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The Logarithmic Binomial Formula

Steven Roman

1. INTRODUCTION. The algebra I of polynomials in a single variable .r pro-
vides a simple setting in which to do the "polynomial" calculus. One of the nicest
features of I is that it is closed under both differentiation and antidifferentiation.
Furthermore, within the algebra 9,we have the well-known binomial formula

( x + a 1 ' : ,  n e Z ,  n > 0  ( 1 )

which may have been known as early as A.D. 1100 in the works of Omar Khayyam.
(Euclid knew the formula for n :2 around 300 e.c.). To be sure, the formula, as
we know it today, was stated by Pascal in his Traite du Triangle Arithmetic in 1665.

Now suppose we wish to include the negative powers of x in our setting. One
possibility is to combine the positive and negative powers of .r, by working in the
algebra .{ of Laurent series of the form

i  a t x k .
k =  - r

This algebra is certainly closed under differentiation, and there is even a binomial
formula for negatiue integral powers

P,(x)ao, '-r

( x + a ) n :  i ( ' i r ) o r t ^ - | ,  n e z ,  n 1 o .
k : 0  '

(2)

due to Newton (1676), which converges for lxl > lal.
Recall that the binomial coefficients are defined for integers satisfying n > k >

0 , o r & > 0 > n , b y

n ( n - l ) " ' ( n - f t + 1 )

where  k l :  k (k  -  1 )  " '  1 .
The algebra ,il does suffer from one drawback, however. It is not closed under

antidifferentiation, since there is no Laurent series /(x) with the property that
DfG): x-t. To correct this problem, we must introduce the logarithm logr.
Doing so produces some rather interesting consequences, and it is the purpose of
this paper to explore some of those consequences.

In particular, we will be led to some fascinating new functions, first studied by
I-oeb and Rota in 1989, who called them harmonic logarithms. We will also be led
to a generalization of the binomial formulas (1) and (2), which holds for a//
integers n. This generalization is called the logaithmic binomial formuh.

2. THE HARMONIC LOGARITHMS. Our setting will be the set L of all finite
linear combinations, with real coefficients, of terms of the form ri(log x)', where i

k t( ; ) :
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is any integer, and 7 is any nonnegative integer. That is, L is the real vector space
with basis {r'(log x)jli, j e z, j > 0}. Under ordinary multiplication, L becomes
an algebra over the real numbers. Furthermore, the formula

D x i ( l o g x ) i : r i - r ( l o g r ) /  r i x ' - r ( l o g x ) ' - '  ( : )

shows that L is closed under differentiation, and the formulas

D-rx ' ( logr ) ' :  
* . r i * r ( log  4 t  -  

#D- rx , ( log  
* ) i - ' ,  i  +  -1 ,

D-r.r- l ( log ") '  :  
#( log.r) /* '  

(+)

can be used to give an inductive proof showin g that L is closed under antidifferen-
tiation. In fact, we can characterize L as follows.

Proposition 2.1. The algebra L is the smallest algebra that contains both x and x-t,
and is closed under dffirentiatian and antidifferentiation. I

Formulas (3) and (4) indicate that, while the basis tx,(log r)i) may be suitable
for studying the algebraic properties of l, it is not ideal for studying the properties
of L that are related to the operators D and D-1. To search for a more suitable
basis for L, let us take another look at how the derivative acts on powers of r. If
we let

then

DAf)(.r) : nllo)-,(r)

for all integers n. Thinking of the functions ,tf{t) as a doubly infinite sequence
r$(x) ,r(t(.r) r(9(r) ,l$)(.v) ,r!o{x) ,rf{r) r(g{r)

0 0 0 l x x 2 x 3

we see that applying the derivative operator D has the effect of shifting one
position to the left, and multiplying by a constant.

If we introduce the notation

l r l :  [ l  f o r  n  +  0
r " r  t l  f o r n : 0

then the functions rp(x) are uniquely defined by the foflowing properties.

l )  ^8{r) :  I
2) l9(.r) has no constant term for n * 0
3) D,$p(.r) : In l,rf)- 1(.r)
Notice that the antiderivative behaves nicely on the functions ,f{r), except

when applied to A(9,(x). with the understanding that D-r produces"no arbitrary
constant terms, we can write

,rg(,) : {;' f3I; : 3

( r
D-r,r!or1r; :  {  r  *, , t191'1t1 for n + -r

[ o  f o r z :  - 1 .
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At this point, we have only the nonnegative powers of .r. However, we can
obtain the negative powers of x by introducing a second row of functions ,f!)(.r),
starting with ,{,1)(x): log x, and using conditions similar to 1)-3). In particular,
the conditions

4) Ag)(.r) : los x
5) i(,|)(.r) has no constant term
6) DA(,|)(.r) : lnli(,:)- (r)

uniquely define a doubly infinite sequence of functions ,t(,1)(:)
,r(j\x) ,rt\r)

x - 3  x - 2  x - t  t o g r  x ( l o g r - l )  r 2 ( l o g r - t -  j )  r 3 { t o g r - t - l -  j )

Observing the pattern in these functions, it is not hard to determine the general
form of ,I(,1)(.r).

Proposition 2.2, The functions,t(,f)(x), uniquely defined by conditions 4)-6) aboue,
are giuen by

A(,1)(x; :
- h ^ )  f o r n > 0

f o r n ( 0
where

h n :

f o r n > 0 a n d h o : 9 .  I

Notice that the behavior of D- I on the functions I(,f )(.r) is even nicer than it is
on the functions ,f)(r), for assuming no arbitrary constant, we have for all n,

D- ri(,l)( r) : 
#^*)*,(').

The vector space formed using the functions ,f)(r) and ,{)(r) as a basis
contains both the positive and negative powers of x, and is closed under differenti-
ation and antidifferentiation, but it is not an algebra. For instance, the functions
(log r)', for t > 1, are not in this vector space. This prompts us to enlarge our class
of functions still further.

Deftnition. For all integers n and nonnegative integers /, we define the harrnonic
logaithms A(,i)(.r) of. order t and degree n as the unique functions satisrying the
following properties.

1) A(d{.r) - (loe:)'
2) Il,'(x) has no constant term, except that lf{r) : I
3) DAg{r) : lnl,t(j)-(.r) r

This definition allows us (at least in theory) to construct the harmonic loga-
rithms by starting each row (that is, the harmonic logarithms of i""fixed order), at
,\$)(r) : (log x)'. We then differentiate to get lf)(x) for n ( 0, and antidifferenti-
ate to get ,t(,i(x) for n > 0.

In fact with the understanding that D-r produces no arbitrary constants, we
can write

l ( , i ) (r)  -  an,,D-n( log r) '
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1.r'(los r
I x '

1 1  I
1 + ;  * ;  * . . . + -

z 5 n
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Proposition 2.3 can be used to derive
an explicit formula for the harmonic
logarithms. However, since we do not
need this formula yet, and since it is a
bit involved, we prefer to postpone it
until later. We should mention now,
however, that the harmonic logarithms
I(j)(.r) do form a basis for the alge-
bra L.

where the an,, are constants. These constants can easily be determined using the
definition of harmonic logarithm. It turns out that a,., does not depend on t, and
that an,,: [nl!, where the latter are defined by

(r!  for n > 0
|  . .  - n - l

I n l t :  {  ( - l )  "
L' - r '  

l t f - '  -  1r  for  n  < o

Loeb and Rota have called lnl! the Roman factoial. The notation [nl! was
suggested by Donald Knuth. Thus, we have

Proposition 2.3. The harmonic logarithms haue the form

l ( j ) ( r )  :  In l !D- , ( log x) '

Many of the well-known properties of the ordinary factorials carry over to the
numbers [zl!. Some of the more important of these properties are listed in Box 1.

Pr,oDerlhg of the nusbcrc tall

1) lnl!* tnln - l l !

I  n l !
, )  

f r - [ n l n - l l " ' t z - * + 1 l
f o r f t > 0

3) [nfi '-;, *,, 1[r(rl]t+(t<o)'

andOif n > 0.

T

I
l

Box I

Using the definition of harmonic logarithm, along with Property 2 in Box 1, we

get
l n l !

Dk I ( : , (x ) :  * I ( j ) -1 ( r )'  
l n - K l l

which shows that the higher derivatives behave on all harmonic logarithms in the
same way as they behave on the powers of x.

From the definition of [nl!, it seems a natural step to generalize the binomial
coefficients by setting

l n l  !

[ / c l ! [ n  -  k l !

for all integers n and k. [,oeb and Rota have called the numbers [ll ,tt" Roman

coefficients. The notation [l.| was also suggested by Knuth, and is read "Roman n

choose t."
The Roman coefficients agree with the ordinary binomial coefficients whenever

the latter are defined. That is, whenever n > k >-0, or & > 0 > n, we have

t; l  : (;)
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On the other hand, we also have, for example

l r _ l : l  n - l  :  
I  ^ - . ,  l o l  _ ( - l ) t + { t > o r

[ - t l  
:  

[ n + t l  
:  

1 r * 4  
a n o  

L r l  
: - -  

t / . i -
showing that the Roman coefficients are not always integers, nor are they always
nonnegative. Perhaps the most interesting question about these coefficients is
"What, if anything, do they count, or measure?" The temptation to think that they
do count, or measure, something is further enforced by their algebraic properties,
which in many cases are direct generalizations of those of the ordinary binomial
coefficients. Box 2 contains a small sampling.

Box 2

3. THE LOGARITHMIC BINOMTAL FORMULA. Now let us turn to the logarith-
mic binomial formula. For any positive real number a, we can expand the function
,{j)(x + a) in a Taylor series that is valid for lxl < a

,$ , i ) ( . r+o) :  i  [ ' -^ ' ; l t , ' l ] ' - "0 :  i  l? lx r r  , (a)xk.-  
Eo  H [ f t  l "n - t t

Thus, we have the following logarithmic binomial theorem.

Proposition 3.1. (Logaithmic binomial theorem) For all integers n,

)tl,)(x + a) :

ualid for lxl < a.

Boxes 3-5 describe the logarithmic

@ -

r  l?. I  N)-o(a\xk
t T o t ^ r  

"  - ' '

I

binomial formula of orders one and two.

Propcnia "rut" rr.u"* [ l l
l) For all integen n, k and r,

lX l  -1"1- l  and l i l t l l  = t?U; : : l
2) (Pascal's formula) For any two distinct, noniz€ro inrc8pn a ard JL,

Ul -  [ ' ; ' l  .  l t :  l l
3) (Knuth'c rotation,/rcflcaion law)

<_rf *.,ol1Tr.l , l- , - t r ' * " r t [ r r1

fLc Flrrt Mr lalrrlSnic Blrdl $uurh s
1,sr t - o Wc 61;9 S-/n) * ga -* &r ;1 : *, ld,SL{n) -, g fur *< *lfldigffit{l',W{

tll 
- (;) when r > t > 0, th€ loasrithmic binomial formula k

(x+a)n= 
F. (X) , " - r .

which is equivalcnt to tho desical binomi.l lormula (1).

Box 3
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Box 4

Box 5

4. AN EXPLICIT FORMULI\ FOR THE IIARMONIC IOGARITIIMS. Although
the harmonic logarithms are ideally suited to differentiation and antidifferentia-
tion, their expression in terms of powers of r and log.r is not so simple.

Proposition 4.1. The hannonic lagarithms l!i{r) are giaen by tlu formula
t

A9)(') :  x" D (-\ i() jc:!)1log,r) '- '
j * 0

where  ( t ) , : t ( t -  1 ) " ' ( t - i+ l ) ,  ( r )o :  I  and where  the  cons tan ts  c f i )  a re
untquely dctermined by the initial cond,itiotts

, < , r - l l  f o r n > o  a i r : l l  ( r i : o
\ o  f o r n l o  

a n a  t u ' : i o  
f o r i + o

&6 THE r..ocARrrHMrc BTNoMTAL FToRMUTA [August-September



and the recurrence relation (for j > 0)

nclt : cfi-tt + [nlcfilr. I

The numbers cf;) are known as the harmonic numbers, and have some rather
fascinating properties as shown, for example, in Boxes 6-8. Notice the intriguing
pattern in the first few harmonic numbers of positive degree n (in Box 7). It is also
interesting to contrast the asymptotic behavior of the harmonic logarithms of
positive and negative orders (in Boxes 7 and 8).

Son rrhc of ttc bnodc r*rr Cf

n - 0
.t

Oolumnsrumto n C.olomnsaproch n

Box 6

lhc hrruoalc mnbcrr of porltlvc dcarr: r > 0

l t l
r )  c $ r -  r +  , +  i  *  " ' * ;

2) In ptrcral,for n > 0 and j > Qrrc havc

3 ) F o r n > Q

"g,- i l"r-".

4t,- i(?).-,r-,,-,.

.h "i| - n.
, { a

Box 7
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Thc hrroo,nic nmbers of ncgative degrce n < 0

1 ) F o r n < 0 .

cllt * (- r'tilnlls( - n, j).

\trhcrc tlp nurnbcrs s(n,j) arc the famous Stirling numbers of the first kind, defined for all
sdrtrilFtive intcgers n and i, by the oondilion

- - r - -  t \ -  a -  -  r  i \ -  

n

. r ( r  _  l ) . . . ( r  _  n + l )  :  E,  s(n,  j ) r r .
j -o

2) tlstFynDfidb bchavior) For oaeh n ( O rc have clil - 0 for j > - n, and so only a finite

nsilnfiff of ths clt rre notuc?o' Furtherrnorc, lheir snr (sot limit) is

@  - n

E"Y' � -  E4!t-n '
j - 0  j - O

Box E

S. CONCLUDING REMARKS. We have merely scratched the surface in the study
of the algebra L and its differential operators. For example, the harmonic
logarithms ,f(j)(x) have a very special relationship with the derivative operator,
spelled out in the definition of these functions. Loeb and Rota show that there are

other, at least formal, functions that bear an analogous relationship to other

operators, such as the forward difference operator A defined by Ap(l) : p(x.+ l)
- p(x). The functions associated with the operator A are denoted by (x)li) and

called the logarithmic lower factoial functions.In general, the sequences p[')(.r)

associated with various operators can be characterized in several ways, for example
as sequences of. logaithmic binomial type, satisffing the identity

pl,'t(x t a): 
Prl;l 

pfotla1p!!r1x).

The properties of the Roman coefficients seem to indicate that they are a
worthy generalization of the binomial coefficients. (This is not to suggest that there
may not be other worthy generalizations.) As mentioned earlier, it would be a
further confirmation of this fact to discover a nice combinatorial, or probabilistic,

interpretation of these coefficients.
For further details on the matters discussed in this paper, with complete proofs,

we refer the interested reader to reference 5.

REFERENCES

l. D. lreb and G.-C. Rota, Formal power series of logarithmic type, Aduances in Math., 75(1989)

l - 1 1 8 .
S. Roman, The lJmbral Calculus, Academic Press, 1984.
S. Roman, The algebra of formal series, Adrances in Math.,3l(1979) 309-329'

s. Roman, The algebra of formal series II, Sheffer sequences, l. Math. Anal. Appl.,74(1980)

r20-143.
5. S. Roman, The harmonic logarithms and the binomial formula, J. Combinatorial Theory, Series A,

to appear.
6. S. Roman and G.-C. Rota, The umbral calculus, Adtances in Math-,27(1978195-188.

Department of Mathematics
California State Unit:ersity
Fullerton, CA 92634

2.
J .

4.

648 rHE LocARrrHMtc BTNoMTAL FoRMULA [August-September


