relations, which has very little to do with the
positivity attribute of random variables (though in probability theory or
statistics, positivity is extremely important; see, for instance, the famous
Moment Problem [1, 2, 8]). Given any sequence of (real) numbers: a0=1,
a1 , a2 , ..., the associated cumulants K1 , K2 , ... are always well defined
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according to Eq. (1). While enjoying this fresh degree of freedom, we have
to face the difficulty in interpreting X+c, since for an arbitrary sequence,
it is unclear whether there exists a random variable X or not (unless we
solve the moment problem).

This difficulty is overcome by the notion of umbrae. An umbra is a
formal, or dry, vividly speaking, random variable, which has no probabilistic
flesh, but is indeed endowed with the algebraic spirit of a random variable.
It is a powerful tool in dealing with a sequence of numbers (such as the
Bell numbers; see Rota [10]), and for studying combinatorial algebraic
objects like binomial sequences and algebraic invariants of polynomial
systems (Hilbert [5], Kung and Rota [7]). We refer to Roman and Rota
[9] and Rota, Kahaner, and Odlyzko [11] for the history and develop-
ment of Umbral Calculus. An algebraic treatment was given in Joni and
Rota [6]. New developments can be found in Rota and Taylor [13] and
Rota, Shen, and Taylor [12]. Also see Shen [14] for a recent application
in wavelet analysis.

In this paper, we shall employ the full freedom of Umbral Calculus to
study cumulants. Umbral Calculus leads to various formulae for the
cumulant sequence, each of which reveals one portion of the secret encoded
in cumulants. Through these formulae, cumulants are connected to familiar
combinatorial objects such as binomial sequences and symmetric functions.
In return, the study of cumulants has stimulated new extension of the exist-
ing theory of Umbral Calculus. For instance, for the first time in this paper,
we discuss umbral derivatives (or the star algebra).

Our plan is the following. In Section 2, we survey briefly the literature
and recent development of Umbral Calculus. By doing so, we make our
readers comfortable with the notations and symbols necessary for the rest
of the paper. The following five sections study five different ways of under-
standing cumulants, among which, four are based on Umbral Calculus. The
fith employs partition lattices and similar work can be found in Speed [15].

2. UMBRAL CALCULUS

An umbra : is the generalization of the expectation E of a random
variable X. It is a powerful tool for dealing with a sequence of numbers
a0 , a1 , ..., whether positive definite or not. (A sequence of real numbers is
said to be positive definite if it can be realized as the moment sequence of
certain random variables.) In some sense, an umbra can be called a formal
random variable. The formality makes it much easier to understand operators
like ���:.
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2.1. Fundamentals

Umbral Calculus is axiomatized by the following definition (See Rota
and Taylor [13]).

Definition 2.1. An umbral calculus consists of the following data and
rules:

(1) An alphabet A, whose elements are called umbrae and denoted
by Greek letters.

(2) A commutative integral domain D whose quotient field is of
characteristic zero.

(3) A D-linear functional eval: D[A] � D such that eval(1)=1, and

eval(:i; j } } } #k)=eval(:i ) eval(; j ) } } } eval(#k)

whenever :, ;, ..., # are distinct umbrae.

(4) A distinguished element = of the alphabet A, such that

eval(=n)=$n ,

where $ is the Kronecker delta.

If two umbral polynomials p and q are evaluated to a same element in
D, then they are said to be umbrally equivalent and denoted by p&q. A
sequence a0 , a1 , ... is said to be umbrally represented by an umbra :, if

eval(:n)=an , for n=0, 1, ... .

According to Axiom (3), a0 must be 1. If two distinct umbrae : and ;
represent the same sequence, then they are said to be exchangeable and we
write

:#;.

Notice the difference between :&; and :#;. The notion of exchangeability
plays a significant role in the algebraic development of Umbral Calculus. It
models the familiar concept of ``i.i.d'' (independent and identical distributions)
in probability theory.

Umbral Calculus is usually assumed to be saturated, which means that
any sequence in D can be represented by infinitely many umbrae in A (see
Rota and Taylor [13]). Especially, A cannot be countable.

A taste of Umbral Calculus can be sought from the famous example of
the Bell Umbra ;. An umbra ; is called a Bell umbra if it umbrally represents
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the sequence of Bell numbers B0 , B1 , ... . (Bn is the number of distinct parti-
tions of a set with n elements. See Rota [10].) This umbra is completely
characterized by

;n+1& (;+1)n, n=0, 1, 2, ... .

All other properties of the Bell numbers are the derivatives of this simple
relation.

By the saturation assumption, any formal power series in D[[t]]

g(t)= :
n�0

an

n!
tn, an # D

can be umbrally represented by a formal power series in D[A][[t]]. In
fact, if : umbrally represents the sequence (an), then

g(t)&e:t,

assuming that we naturally extend eval to be D[t]-linear. We say that g(t)
is umbrally represented by :. If g(t) and f (t) are umbrally represented by
two distinct umbrae : and ;, then g(t) f (t) is represented by :+; (or any
one that is exchangeable with it). This is precisely a restatement of the fact
that g(t) f (t) defines a convolution in terms of their coefficients.

2.2. Further Developments

2.2.1. The Annihilating Umbra and Auxiliary Umbrae

For a given umbra : # A, we define its annihilating umbra &.: to be the
unique umbra (up to umbral exchangeability) whose moment generating
function is the reciprocal of :'s. It is uniquely characterized by the umbral
equivalence

:+(&.:)#=.

More generally, for any integer n, we use n .: to denote the unique (up
to exchangeability) umbra whose moment generating function is the n th
power of :'s. When n is positive, then

n .:#:1+:2+ } } } +:n

for any n distinct umbrae :i , all exchangeable with :. If n is negative, say
n=&k, then

&k .:#;1+;2+ } } } +;k
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for any k distinct umbrae ;i exchangeable with the annihilating umbra
&.:. We call n .: an auxiliary umbra of :. More discussion can be found in
Rota and Taylor [13].

2.2.2. Partial Derivatives

In the algebra D[A], for any : # A, let :* denote the partial derivative
operator �: . It is clear that for any :, ; # A,

:* b ;*=;* b :*.

Hence, if D[A*] denotes the subalgebra generated by all star elements :*
in the D-linear operator algebra of D[A], then D[A*] is isomorphic to the
polynomial algebra generated by the star alphabet

A*=[:* | : # A].

The mapping : �:* from A to A* introduces a natural isomorphism between
D[A] and D[A*]. That is, for any umbral polynomial p(:, ;, ..., #) # D[A],

p � p* # D[A*]: p*= p(:*, ;*, ..., #*).

We call it the star isomorphism.
Furthermore, D[A] can D-linearly act on itself by multiplication. In this

sense, the elements in D[A] are called multipliers and D[A] is also treated
as a subalgebra of its D-linear operator algebra. Let D[A | A*] denote the
subalgebra generated by all multipliers and star elements. Because of the
uncertainty principle (Strang [16]),

:*:&::*=1,

D[A | A*] cannot be commutative. Yet the following result seems to need
no proof.

Proposition 2.1. Algebra D[A | A*] is isomorphic to (D[A])[A*], the
polynomial algebra generated by the star alphabet A* on the umbral algebra
D[A].

It is now the time for exploring various umbral approaches to under-
standing cumulants.

3. FIRST REPRESENTATION OF CUMULANTS:
CUMULANT UMBRAE

As for the Bell numbers, it is possible to give a clean umbral recursion
formula for cumulants of a given sequence a0=1, a1 , a2 , ... . The concept
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of cumulant umbra is coined for this purpose. This first representation is
the simplest and most direct, though it may not be optimal for understand-
ing the algebraic properties hidden in cumulants.

Definition 3.1 [The Cumulant Umbra]. For a given umbra :, up to
exchangeability, there exists a unique umbra, say }, such that,

:n &}(}+:)n&1 (2)

for all n=1, 2, ... . We call } the cumulant umbra associated with :.

The existence and uniqueness follow readily from the recursive relation

}n &:n& :
n&2

m=0
\n&1

m + }m+1:n&1&m. (3)

On the other hand, suppose : represents a sequence (an). Define

Kn=
d n

dtn } 0 ln \ :
m�0

am

m!
tm+ ,

for n=1, 2, ... . As for random variables, we call Kn the n th cumulant of the
sequence (and the umbra :).

Proposition 3.1.

}n &Kn , n=1, 2, ... .

Proof. Define the generating functions

g(t)=eval(e:t), K(t)=eval(e}t).

From Eq. (2),

: :
n�0

:n

n!
tn&} :

n�0

(}+:)n

n!
tn,

:e:t&}e(}+:) t=}e}te:t,

de:t

dt
&

de}t

dt
e:t.

Noticing that d�dt commutes with eval, we eventually have the ordinary
differential equation

g$(t)=K$(t) g(t),
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with the initial condition g(0)=1. This gives the unique solution

g(t)=exp(K(t)&1),

which proves that Kn=eval(}n). K

Thus, we can derive the classical result.

Corollary 3.1. Suppose that : represents a sequence an , n=0, 1, ... .
Then its n th cumulant Kn is given by

a1 1 0 0 } } }

a2 a1 1 0 } } }

Kn=(&1)n&1 (n&1)! det_a3 �2! a2 �2! a1 1 } } }& . (4)

a4 �3! a3 �3! a2 �2! a1 } } }

} } } } } } } } } } } } } } } n_n

Proof. According to the preceding proposition, the recursion formula
(3), after evaluation, is a linear system of equations on cumulants Km , with
coefficients from the sequence a0 , a1 , ... . We apply the evaluated formula
for m=1, 2, ..., n. Then Kn can be expressed explicitly using Cramer's
formula for linear systems. Formula (4) is finally obtained by moving the
last column to the first in Cramer's formula for Kn .

Our next representation starts from a further umbralization of this matrix
formula.

4. SECOND REPRESENTATION: UMBRAL
SYMMETRIC FUNCTIONS

4.1. A Notation for Generalized Vandemondes

Let R be an arbitrary ring (commutative or non-commutative). For any
n by n matrix M=[ai, j], ai, j # R, if aij commutes with akl whenever k{i,
and l{ j, then we can define the determinant of M by the classical expansion
formula. Properties such as skew-symmetry and Laplace expansion still
hold.

Especially, suppose x1 , x2 , ..., xn are n mutually commutative elements in
R. For any partition * of length n:

*=(*1 , *2 , ..., *n)
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with non-negative integer parts *i , we define

(x1 , x2 , ..., xn | *) :=det[x*j
i ]n_n .

For example, the classical Vandemonde Vn(x1 , x2 , ..., xn) is now written as

(x1 , x2 , ..., xn | 0, 1, ..., n&1).

We shall call (x1 , x2 , ..., xn | *) the Vandemonde of (x1 , x2 , ..., xn) with
respect to *. Notice that

(x1 , x2 , ..., xn | *)
(x1 , x2 , ..., xn | 0, 1, ..., n&1)

is the classical Schur function S* .
In what follows, we apply this notation to the umbral algebra D[A] and

operator algebra D[A | A*]. For star elements, we can even allow the parti-
tion * to have negative parts under the following assumption. For any star
element :* # A*, and any positive integer k, we define [:*]&k to be the
multiplier :k. That is, ``�'' seems to annihilate ``*.''

Notice that for a star element, negative powers do not commute with
positive ones. However, for any two distinct umbrae :, ; # A, and any two
integers n, m (negative maybe), [:*]n commutes with [;*]m. Hence, for
any n distinct umbrae :1 , :2 , ..., :n , and partition * of length n and with
arbitrary integer parts,

(:1* , :2* , ..., :n* | *)

is well defined and is an element in D[A | A*].

4.2. Symmetric Umbral Representation for Cumulants

Suppose Kn is the n th cumulant of a given umbra :, which represents a
sequence an , n=0, 1, ... . Let :1 , :2 , ..., :n # A be any n distinct umbrae,
each exchangeable with :. The main task of this section is to establish the
following theorem:

Theorem 4.1 (Symmetric and Translation Invariant Representation).
For any n=1, 2, ...,

Kn &Cn (:1* , :2*, ..., :n* | &1, 0, ..., n&2) } (:1 , :2 , ..., :n | 0, 1, ..., n&1)

with

Cn=(&1)n&1 [((n&2)!)! n!]&1.
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Here (k!)!=(1!)(2!) } } } (k!) for any non-negative integer k and ((&1)!)! is
assumed to be 1.

Proof. In Eq. (4), use :i to represent the i th column of the matrix
involved. Since all columns are now umbrally unrelated, we can exchange
the order of the det operator and eval. Therefore,

:1 1 0 0 } } }

:2
1 :2 1 0 } } }

Kn& (&1)n&1 (n&1)! det_:3
1 �2! :2

2 �2! :3 1 } } }&:4
1 �3! :3

2 �3! :2
3 �2! :4 } } }

} } } } } } } } } } } } } } } n_n

=(&12)n&1 (n&1)!

:1 } 1 1 :3*1 [:4*]2 1 } } }

:1 } :1 :2 :3*:3 [:4*]2 :4 } } }

_det_:1 } :2
1 �2! :2

2 �2! :3*:2
3 �2! [:4*]2 :2

4 �2! } } }&:1 } :3
1 �3! :3

2 �3! :3*:3
3 �3! [:4*]2 :3

4 �3! } } }

} } } } } } } } } } } } } } } n_n

=
(&1)n&1

((n&2)!)!
[:1*]&1 [:2*]0 [:3*]1 } } } [:n*]n&2 Vn(:1 , :2 , ..., :n).

The linearity of eval and exchangeability of :k 's allow the symmetrization:

Kn&
(&1)n&1

((n&2)!)! n!
:

_ # Sn

[:*_[1]]&1 [:*_[2]]0 [:*_[3]]1 } } } [:*_[n]]n&2

_Vn(:_[1] , :_[2] , ..., :_[n])

=Cn :
_ # Sn

sign(_)[:*_[1]]&1

_[:*_[2]]0 [:*_[3]]1 } } } [:*_[n]]n&2 Vn(:1 , :2 , ..., :n)

=Cn(:1*, :2*, ..., :n* | &1, 0, ..., n&2) } (:1 , :2 , ..., :n | 0, 1, ..., n&1).

This completes the proof. K

Let p(:1 , :2 , ..., :n) denote the umbral polynomial

(:1* , :2* , ..., :n* | &1, 0, ..., n&2) } (:1 , :2 , ..., :n | 0, 1, ..., n&1).
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It is easy to see that p is a symmetric function of :1 , ..., :n . Furthermore,
we now show that when n�2, p is translation invariant. Namely, for any
real constant c,

p(:1+c, :2+c, ..., :n+c)= p(:1 , :2 , ..., :n).

First,

(:1 , :2 , ..., :n | 0, 1, ..., n&1)= `
j>i

(:j&:i)

is apparently translation invariant. Second, the property of translation
invariance is preserved under the action of the star algebra D[A*]. Finally,
Laplace expansion with respect to the first and second columns represents

(:1* , :2*, ..., :n* | &1, 0, ..., n&2)

by

:
j>i

(&1) i+ j (:i , :j | 0, 1)

_(:1*, ..., :*i&1 , :*i+1 , ..., :*j&1 , :*j+1 , ..., :n* | 1, 2, ..., n&2).

For each index pair j, i,

(:1* , ..., :*i&1 , :*i+1 , ..., :*j&1 , :*j+1 , ..., :n* | 1, 2, ..., n&2)

is in the star algebra D[A*] and the multiplier (:i , :j | 0, 1)=:j&: i is
clearly translation invariant. All together, these facts confirm the transla-
tion invariance of p.

Accordingly, we have established umbrally the translation invariance of
cumulants addressed in the Introduction.

Corollary 4.1. Let Kn(:) denote the n th cumulant of an umbra :. Then
for any real constant c, and n�2,

Kn(:+c)=Kn(:).

5. THIRD REPRESENTATION: UMBRAL PARAMETRIC FORM

5.1. The Generalized Umbral Calculus

The Generalized Umbral Calculus (see Rota, Shen, and Taylor [12]) is
obtained from the classical one by replacing axiom (3) in Definition 2.1 by
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(3$) A D-linear functional eval: D[A] � D[x] (instead of D) such
that eval(1)=1, and

eval(:i; j } } } #k)=eval(:i ) eval(; j ) } } } eval(#k)

whenever :, ;, ..., # are distinct umbrae.

We call : a scalar umbra if it represents a sequence of D elements, and
/ a polynomial umbra if it represents a sequence of D[x] elements. In this
paper, we always use Greek letters :, ;, # to represent scalar umbrae, and
/, ,, � to represent polynomial umbrae.

There is an important operator called restriction in the generalized
Umbral Calculus that relates polynomial umbrae to scalar ones.

Given an element in D, say b, for any polynomial umbra /, its restriction
at b is the unique scalar umbra (up to exchangeability) that represents

1, eval(/)(b), eval(/2)(b), eval(/3)(b), ... .

We denote this scalar umbra by (/ | b).
The following properties hold apparently.

(1) (, | b) +(� | b) #(,+� | b) for any two distinct polynomial
umbrae , and �.

(2) c (, | b)#(c, | b) for any constant c.

For simplicity, we now assume that D is the real number field.

5.2. Binomial Sequences and Binomial Umbrae

There is a close relation between the moment�cumulant pair and the
binomial sequence of polynomials. We refer to Rota, Shen, and Taylor [12]
for the most recent development in binomial sequences of polynomials.

A sequence of real polynomials pn(x), n=0, 1, ..., is called a binomial
sequence if p1 {0, and for any non-negative integer n and real numbers a
and b,

pn(a+b)= :
0�k�n \

n
k+ pk (a) pn&k (b).

It is easy to see that p0=1 and p1=cx for some non-zero constant c.
A polynomial umbra / representing a binomial sequence pn(x), n=0, 1, ...,

is called a binomial umbra.

Proposition 5.1. A polynomial umbra / is a binomial umbra if and only
if eval(/){0, and for any real numbers a and b,

(/ | a+b) #(/ | a) +(/ | b).
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Definition 5.1. A binomial umbra / is called unital if

/&x.

Similarly, we call the associated binomial sequence pn(x) unital when p1(x)=x.

A unital binomial sequence is the most direct generalization of the sequence
xn, n=0, 1, ... . Another household binomial sequence is the factorial sequence:

pn(x)=x(x&1) } } } (x&n+1)=(x)n , n=0, 1, ... .

The preceding proposition together with the properties of the restriction
operator brings us to

Corollary 5.1 (Linearity). Suppose /1 and /2 are two binomial umbrae,
and c1 , c2 two real numbers such that

eval(c1/1+c2/2){0.

Then, any polynomial umbra exchangeable with c1/1+c2/2 must be a binomial
umbra.

Rota, Shen, and Taylor proved the following theorem in [12] to uniformly
characterize an arbitrary binomial sequence.

Theorem 5.1. A polynomial umbra / is binomial if and only if there exist
a scalar umbra ; and a non-zero real number c, such that for any n=1, 2, ...

/n&cx(cx+n .;)n&1.

Furthermore, c and ; are unique (up to exchangeability).

5.3. Moment�Cumulant vs Binomial Sequence

Theorem 5.2. Suppose } is the cumulant umbra of a given scalar umbra
: whose ``mean'' eval(:) is not zero. Then there exists a unique binomial
umbra (up to exchangeability), say /: , such that

:#(/: | 1) , }n &
d

dx }0 /n
: , n=1, 2, ...,

where d�dx(/n
:) stands for d�dx(eval(/n

:)).

Proof. Uniqueness follows from the fact that any binomial umbra can
be reconstructed (up to exchangeability) from its restricted scalar umbra at
some non-zero value.
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Let g(t) and K(t) denote the generating functions of : and }. Set f (t)=
K(t)&1. Then g(t)=e f (t). Assume that

e f (t) x= :
n�0

pn(x)
n!

tn. (5)

Then the sequence pn(x), n=0, 1, ..., must be a binomial sequence. Let /
denote the binomial umbra representing ( pn). Then exp( f (t) x)&exp(t/)
and

g(t)=e f (t) &et (/ | 1).

On the other hand, taking derivative with respect to x on both sides of (5)
and setting x=0, we have

}n&p$n(0)&
d

dx }0 /n.

Hence, / is the demanded binomial umbra. K

As a result, one can easily prove (by noticing that /:+; #/:+/;) that

Corollary 5.2 (Additivity). For any two distinct scalar umbra : and ;,

Kn(:+;)=Kn(:)+Kn(;), n=1, 2, ... .

The preceding two theorems establish the umbral parametric representa-
tion for cumulants.

Corollary 5.3 (Umbral Parametric Form). For any umbra : with a
non-zero mean c=eval(:), there exists a unique umbra, say ;, such that

:n &c(c+n .;)n&1 and }n&c(n .;)n&1, n=1, 2, ... .

In this representation, : and } are ``parameterized'' by another scalar
umbra ;.

Example 1. Suppose ; is the Bell umbra and c=1. The associated
binomial sequence pn(x) is exactly the factorial sequence (x)n . Hence,
:n &pn(1)=0 for all n�2, and }n& (&1)n&1 (n&1)!. Since K2=D2=&1,
: is cannot be positive, or equivalently, : cannot be the moment umbra of
a real random variable. However, if we take c=&1, then

}n& (&1)n (n&1)!,
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which is exactly the n th cumulant of the exponential distribution with
mean &1 (see Section 1).

Example 2. Suppose ; represents sequence 1, b, 0, 0, ... and c=1. By
the preceding corollary,

}n & (n)n&1 bn&1=n! bn&1.

Therefore, the moment generating function of the underlying moment
umbra : is

g(t)=exp \ t
1&bt+ .

6. FOURTH REPRESENTATION: PARTITION LATTICE
AND MO� BIUS INVERSION

This section parallels Speed's work [15].

6.1. Sequence Partitions and Set Partitions

A finite sequence of real numbers *=(*1 , *2 , ..., *k) is a sequence partition
if *1�*2� } } } �*k . Another way to represent a sequence partition is the
multiset form: (am1

1
, am2

2
, ..., amh

h ) with a1>a2> } } } >ah and mi>0. * has
exactly mi ai 's. The following quantities are standard but helpful for the
rest of the paper.

(1) *!=*1 ! *2 ! } } } *k !. |*|=*1+*2+ } } } +*k . > *=*1*2 } } } *k .
* |&n means that |*|=n.

(2) k is the length of * and is also denoted by l* .

(3) Vector m*=(m1 , m2 , ..., mh) encodes the multiplicity of *. m* !=
m1 ! m2 ! } } } mh !. Clearly, l*=m1+m2+ } } } +mh .

(4) For any two partitions * and +, their sum *++ is the unique
sequence partition whose associated multiset is the union. For example,
suppose *=(322), +=(4321); then *++=(4332221).

(5) A function g* defined for all sequence partitions * is said to be
decomposable if

g*++= g*g+ , for any *, +.
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For example, the product function > * is decomposable. Apparently, if g*

is decomposable, then

spanZ [g* | all *]=Z[ g1 , g2 , g3 , ...].

Now we review some basic facts about partitions of a set. Let > (S)
denote the partition lattice of a set S. If S=[n]=[1, 2, ..., n], we simply
write >n for > (S). A partition is denoted by _=_1 | _2 | } } } | _k . Each _i

is a block of _.
For a given partition _=_1 | _2 | } } } | _k , we define

*(_)=(*1 , *2 , ..., *k), li=*_ i , i=1, 2, ..., k.

*(_) is called the type of _ and k the size of _ and sometimes is denoted
by b_ . Hence, b_=l*(_) .

Suppose T and S are two disjoint sets and _ # > (T ), % # > (S). Their
sum _+% is the unique partition of T _ S which refines the two-block
partition T | S and whose restrictions in T and S are _ and t. Then, *(_+%)
=*(_)+*(%).

Let >�=�n�1 >n be the poset whose order is defined by _�% if and
only if for some n, _, % # >n , and _�%. A function g_ in >� (or >n) is
indistinguishable if

g_= g% , whenever *(_)=*(%).

If g_ is indistinguishable, then it introduces a type class function g** such
that g_= g**(_) . For simplicity, we still denote g** by g* . The size function
b_ is indistinguishable, for instance. A distinguishable function g_ is said to
be decomposable if its associated type class function g* is so.

6.2. Mo� bius Inversion

The integral f_ of a given function g_ on >� is

f_= :
%�_

g% .

According to the Mo� bius inversion formula,

g_= :
%�_

+(%, _) f% ,

if +(%, _) denotes the Mo� bius function of the lattice.
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By the order structure of >� , if _ # >n , we can replace �%�_ by
�%�_, % # >n

in the above equations. The following proposition can be
checked easily.

Proposition 6.1. A function g_ is indistinguishable (or decomposable) if
and only if its integral f_ is.

For any * |&n, let ( n
*)* denote the number of partitions _ in >n whose

type is *. It is not difficult to see that

\n
*+

*
=

n!
*! m*!

=\n
*+

1
m* !

.

Denote [n] # >n by 1n and g1n
by gn for any function g_ in >� .

Theorem 6.1 (Inversion Formula). Suppose that g_ is a function on >�

with integral f_ .

(a) If g is indistinguishable, then

fn= :
* |&n \

n
*+

*
g* , and gn= :

* |&n \
n
*+

*
f*(&1) l*&1 (l*&1)!.

(b) If g is decomposable and *=(*1 *2 } } } ), then

f*= f*1
f*2

} } } and g*= g*1
g*2

} } } .

Especially, [ f* | *] is a Z basis for Z[ g1 , g2 , ...].

Proof. (a) Notice that in the lattice >n , for any _,

+(_, 1n)=(&1)b_&1 (b_&1)!.

(b) Notice that as sequence partitions,

*=(*1 *2 } } } *k)=(*1)+(*2)+ } } } +(*k). K

Therefore, if g_ on >� is decomposable, then both g_ and its integral f_

are uniquely determined by two sequences:

g1 , g2 , ... and f1 , f2 , ... .
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The relation between their exponential generating functions is revealed by
this simple lemma.

Lemma 6.1.

exp \ :
n�1

gn

n!
tn+=:

*

g* t |*|

*! m* !
.

It can be checked directly by expansion. Comparing it to the preceding
theorem, we have thus established

Corollary 6.1. Suppose function g_ on >� is decomposable. Then the
exponential generating functions of gn and its integral fn satisfy

:
n�0

fn

n!
tn=exp \ :

n�1

gn

n!
tn+ .

Therefore, fn 's and gn 's in fact embody the exact relation between
moments and cumulants, which eventually leads to the fourth formula for
cumulants.

Theorem 6.2. Let Kn 's be the cumulants of a moment sequence (an).
Then

an= :
* |&n \

n
*+

*
K* , Kn= :

* |&n \
n
*+

*
(&1) l*&1 (l*&1)! a* , (6)

where K*=K*1
K*2

..., a*=a*1
a*2

..., if *=(*1*2 } } } ).

7. FIFTH REPRESENTATION: UMBRAL ``FOURIER'' TRANSFORM

In this section, we assume that the integral domain D in umbral calculus
is the complex number field.

Suppose that umbra : represents a sequence a0 , a1 , ... and Kn is its n th
cumulant. Let

f (t)= :
n�1

Kn

n!
tn
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be the exponential generating function of Kn . Then

e:t&e f (t).

Theorem 7.1 (``Fourier'' Transform). For any integer n, let |=exp(2?i�n)
be the nth unit root. Then,

Kn &
1
n \ :

n&1

i=0

:i |i+
n

(7)

for any n distinct umbrae :0 , :1 , ..., :n&1 exchangeable with :.

Proof. For each i=0, 1, ..., n&1,

e:i |
i t&e f (| it).

Since e:i|
i t, i=0, 1, ..., n&1, are unrelated, we have

exp \ :
n&1

i=0

:i|it+&exp \ :
n&1

i=0

f (| i t)+=exp \n \Kn

n!
tn+

K2n

(2n)!
t2n+ } } } ++ .

(8)

Comparing the n th power coefficients of both sides yields Eq. (7). K

Let N denote the set of all non-negative integers. For any fixed positive
integer n and an n-tuple I=(I1 , ..., In) # Nn, define �n I to be the weighted
sum

|
n

I= :
n&1

i=0

iIi .

For any sequence partition *=(*1 , *2 , ..., *k) |&n, and I=(I1 , I2 , ..., In) # Nn,
we write I |&* if as multisets,

[I1 , I2 , ..., In]=[*1 , *2 , ..., *k , 0n&k].

Corollary 7.1. For any sequence partition * |&n,

1
n

:
I # N n, I |&*

|�n I=
(&1) l*&1 (l*&1)!

m*!
. (9)
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Proof. By Eq. (7),

Kn&
1
n

(:0 |0+:1|1+ } } } +:n&1|n&1)n

=
1
n

:
I # N n, |I | =n \

n
I+ :I0

0
:I1

1
} } } :In&1

n&1
|�n I

& :
* |&n \

n
*+\

1
n

:
I # Nn, I |&*

|�n I+ a* .

Comparing the last expression with Eq. (6), we obtain the identity (9). K

For any given positive integer d, let | denote the d th unit root and %d

any umbra exchangeable with

:0|0+:1 |1+ } } } +:d&1|d&1.

Equation (8) provides us with the following information:

v Kn(%d)=0 unless when d | n, Kn=dKn(:).

v %n
d&0 unless d | n.

Therefore, Theorem 6.2 generalizes to

Theorem 7.2. For any non-negative integer m,

%dm
d & :

* |&m

d l* \dm
d*+

*
Kd* , (10)

where d*=(d*1 , d*2 , ..., d*k) if *=(*1 , ..., *k); and the inversion is given
by

Kdm &
1
d

:
* |&m \

dm
d* +

*
%d*

d (&1) l*&1 (l*&1)!. (11)

Example 3. Suppose we want to estimate the d th cumulant Kd of a
real random variable X. Let |d be the d th unit root. Assume that X0 ,
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X1 , ..., Xd&1 are available d independent occurrences of X. To estimate Kd ,
we define our statistic Td to be

Td=
1
d

(X0+X1 |+ } } } +Xd&1 |d&1)d.

By Theorem 7.1, Td is an unbiased estimator of Kd . According to the last
theorem, the standard error SE is

SE=_(Td)=(ET 2
d&K 2

d)1�2

=\ 1
d 2 {d \2d

2d+ K2d+d 2 \2d
d + 1

2!
K 2

d=&K 2
d+

1�2

=\\1
2 \

2d
d +&1+ K 2

d+
K2d

d +
1�2

.

Therefore, the standard error contains the information of K2d .

8. A FINAL NOTE FROM THE SECOND AUTHOR

The paper is ``distilled'' from a longer draft by the authors and was
rewritten by the second author after Gian-Carlo's unexpected departure
from his beloved world, and his little umbral pets: :, ;, ... . Gian-Carlo's
initial intention was to understand the positivity property of the moments
and cumulants of a real random variable by Umbral Calculus. His major
conjecture is

Conjecture. Any positive quantity (i.e., polynomial functions of the
moments) of a real random variable can be expressed as a sum of squares
of umbral polynomials.

This is different from Hilbert's problem. Umbrae certainly provide more
flexibility. The conjecture was very much inspired by the following observa-
tion. A real unital sequence (an) is non-negative (i.e., can be realized as the
moment sequence of a real random variable) if and only if all the Hankel
determinants of (an) are non-negative. It is not difficult to show that the
n th order Hankel determinant is precisely (up to a multiplicative constant)
the evaluation of the squared Vandemonde

[V(:1 , :2 , ..., :n)]2,

where :1 , ..., :n are distinct umbrae representing the sequence. Expressing
cumulants (and even orthogonal polynomials) by umbrae is believed to be
a first step. The present paper partially fulfills this goal.

Mixed into the Chinglish writing of the present paper is my evergreen
memory of Gian-Carlo, my dear mentor and friend.
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