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1. Introduction 

Thank you, I feel deeply honored to be here today. I am sure you are all wondering 
what I am going to say to live up to the unusual title of this lecture. As you know, such 

titles are agreed upon so far in advance of the actual meeting, that one is led to accept 

any title whatsoever, secretly believing that somehow things will work themselves out. 
I should like to take advantage of the indulgence that is generously granted to those 

who have entered their seventh decade of age, to inaugurate a somewhat different style 
of address than the one we are used to in mathematics meetings. 

To be sure, the temptation for me to follow the expected style of delivery of 
a mathematics lecture is hard to resist. The opportunity to present, before a distin- 
guished public as you are, what one considers to be the latest and most significant 
results in one's own work in mathematics, is not easily passed over. But two objections 

to this kind of presentation should be borne in mind. Firstly, our latest results - -  what 

we in our naivete invariably consider to be the most important  of our career - -  are 
unlikely to be formulated in a manner that can be followed by a mathematical 
audience, even the most sophisticated. It takes years of rethinking, redrafting and 
rearranging, before we ourselves understand the authentic significance - -  if any - -  of 

what we have done; more probably, it will be someone other than ourselves who will 
point out the relevance, if any, of the work. 

Erd6s has stated that no one blames a mathematician if his or her first solution of 

a problem is messy. One might round off Erd6s's remark by adding that, in mathemat-  
ics, the process of tidying up that invariably follows the first clumsy breakthrough is as 
indispensable as the original discovery. 

Mathematicians, and combinatorialists most of all, are sometimes subdivided into 
two classes: problem solvers and theorizers. As is the case with all subdivisions, each of 
the two classes would occasionally like to believe that the other is superfluous. But we 
know deep in our hearts that the two kinds of activity are not only complementary, 
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but indispensable to each other. No theory would exist, were it not for the initial 
impulse that has come from the motivation of a problem to be solved, a new jewel to 
be painfully wrested from the primeval mine of brute nature. But every jewel needs to 
be polished. New methods, new patterns of thinking are invariably discovered in the 
process of solution of a problem, and inevitably these methods will find their way to 
invaluable practical applications. 

Paradoxically, we could state that the most valuable part of mathematics consists of 
the definitions. The learning of mathematics is largely the learning of definitions. Of 
course, learning the meaning of a definition is a far cry from merely grasping the 
statement of the definition; the sense of a definition slowly emerges as we master the 
theory which the definition is intended to bring to life. Such a process of learning may 
take years, even a lifetime. 

Thus, I should like to claim the right of my seventies' decade to briefly discuss 
with you not the solution of any latest problem, nor even the latest definition or the 
latest theorem of which I may have become enamored. Instead, I should like to survey 
with a broad brush the present state of our field, of combinatorics. I hasten to add that 
this survey will of necessity be limited and biased. It is impossible today to keep track 
of the manifold ramifications of what only 30 years ago was a small budding branch of 
mathematics cultivated by a half dozen friends. It would be presumptuous for me to 
pretend to cover within the span of this address any but a short range of today's 
combinatorics. My hope is that the ground will be laid upon which others, who will 
address you in following years, will use as a precedent for other addresses in a similar 
vein. I apologize to those who will not find any mention of areas or problems which 
they consider to be relevant. Any such omission is due entirely to my own ignorance 
or carelessness, or both. I am also deliberately restricting this survey to the chapter of 
combinatorics that has come to be called algebraic combinatorics, with a short 
excursion into probability. 

It was George Polya who stated that every mathematical result must be repeated 
three times. First, you must announce what you are going to say. Second, you must 
say it. Third, you must explain what you have really said. 

We mathematicians have been reluctant to follow this injunction of Polya's. Much 
too often we fall under the spell of the results we have discovered, and we delude 
ourselves that their beauty will enrapture the reader or listener, and thereby exempt us 
from providing any kind of motivation, application or discussion of the sense of the 
mathematics we are presenting. 

But, today more than ever, the survival of mathematics depends on our being able 
to carry our message as far and wide as we can. Our prejudices in favor of the standard 
theorem/proof presentation of mathematics are still very strong, and whoever strays 
into exposition, speculation or popularization is likely to be rewarded in the way our 
undergraduates at MIT label any course in which no formulas are used, namely, by 
being accused of presenting 'hot air'. 

I am afraid that you are in for a few minutes of hot air. Where are we 
at in combinatorics? What are the problems that agitate in today's combi- 
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natorial waters? More to the point, what are the real problems behind the show 
case problems? 

2. Combinatorics and algebra 

The development of combinatorics in our times follows one of the leading trends 
that is visible in all present-day mathematics. This trend could be labeled the 'return 
to concreteness'. At first sight, it seems that the abstractions of the first half of this 
century, that culminated in the sixties with the successful developments in functional 
analysis, in algebraic topology, in algebraic geometry and in differential geometry, 
seem to have given ground to a new movement, that gives preference to specific 
problems, to computable algorithms, and to concrete results that appear to disregard 
the generalities of the past. 

But I should like to claim, however timidly, that this view may be a hasty one. The 
relationship between combinatorics and algebra today, for example, is not a forgetting 
of the past. 

A closer look will disclose that some outstanding work in combinatorics that is 
going on today is greatly benefiting the algebra of yesterday. Algebraic combinatorics 
has succeeded in providing non-trivial examples, fulfilling instances of a host of 
classical results in what used to be called abstract algebra. 

The theory of toric varieties, for example, has provided new examples of varieties 
that might not have been generated in the process of internal evolution of algebraic 
geometry. Until toric varieties came along, the main class of varieties to which 
algebraic geometry was applied was the class of determinantal varieties and their ilk. 
But the theorems of algebraic geometry now find new and unexpected life in the newly 
added class of toric varieties, coming from an altogether different source, a combina- 
torial source to be sure. 

What is more exciting, the discovery of toric varieties has provided a dictionary 
whereby results of algebraic geometry can be translated into results of convex integral 
geometry in the style of Minkowski and Hadwiger. An instance of such a translation 
has been the reformulation, discovered almost at the same time by Khovanskii and 
Morelli, of the Riemann-Roch theorem as a theorem in convex geometry regarding 
the enumeration of integral points lying in certain convex sets. Once this translation 
had been carried out, it became clear that the Riemann-Roch theorem could be given 
a purely combinatorial formulation which dispensed with algebraic geometry alto- 
gether. In so doing, Khovanskii was led to discover that the combinatorial analog of 
the Riemann- Roch theorem was no more or less than a multivariate generalization of 
the classical Euler-MacLaurin summation formula of asymptotic analysis. The dis- 
covery of such a connection between one of the central results of algebraic geometry, 
and one of the standard expansion theorems in the calculus of finite differences may 
well presage further combinatorialization of other geometric theorems, that may 
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appeal to some of the other numerous expansions of the umbral calculus. Needless to 
add, I would rejoice if such speculations turned out to be even minimally true. 

On another entirely different line, the recent monograph by Fulton and Lang 
on Riemann-Roch algebra shows how this chapter of what used to be algebraic 
geometry could greatly benefit by a more skillful use of the algebra of sym- 
metric functions. In the work of Fomin, Garsia, Greene, Haiman, Hanlon, Kerber, 
Lascoux, MacDonald, Schutzenberger, Stanley, Stembridge and many others, this 
theory has acquired a depth and range that now places it at the very forefront of 
mathematics. 

Grothendieck's beautiful definition of a lambda-ring is another idea that began in 
the abstract reaches of algebraic geometry, and that is proving to be fruitful in 
combinatorics. The recent discovery by Morelli ofa lambda-ring structure for the ring 
of convex polyhedra introduced by McMullen is a case in point. It has been suggested 
by Lascoux that the algebra of symmetric functions might be enriched by what one 
would get by imitating the K-theory of vector bundles. Lascoux himself provided 
what was at the time the first example of such a situation, in his early construction of 
Grassmanian extensions of lambda rings. Sometime soon a combinatorial theory will 
come along, that will dispense with the topology of vector bundles much like convex 
geometry can now do without the recourse to toric varieties. 

This phenomenon, of combinatorics coming to the aid of algebraic theories of long 
standing which suffered from a serious case of constipation in regards to examples, 
can be observed in several instances. Mike Artin has hinted, for example, that even the 
primary decomposition theory of commutative rings, a theory which was brought to 
abstract perfection in the twenties and thirties by Emmy Noether and her school, but 
which had remained as distinguished by its beauty as it was by the scarcity of concrete 
examples, is now receiving a much needed injection of newly minted examples from 
combinatorics. 

Let us conclude this telegraphic survey of the relationship between algebra and 
combinatorics by recalling a wholly different instance of an unexpected connection. 
The notion of Hopf algebra was painfully abstracted from the puzzling phenomenon 
whereby the cohomology ring of a topological space was endowed with an algebraic 
structure, while the homology ring did not seem to have one. Since the time when in 
the Cartan Seminar the notion of a Hopf algebra was first explicitly brought to light, 
the formalism of Hopf algebras has been steadily winding its way into every nook and 
cranny of combinatorics, and the latest generation of combinatorialists has been 
forced kicking and screaming to learn it. 

Three instances. First instance: the nineteenth-century work of McMahon and 
Hammond on differential operators on the ring of symmetric functions is now 
ensconced in the self-dual character of the Hopf algebra of symmetric functions. In 
fact, the detailed study of the self-dual Hopf algebra of symmetric functions is 
proceeding at the present time at full speed in the hand of Lascoux, Mendez and 
several others. Perhaps a Hopf algebraic formalism will be developed in connection 
with Schubert polynomials. 
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Second instance: the enormous variety of Hopf algebras that arise as the reduced 
incidence algebras of locally finite partially ordered sets provide what is perhaps the 
central examples of Hopf algebras having highly non-trivial antipodes, as has been 
shown by Schmitt. The antipodes of incidence Hopf algebras can be viewed as 
generalizations of the Mobius function of a partially ordered set, and provide what is 
probably the right level of generalization of the notion of a Mobius function. There is 
at least a ray of hope that incidence Hopf algebras will provide a unifying thread for 
the jungle of Hopf algebras that have been discovered over the years in algebraic 
topology. 

Third example: the theory of linear recursive sequences has found its natural 
habitat in one of the classical Hopf algebras, thanks to an original idea of Earl Taft, 
which has been ably developed by the Sardinian school of Cerlienco, Mureddu and 
Piras. It may not be too wild to speculate that difference equations with polynomial 
coefficients will some day also be made to fit, if not in the mold of ordinary Hopf 
algebras, at least in a suitable extension of the concept that may be waiting in the 
wings. If difference equations can be dealt with by such methods of algebraic combina- 
torics, differential equations cannot be far behind. 

Stanley has proposed a ranking of formal power series, from polynomials to 
rational functions to algebraic functions to solutions of differential equations with 
polynomial coefficients; it is tempting to speculate that his ranking will be matching 
by a concomitant ranking of algebraic structures. 

3. Combinatorics and probability 

The role of vitalization by unexpected examples that combinatorics is playing in 
algebra can be observed in probability theory as well. Let us consider two instances. 

The theory of sums of independent random variables, which seemed to have 
achieved perfection shortly after probability came onto its own, is now displaying 
a renewed vitality, thanks to the finer properties of random walk that emerge when 
one studies random walks on finite or infinite graphs, or on groups. The connection 
between random walks and diffusion is being extended to graphs, and the Laplace 
equation on graphs, studied by Fan Chung and Shlomo Sternberg, displays combina- 
torial analogs of the classical Sturm-Liouville theory. 

At the limit of refinement of random walk we find nowadays the theory of 
Mahonian statistics, which can be interpreted probabilistically, but which, we 
dare surmize, would never have been arrived at without the work of Foata, 
Gessel, Garsia, Wachs and several others. Furthermore, the work of the latest 
generation of probabilists, such as Aldous, Diaconis and Pitman has reopened 
an august chapter of probability that might probably not have renewed itself inter- 
nally. The invariance theorems inaugurated with Donsker's thesis in the forties are 
now finding renewed vitality in the inspired limiting results of Aldous and several 
others. 
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But perhaps the outstanding contribution of combinatorics to probability to this 
day is Erd6s's idea of establishing the existence of objects with certain prescribed 
combinatorial properties using a purely probabilistic existence proof leading to the 
conclusion that the probability that an object with such prescribed properties exists is 
positive. To this day, there are quite a number of combinatorial constructs whose 
existence can be established only by probabilistic methods. 

It is amusing to note that professional philosophers of mathematics have not taken 
notice of the philosophical implications of such a concrete instance of non-construc- 
tivity in mathematics. It is widely conjectured that an algorithm should exist that 
would transform an existence proof obtained by Erd6s's probabilistic method into an 
ordinary constructive logical proof; but to the best of my knowledge no such explicit 
translation algorithm has been obtained. Joel Spencer, who has extensively worked in 
this subject, has conjectured that a new kind of logic may be involved here. 

The notion of randomness, also introduced into probability by Erd6s in the case of 
graphs, is proving to be one of the most fertile sources of applications of mathematics. 
Perhaps the most striking recent work on combinatorial randomness is the discovery, 
made by Ron Graham and Fan Chung, that properties pertaining to, say, length of 
circuits, eigenvalues of the incidence matrix and the like which are true of random 
graphs can be used to approximate randomness; in other words, a graph whose 
incidence matrix has a spectrum similar to the spectrum of the incidence matrix of 
a random graph may be expected to share other properties of a random graph. This 
discovery is finding substantial practical applications in the simulation of randomness 
that is often required in engineering work. 

4. Graph theory and matroid theory 

The time is long past when mathematicians used to look disparagingly at graph 
theory. It may not be remiss to recall that the late Hassler Whitney stated (to Gleason, 
from whom I learned this fact) that his greatest contribution to mathematics was his 
theorem stating that every planar triangulation (satisfying certain trivial technical 
properties) has a Hamiltonian circuit. Tutte once told me that the motivation of 
a great deal of his work in graph theory, and even in matroid theory, was the search 
for a satisfying explanation of Whitney's theorem, whose original proof has not been 
notably simplified to this day. Nor has a satisfactory matroid generalization of the 
theorem been found. 

Graph theory shares a unique distinction with perhaps only one other branch of 
mathematics, namely number theory; in both fields we find an unusually high ratio of 
nontrivial theorems to definitions. 

The profound theory of Robertson and Seymour, establishing that the existence of 
certain features of graphs depend on the absence of a finite number of excluded minors 
in its lattice of contractions, is in my opinion one of the deepest contributions to 
mathematics of the latter half of this century. Robertson and Seymour's use of the 
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notion of a partially well-ordered set, improbable as it may have once seemed, is 
reminiscent of another great breakthrough in the last century, i.e. the Hilbert basis 
theorem, which is based upon a similar lemma of Gordan, stating that the partially 
ordered set which is a finite product of copies of the natural integers has no infinite 
antichains. 

The highest payoff for the new method Robertson and Seymour have introduced 
came last year, when the authors established the truth of Hadwiger's conjecture. To be 
sure, their proof of Hadwiger's conjecture relies on the truth of the four-color 
conjecture for planar graphs. This conjecture has been verified by Haken and Appel 
using a computer program. I am sure we all hope that some day an argument can be 
found that can be followed by mathematicians. 

The idea of defining a dual object to an arbitrary graph, that in the case of planar 
graphs reduces to the ordinary dual graph, was the original motivation that led 
Hassler Whitney to develop the theory of matroids. Having written a book and some 
papers on the theory of matroids, I must still honestly admit that I do not know what 
a matroid really is. One may view matroids as a generalization of sets of points in 
projective space or as a generalization of the set of circuits of a graphs. The equiva- 
lence of the two definitions allows to replace linear algebra arguments by graph- 
theoretic arguments, and vice versa. Astonishingly, new facts of linear algebra are 
disclosed by taking the circuit point of view. Thus, the matroid point of view is 
immensely benefiting linear algebra, by providing new techniques that algebraists had 
not thought of. 

Robertson and Seymour's theory of excluded minors goes a long way towards 
clarifying the deepest properties of matroids of our day. It handsomely complements 
the theory of varieties of matroids, developed by Kahn and Kung a few years ago. 
Still, the most baffling and tantalizing of matroid problems, to my mind, is the critical 
problem, which, if you allow me an oversimplified statement, asks for a relationship 
between the location of certain zeros of the characteristic polynomial of a matroid and 
combinatorial features, in the way of excluded minors or whatever, of the geometric 
lattice of the matroid. By an unlucky accident, the problem of coloring a graph was 
historically the first critical problem, and probably misled combinatorialists from 
easier instances which might have been more revealing. 

Little progress has been made in our understanding of the critical problem, and one 
suspects that all the resources of algebra, as well as of combinatorics, will have to be 
put to work if we are to make a dent in it. Stanley's discovery of the interpretation of 
the values of the characteristic polynomial of a graph for negative values of the 
argument is perhaps the biggest leap forward made in the seventies, as is the discovery, 
also due to Stanley, that every modular element of a geometric lattice yields a factoriz- 
ation of the characteristic polynomial. The theory of supersolvable lattices is now the 
only finished chapter in the attack of the critical problem. 

The reformulation of matroid theory in terms of arrangements of hyperplanes, 
which began with Zaslavsky's thesis and which is now drawing even algebraic 
geometers into the combinatorial fold, indicates a close connection between the 
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characteristic polynomial of a matroid and some sort of Hilbert polynomial. The 
work of Orlik, Salomon, Terao, Ziegler and several others increasingly points to the 
truth of the conjecture that any insight into the critical problem will depend on the 
fine structure of resolutions of whatever ring structures we can associate with a mat- 
roid. There are at present several such candidates, but no sure winner as yet. Perhaps 
Kung's recent theory of Radon transforms on geometric lattices will further contrib- 
ute to our understanding, from a more strictly combinatorial angle. 

The axiomatization of arrangements of hyperplanes has recently been extended to 
an elegant axiomatization of arrangements of arbitrary sets of linear varieties, by 
Barnabei, Nicoletti and Pezzoli and independently by Bjorner, in the wake of 
Edmonds's notion of a polymatroid. It may well be the case that some of the problems 
of today's matroid theory will reveal their secrets only when looked at in this new and 
more proper setting. 

Perhaps the most successful idea to come out of matroid theory is the 
Tutte-Grothendieck ring, developed by Tutte, Brylawski and by several others, too 
many to mention. Allow me to digress with a personal anecdote. In 1973, I was invited 
to deliver the Hardy lecture at Oxford, and I chose the Tutte-Grothendieck rings as 
the subject of the lecture. At the end, Michael Atiyah came up to me and said: "Nice 
stuff, but I frankly cannot see how it will ever be applied outside combinatorics", or 
something to that effect. 

Last year, 19 years later that is, I met Sir Michael Atiyah in Cambridge, England, 
and I reminded him of his remark. "Now you see where the Tutte polynomial is being 
applied!", I added. 

And indeed, from von Neumann algebras to knot theory, braid theory, and 
statistical mechanics, the Tutte polynomial has become endemic. Again, allow me to 
conjecture that those analysts, topologists and algebraists who are now busily ap- 
plying the Tutte polynomial will eventually recognize actual matroids in their work 
behind the Tutte polynomial disguise. 

The adaptation of matroid theory to other areas of mathematics is now in full swing 
in the work of Gelfand, Goresky, MacPherson and several others, which has led to the 
creation of a beautiful new theory of combinatorial manifolds, as well as to new kinds 
of matroids associated to each of the classical Lie algebras. Other striking applications 
of the theory of matroids are, first, the theory of oriented matroids, and the theory of 
rigidity of structures developed by Crapo, White and Whiteley, where some problems 
of mechanics which had been open since the past century (since Maxwell that is) have 
been elegantly and definitively settled. 

5. Invariant theory 

It is not a coincidence that the first combinatorialists were also invariant theorists, 
as the term was then understood. The names of McMahon, Hammond, Kempe, 
Petersen are now largely remembered because of their work in combinatorics, but 
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their motivation came from classical invariant theory. Since nowadays the expression 
'invariant theory' is used in so many senses as to have become practically meaningless, 
I hasten to add that by the expression 'invariant theory' I mean the continuation of the 
program of classical invariant theory that began in the 1840s, that came to an abrupt 
stop sometime in the twenties, and that in the last twenty-odd years has come back to 
vigorous new life. 

I cannot resist the temptation to digress at this point, namely, to explain why the 
sentence 'Hilbert killed invariant theory', which is still sometimes sheepishly repeated 
today, is false. Actually, invariant theory was not killed (temporarily of course) by 
Hilbert, but by the joint efforts of van der Waerden and Emmy Noether. Each of them 
had an axe to grind against their dissertation supervisor. Emmy Noether was a stu- 
dent of the great invariant theorist Paul Gordan. Unfortunately, she was not able to 
solve the problem her thesis advisor had posed to her as a thesis problem, namely, the 
problem of classifying the invariants of a ternary quartic. As a consequence, she hated 
invariant theory for the rest of her life, and after she published the results of her thesis 
she made sure that the name would never appear in any of her subsequent writings. 
Van der Waerden was a student of General Weitzenbock. Weitzenbock was one of the 
first mathematicians in the Twentieth Century to understand the significance of 
Grassmann's work, as well as the relationship between tensor algebra and invariant 
theory, and some of his work was ahead of its time. He was active in the Nazi Party in 
the latter half of his life, and as a consequence his mathematical work became taboo 
reading. 

There is reason to believe that Weitzenbock's overwhelming personality did not 
help his relation with his student van der Waerden. None of the several editions of van 
der Waerden's 'Modern Algebra' contains any mention of multilinear algebra or 
exterior algebra, let alone the word 'invariant'. 

Invariant theory is intimately related to representation theory, an equally active 
area of combinatorics today. Central to representation theory is the construction, to 
be carried out as explicitly and as efficiently as possible, of the irreducible representa- 
tions as well as the projective representations of the classical groups. The main tools of 
combinatorial representation theory are the theory of symmetric functions and their 
generalizations, such as Schubert polynomials, as well as various versions of the 
classical Schensted algorithm. Only two generalizations of the Schensted algorithm 
shall be mentioned here, because of lack of time. The first is the supersymmetric 
generalization of the plactic monoid, recently carried out by Bonetti, Senato and 
Venezia; the second is perhaps one of the most beautiful theorems inspired by the 
Schensted algorithm, namely, the theorem independently discovered by Fomin and 
Greene for finite partially ordered sets. 

There is however a difference not only of style but of substance between representa- 
tion theory and classical invariant theory. One way to visualize this difference is by 
analogizing it with the difference between probability theory and measure theory. One 
can stare all of one's life at measurable functions, without ever discovering the normal 
distribution. Similarly, one can stare all of one's life at the representations of the 
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general linear group, without ever discovering the invariant-theoretic solution of 
a cubic equation. 

Four basic ingredients make present-day classical invariant theory a promising 
area of combinatorics, to wit: 

1. Richard Feynman had the genial idea of representing monomials in noncom- 
mutative algebras by replacing each variable by a pair of variables, the first being the 
original variable, and the second designating the place occupied by the variable in the 
given (noncommutative) monomial. In this way, the pair of variables can be viewed as 
a single variable, now called a letterplace. Letterplaces generate a commutative ring 
called the letterplace algebra, and problems of noncommutative algebra can be recast 
as problem in commutative algebra using the letterplace algebra. The use of letter- 
places has turned out to be useful in invariant theory, together with fundamental 
straightening algorithm that may be viewed as a multilinear algebra analogs of the 
Schensted algorithm. Again, I cannot refrain from telling you another story. I met 
Feynman for the last time at the firm 'Thinking machines', on the occasion of the 
inauguration of the first connection machine. Most of the young computer scientists 
working at 'Thinking machines' had at some time or other taken my course in 
probability at MIT, and my being invited to the inauguration ceremony had therefore 
become a statistical certainty. 

I mentioned to Feynman that I had used his idea in several papers. Immediately he 
left the cluster of reporters who were interviewing him and took me to a corner. "I am 
glad to hear that, because I consider time-ordering to be the best idea I have ever had, 
better than the Feynman integral", he stated in no uncertain terms. He then proceeded 
to explain to me another idea of his, which he had never published, and which he 
sketched on a piece of paper the size of a postage stamp. I put the piece of paper in my 
pocket, thinking I would study it later. To my great chagrin, it somehow slipped out of 
my pocket before I could look at it again, and since that time I have been wondering 
what Feynman's last idea was about. 

2. The straightening algorithms of letterplace algebras are enriched by the intro- 
duction of supersymmetric variables, i.e. by replacing exterior algebras by tensor 
products of exterior algebras and divided powers algebras. Such a mixture of commut- 
ing and anticommuting variables has long been used in physics. However, two 
powerful ingredients have recently been added. The first is polarization of positive 
variables into negative variables, an idea developed by Andrea Brini; the second is an 
umbral operator that allows the representation of invariants of skew-symmetric 
tensors by polynomials in a commutative algebra. 

These new techniques have led to the solution of a number of classical problems, as 
well as to simplifications in the representation theory of the classical Lie algebras, in 
the able work of Brini, Grosshans, Huang, Stein and several others. 

Brini's simplification and extension of the classical Gordan-Capelli expansion, 
made possible by the language of supersymmetric algebra, leads us to hope that this 
fundamental expansion will soon take its rightful place side by side with Taylor's 
formula as part and parcel of the baggage of ordinary mathematicians. 
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3. Again, the use of straightening algorithms with supersymmetric variables has 
made possible the solution of an old s~anding problem, i.e., the extension to arbitrary 
characteristic of the projective resolution of Weyl and Schur modules, first obtained 
by Lascoux in characteristic zero. Although Buchsbaum and I have so far published 
the method in the rather simple case of two-rowed Young diagrams, it seems clear that 
the method is going to work in general. 

4. Finally, it may not be remiss to counter the prophets of doom, who might be 
inclined to dismiss as intractable all invariant-theoretic classification problems that 
are not proved 'tame'. I should like to call your attention to the notion of perpetuant, 
a generalization of the notion of invariant that was only partially developed in the last 
century. A good half of the second volume of McMahon's collected papers is dedi- 
cated to the study of perpetuants of binary forms, and to their complete classification. 
McMahon and Stroh showed very clearly how among all invariants of a binary quantic 
only perpetuants have an interpretable significance in terms of geometric, combina- 
torial or algebraic properties of the quantic. It seems reasonable to conjecture that, 
whereas the classification of invariants of a quantic is not in general tame, the classi- 
fication of perpetuants will turn out to be tame. I am happy to announce that a precise 
definition of the notion of perpetuant for arbitrary quantics has at last been given. It 
can be found in Frank Grosshans's latest paper, which appeared only last month. 

6. Species and bijective combinatorics 

The notion of species, introduced by Andre Joyal just over ten years ago, and 
brilliantly developed by the Quebec school, was a decisive step in the systematic 
program of making combinatorics bijective. Briefly, one wishes to work with the 
objects themselves and with operations performed on objects, rather than with 
derived constructs such as generating functions. 

The resistance that is still put up against adopting the language of species reminds 
me of two other similar resistances. The first was the introduction of random variables 
to replace probability distributions, a revolution that was just about over in the early 
fifties. Some notable mathematicians clung to distribution functions, claiming that the 
notion of a random variable was superfluous. One such mathematician was Aurel 
Wintner of Johns Hopkins University, who wrote a treatise of probability in which the 
notion of a probability distribution was exclusively used. In this treatise, several 
important results were proved, that were later to be rediscovered in the language of 
random variables. However, Wintner did not receive any credit for his contributions. 

The second instance is the introduction of the theory of distributions of Laurent 
Schwartz, early in the fifties. For years one could hear the trite objection "What can 
you do with distributions that you cannot do without them?", an objection that serves 
only to lay bare the objector's ignorance of the way mathematics progresses. In the 
end, however, those who refused to go along with the new and superior notation were 
cast aside. 
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The language of species is at present being considerably enriched, and our notion of 
what constitutes an acceptable bijective proof is gradually being enriched. For 
example, it seems clear, after futile attempts lasting several years, that a bijective 
interpretation of Schur functions is not to be had in the naive interpretation of 
bijectivity. The notion of bijectivity will have to acknowledge some construction that 
corresponds to what homological algebraists call a resolution, and the role of the 
minus sign in bijective proofs will have to be understood. The theory of Mobius 
species of Mendez and Yang is a step in such a direction; perhaps one of the next steps 
will be a bijective understanding of the semisimplicial world, that has met with such 
a striking success in re-combinatorializing algebraic topology. 

Some of the outstanding successes to date of the theory of species are: 
1. the bijective formula, obtained by Ehrenborg and Mendez, for the plethystic 

inverse of a formal power series; 
2. Gilbert Labelle's recent theory of acyclic enumeration. 
3. The bijective interpretation of orthogonal polynomials (Viennot, Foata, Gilbert 

and Jacques Labelle, and others), which cries for the language of species. 
A good test for the effectiveness of the theory of species will be whether or not it 

succeeds in producing a simpler bijective proof of the Rogers-Ramanujan identities 
than the one given by Garsia and Milne. I am willing to bet such a proof will be given 
within a short time. 

7. Special functions 

Early in this century, the Reverend F.H. Jackson, a British mathematician whose 
name is seldom mentioned, spent all his life deriving q-analogs of formulas of classical 
analysis. He found, for example, a q-analog of integration, now recognized as the right 
kind of integration for p-adic fields, and a q-analog of the gamma function, later 
rediscovered by better-known mathematicians, who got all the credit. I wonder what 
the Reverend would say if he watched the present craze for q-analogs and quantum 
groups. 

Quantum groups, which, to be honest, are neither quantum nor groups, are the first 
example of a Hopf algebra which is neither commutative nor cocommutative, and 
which nevertheless allows the standard constructions that one expects of groups. I am 
told by Victor Kac that q-analogs are the only possible deformations of the group 
algebra of the general linear group; this fact alone should keep q-analogs alive. 

Quantum groups are at present the melting pot of some of the most promising ideas 
of combinatorics: braid groups, the Yang-Baxter equations, and q-hypergeometric 
functions. We can foresee in the theory of quantum groups a profound extension of 
the notion of group representation in which both groups and representations may be 
forgotten, but what takes their place will unquestionably deserve it. 

In the field of special functions, as elsewhere in combinatorics, we are confronted 
with too many nontrivial identities and too few concepts with which to understand 
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them. The ultimate test will be whether the theory of quantum groups will fulfill the 
long-standing promise of discovering a unified theory of hypergeometric functions 
and basic hypergeometric functions. 

Perhaps the physicists who are now working on the quantum theory of angular 
momentum, led by Biedenharn and Louck, have discovered the key to relate hyper- 
geometric functions with representation theory. The fine points of representation 
theory that began with the Racah-Wigner algebra, and that are now being generaliz- 
ed to n dimensions by physicists inspired by the mystique of quantum mechanics, is 
one area of representation theory that we in combinatorics have unjustly ignored. 

It is remarkable what new life the field of special functions has been given by the 
advent of sophisticated computer programs like Mathematika. And to think that in 
the early days of computer science there were mathematicians who predicted the 
death of special functions after the advent of the computer! 

It is impossible here to do justice to the numerous trends that are now current in the 
theory of special functions. I am, for example, forced by time limitations to omit 
all mention of the combinatorial relevance of elliptic functions, as well as of the 
remarkable discoveries of Gelfand and his school, Gessel, Gulden, Jackson, Stanton, 
Zeilberger, and several others. There is one aspect of the theory, however, on whose 
importance everyone agrees, and that is the role of positivity. It seems that some of the 
deepest identities that have been obtained over the years and that are being obtained 
now are those identities that provide expansions with positive coefficients. We need 
hardly be reminded of the fact that one such expansion in positive coefficients, due to 
Askey and Gasper, was a crucial step in De Branges's proof of the Bieberbach 
conjecture. 

Positivity, monotonicity, and unimodality problems have always haunted combi- 
natorics, and to this day we do not have general enough methods to attack them, 
though some courageous younger mathematicians like Brenti are bravely battling 
with them. It would be interesting, for example, to obtain a combinatorially oriented 
proof of Edrei's structure theorem for totally positive matrices, perhaps using continu- 
ous analogs of Young diagrams, as Vershik has suggested. And I need hardly remind 
you of the oldest unsolved positivity problem, which my teacher William Feller used 
to call the crying shame of mathematics, namely, a characterization by simple 
inequalities of the cumulants of a random variable. Despite its probabilistic tone, this 
is really a problem in invariant theory, as Thiele, who first proposed it, had already 
realized. 

8. Other directions 

Of the great many subjects which must of necessity remain untouched, I will try to 
give a brief synopsis. Brief as my mention must of necessity be, these problems are no 
less important than the ones discussed at greater length above. Quite the contrary: it is 
in these primordial combinatorics problems that the life of combinatorics lies. 
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1. Convex polytopes. The analysis off-vectors and h-vectors of convex polytopes 
and of triangulations was initiated by Stanley, who obtained some of the most 
beautiful results of external combinatorics, by settling the upper-bound and the 
g-conjecture; another instance in point is the work of Bjorner and Kalai characteriz- 
ing simplicial complexes having given f-vectors and given Betti numbers, which uses 
some clever computations with exterior algebra. 

In another direction, Harper's extremal combinatorics, extending to the cube 
results that were known for simplices, establishes an unexpected link between finite 
extremal problems and the classical calculus of variations. 

2. Ramsey theory, in the able hands of Graham, Leeb, Rothschild and many others, 
has reached such a degree of perfection that even philosophers are taking notice, and 
using it in their speculations on the origin of order from chaos. Shockingly enough, we 
are still missing a probabilistic proof of Ramsey's theorem. The bounds, useful as they 
are, keep going in the wrong direction. 

3. The combinatorics of finite lattices has made great strides in recent years; suffice 
it to mention Gelfand's pioneering works on the fine structure of the free modular 
lattice, Haiman's proof theory for lattices of commuting equivalence relations, and the 
theory of two-distributive lattices of Herrmann and Wild, which extends in a wholly 
unexpected direction Birkhoff's classical theorem on the classification of finite dis- 
tributive lattices, and Bruce Sagan's enumerative studies. 

4. Universal algebra. Ternary operations, and operations of higher arities, have 
been ominously absent from classical algebra, and until a short while ago such 
operations seemed to be oddities devised by perverse universal algebraists. 

Let me tell you another story. The late Emil Post worked for several years to 
develop an elaborate theory of multigroups based upon n-ary operations. After 
reading the galleys of his two-hundred page long paper, which appeared in the 
Transactions of the American Mathematical Society, he realized to his chagrin that 
his basic n-ary operation could be expressed by a concatenation of binary operations. 
He hastily sent in some footnotes to be added in page proofs. I do not believe anyone 
has ever read Post's paper, which is in many ways remarkable. 

But now the tables are turning, and operations of arbitrary arities may soon come 
to the fore not only from computer science, but even in the most conservative chapter 
of algebra, namely, in the theory of representations of the general linear group. Recent 
combinatorial techniques introduced into invariant theory make it very likely that we 
will at last reach an understanding of the new algebraic structures that may lurk 
behind tensors of arbitrary symmetry classes. Such structures are very likely to require 
operations of higher arities, and they will inject further life into universal algebra, 
much like Clifford and Heisenberg algebras injected new life in symmetric and 
skew-symmetric tensors. 

Techniques of universal algebra are also coming to the fore in the theory of 
combinatorics on words initiated by Schutzenberger, in the classification of varieties 
of semigroups. And lastly, Thurston and Conway have reduced the study of tilings in 
the plane to decision problems in combinatorial group theory. 
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5. Let me stick out my neck, and submit to you that an algebraic structure that will 
play a pivotal role in algebraic combinatorics in the next few years, is the notion of 
resultant. Long neglected in favor of abstract methods, resultants are now beginning 
to flourish, in the hands of Gelfand, Jouanolou, Zelevinsky and several others. Much 
of the lowly spadework that made determinants into household tools remains to be 
done with resultants, and there is no doubt that new combinatorial applications are in 
store, as they were when determinants came of age. Perhaps a new matching theory 
can be gotten out of resultants, if you allow me a wild conjecture. 

6. A great many of the conjectures on finite geometry made by Beniamino Segre 
still remain open. Some of these conjectures rank in beauty and depth on a par with 
the Weil conjectures of number theory, and are providing a strong motivation for the 
intensive work of the school of finite geometers in Italy, Belgium, Britain, Germany 
and Canada. 

7. Combinatorics is distinguished among all mathematical endeavors by the 
enormous variety of deep but elementary-sounding problems. Some such classical 
problems are the postage stamp problem, the enumeration of finite distributive 
lattices, self-avoiding random walk, the hard spheres problem, the enumeration of 
chains in partially ordered set with elements at specified levels, the extension to 
Coxeter groups of the fine theory of the symmetric group, the never-ending surprises 
provided by Young diagrams, and so on too many to mention and most of all too late 
to mention, because my time is up, and I must thank you for patiently following this 
lengthy tirade. Thank you. 

Florence, 23 June 1993 


