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The Logarithmic Binomial Formula

Steven Roman

1. INTRODUCTION. The algebra & of polynomials in a single variable x pro-
vides a simple setting in which to do the “polynomial” calculus. One of the nicest
features of 2 is that it is closed under both differentiation and antidifferentiation.
Furthermore, within the algebra &, we have the well-known binomial formula

n
(x +a)" = Z(Z)a"x""‘, neZ, n=0 €))
k=0

which may have been known as early as a.D. 1100 in the works of Omar Khayyam.
(Euclid knew the formula for n = 2 around 300 B.c.). To be sure, the formula, as
we know it today, was stated by Pascal in his Traite du Triangle Arithmetic in 1665.
Now suppose we wish to include the negative powers of x in our setting. One
possibility is to combine the positive and negative powers of x, by working in the

algebra &7 of Laurent series of the form

n
Y a.xk
k=—x
This algebra is certainly closed under differentiation, and there is even a binomial
formula for negative integral powers
(x+a)'= % (Z)a"x""‘, nez, n<o. )
k=0
due to Newton (1676), which converges for |x| > |al.
Recall that the binomial coefficients are defined for integers satisfying n > k >
0,ork=0>n,by

(n) n(n—l)--l-(!(n—k+1)

where k!=k(k —1)--- 1.

The algebra o7 does suffer from one drawback, however. It is not closed under
antidifferentiation, since there is no Laurent series f(x) with the property that
Df(x) = x~'. To correct this problem, we must introduce the logarithm log x.
Doing so produces some rather interesting consequences, and it is the purpose of
this paper to explore some of those consequences.

In particular, we will be led to some fascinating new functions, first studied by
Loeb and Rota in 1989, who called them harmonic logarithms. We will also be led
to a generalization of the binomial formulas (1) and (2), which holds for all
integers n. This generalization is called the logarithmic binomial formula.

2. THE HARMONIC LOGARITHMS. Our setting will be the set L of all finite
linear combinations, with real coefficients, of terms of the form x‘(log x)’, where i
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is any integer? and j ﬁs any nonnegative integer. That is, L is the real vector space
with basis {x'(log x)'|i,j € Z, j > 0}. Under ordinary multiplication, L becomes
an algebra over the real numbers. Furthermore, the formula

Dx'(log x)’ = ix'~'(log x)’ + jx'~!(log x)’ ™" (3)

shows that L is closed under differentiation, and the formulas

D~ 'xi(log x)’ =

. . i ‘ .
i+10] Jj_ —1,i J‘l, £ —1
i+1x (log x) i+ID x'(log x) i

D~ 'x"(log x)j = (log x)j+l (4)

j+1
can be used to give an inductive proof showing that L is closed under antidifferen-
tiation. In fact, we can characterize L as follows.

Proposition 2.1. The algebra L is the smallest algebra that contains both x and x~ 1
and is closed under differentiation and antidifferentiation. ]

Formulas (3) and (4) indicate that, while the basis {x‘(log x)’} may be suitable
for studying the algebraic properties of L, it is not ideal for studying the properties
of L that are related to the operators D and D~!. To search for a more suitable
basis for L, let us take another look at how the derivative acts on powers of x. If
we let

" fornz0
X(x) = {3 for n < 0

then
DAD(x) = nAD (%)
for all integers n. Thinking of the functions A%(x) as a doubly infinite sequence
A24(x) A(x) A2(x) AP(x) Ax) AP(x) AP(x)
0 0 0 1 x x? x3
we see that applying the derivative operator D has the effect of shifting one

position to the left, and multiplying by a constant.
If we introduce the notation

_Jn forn+0
lnl_{l forn=0

then the functions AX®(x) are uniquely defined by the following properties.

D AXP(x) =1
2) A%(x) has no constant term for n # 0
3) DAO(x) = [n]IA?_ (x)

Notice that the antiderivative behaves nicely on the functions A®(x), except
when applied to A?,(x). With the understanding that D~! produces no arbitrary
constant terms, we can write

D—IA(,?)(X) = + l/\(,?LI(X) forn+ —1

n
0 forn= -1.
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At this point, we have only the nonnegative powers of x. However, we can
obtain the negative powers of x by introducing a second row of functions A(x),
starting with A)X(x) = log x, and using conditions similar to 1)-3). In particular,
the conditions

4) X)(x) = log x
5) AY(x) has no constant term
6) DAXD(x) = [n]AD) (x)
uniquely define a doubly infinite sequence of functions A((x)
ADx) A (x) AD(x) AP(x)  AP(x) Adx) MXx)

x73 x? 7' logx x(logx—1) xXlogx-1-14) x%ogx-1-4-1

Observing the pattern in these functions, it is not hard to determine the general
form of AQ(x).

Proposition 2.2. The functions X)X(x), uniquely defined by conditions 4)-6) above,
are given by

AD(x) = x"(logx —h,) fornz=0
" x" forn <0
where
1 1 1
h,=1+ =+ =+ +;
forn >0andh, = 0. n

Notice that the behavior of D! on the functions A!X(x) is even nicer than it is
on the functions A?(x), for assuming no arbitrary constant, we have for all n,

1
D™IAP(x) = m)“ﬁll(x)-

The vector space formed using the functions A®(x) and A{X(x) as a basis
contains both the positive and negative powers of x, and is closed under differenti-
ation and antidifferentiation, but it is not an algebra. For instance, the functions
(log x)', for ¢t > 1, are not in this vector space. This prompts us to enlarge our class
of functions still further.

Definition. For all integers n and nonnegative integers ¢, we define the harmonic
logarithms AX!)X(x) of order t and degree n as the unique functions satisfying the
following properties.

1) A{(x) = (log x)'
2) A%(x) has no constant term, except that AQ(x) = 1
3) DXP(x) = |n1A$ (x) n

This definition allows us (at least in theory) to construct the harmonic loga-
rithms by starting each row (that is, the harmonic logarithms of a fixed order), at
AP(x) = (log x)'. We then differentiate to get A')(x) for n < 0, and antidifferenti-
ate to get A!X(x) for n > 0.

In fact with the understanding that D~! produces no arbitrary constants, we
can write

AX(x) = a, ,D~"(log x)'
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where the a, , are constants. These constants can easily be determined using the
definition of harmonic logarithm. It turns out that a, , does not depend on ¢, and
that a, , = |nl!, where the latter are defined by

n! forn=0
1= -t
[n]. z(—_n)—_l)—" forn <0

Loeb and Rota have called |nl! the Roman factorial. The notation |n]! was
suggested by Donald Knuth. Thus, we have

Proposition 2.3. The harmonic logarithms have the form
AD(x) = |n1'D™"(log x)'. [

Many of the well-known properties of the ordinary factorials carry over to the
numbers [ n]!. Some of the more important of these properties are listed in Box 1.

Proposition 2.3 can be used to derive " Properties of the numbers {21!

an explicit formula for the harmonic

logarithms. However, since we do not D) lalt=inln - 10

need this formula yet, and since it is a {n}

bit involved, we prefer to postpone it 2 T tala =11 ln -k + 1},
until later. We should mention now, for k >0

however, that the harmonic logarithms 3) (Al =1} (=170 <O,

X9(x) do form a basis for the alge- " where ( < 0)is Lif n < 0
bra L. ' and 0if n 2 0.

Box 1

Using the definition of harmonic logarithm, along with Property 2 in Box 1, we
get

ﬂ__ (‘) k( )
ln — k1! A=
which shows that the higher derivatives behave on all harmonic logarithms in the
same way as they behave on the powers of x.

From the definition of Ln]!, it seems a natural step to generalize the binomial
coefficients by setting

DA(x) =

Ln1!
H [k]'[:—k]'

for all integers n and k. Loeb and Rota have called the numbers l:l the Roman

coefficients. The notation I:] was also suggested by Knuth, and is read “Roman n

choose k.”
The Roman coefficients agree with the ordinary binomial coefficients whenever
the latter are defined. That is, whenever n > k > 0, or k > 0 > n, we have

[kl = ()
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On the other hand, we also have, for example
(k>0)
2= Ll = gy e (2] = 2
-1 ”+1_[n+l] k|l lk]
showing that the Roman coefficients are not always integers, nor are they always
nonnegative. Perhaps the most interesting question about these coefficients is
“What, if anything, do they count, or measure?” The temptation to think that they
do count, or measure, something is further enforced by their algebraic properties,

which in many cases are direct generalizations of those of the ordinary binomial
coefficients. Box 2 contains a small sampling.

Properties of the numbers [:]

1) For all integers n, k and r,

&= [ 2] a0 115 - 111EZ0L
2) (Pascal’s formula) For any two distinct, nonzero integers n-and k, -
e R !
3) (Knuth’s rotation /reflection law)

(- 1)L+(k>ml l]-( 1)n+(n>o)l -—k]]‘

Box 2

3. THE LOGARITHMIC BINOMIAL FORMULA. Now let us turn to the logarith-
mic binomial formula. For any positive real number a, we can expand the function
X!Xx + a) in a Taylor series that is valid for |x| < a

x DkA(,z) x ©
k=0 k! k=0
Thus, we have the following logarithmic binomial theorem.
Proposition 3.1. (Logarithmic binomial theorem) For all integers n,
= | n
X(x+a) = T |5 14e(a)2*
k=0
valid for ix| < a. ]

Boxes 3-5 describe the logarithmic binomial formula of orders one and two.

The First Order Iapdthmk Binomial Formula

Let ¢ = 0. We have A0 (a) = a" "% for n 2 &, and 2D, (a) = Oforn":k‘l’mmmmfm
[ ] ( )when n=kz 0 the logarithmic binomial formula is '

(x+a) = f: (Z)a""‘x"

k=0

which is-equivalent to the classical binomial formula (1).

Box 3
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dn<QSime

{J;’(logx—h,,) fornz0

3 forn <0

Box 5§

4. AN EXPLICIT FORMULA FOR THE HARMONIC LOGARITHMS. Although
the harmonic logarithms are ideally suited to differentiation and antidifferentia-
tion, their expression in terms of powers of x and log x is not so simple.

Proposition 4.1. The harmonic logarithms X!Xx) are given by the formula

XO(x) =x" ¥ (~1)'(1) c(log x)"™
j=0

where (¢);=1t(t —1)---(t —j+ 1), (t)y=1 and where the constants c$’ are
uniquely determined by the initial conditions
1 forn=0 1 forj=20

o _ G) —
€n 0 forn<O0 and  c 0 forj+0
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and the recurrence relation ( for j > 0)
. - :
nct’ = ¢V + [n]c?,. [ ]

The numbers ¢!/’ are known as the harmonic numbers, and have some rather
fascinating properties as shown, for example, in Boxes 6-8. Notice the intriguing
pattern in the first few harmonic numbers of positive degree n (in Box 7). It is also
interesting to contrast the asymptotic behavior of the harmonic logarithms of
positive and negative orders (in Boxes 7 and 8).

Some values of the harmonic sumbers C¥
n=0 ‘
- i -
0 0 0 0 0 011 1 1 1 1
-1 -1 -1 -1 -1 -1t 01 % 4% % 2 ..
-8 -8 -8 22 1 001 3 e s s
] -¥ -% -1 -1 0 001 ¥ « « «
j=0~ -8 -4 -1 0 0 001 % s 4 & e
-% —% 0 0 0 001 & s » &« -
-5 0 0 0 0 001 2 & » o« wi}
Columns sum to n Columns approach n
Box 6
The harmonic numbers of positive degree » > 0
D P 1+1+1+ +1
Cn 2 3 n

@ 14»1(1+1+11+1+l + +11+1+ !
" 2V T2) s TS n nl
o) 1+11+l(1+1) -;-11+1(1'+1 ] PO 1 1
o 2 T2 T2 T3 T T2 INT e gy

YAV VAR 1, 1"
n 2 5) 3( 2*5)* +7{(f ‘

2) In general, for n > O and j > 0, we have

1
) = Z ...c(l'-l)
imy t

3) Forn >0,

n il

&= (7)ot

- im1 .
4)Mmmﬁbem)mmn>o,thcwmc‘”fmma” cTEas
wqmmh;whwhnnmlymcrmnaforn>lhmheme,wm g
ﬁoremhnzﬁ

fim c&? = n.

]‘!”

Box 7
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The harmonic numbers of negative degree n < 0

1) For n <0,
= (= 1Vlnlts(—n, j).
Where the numbers s(n, j) are the famous Stirling numbers of the first kind, defined for all
nonnegative integers n and j, by the condition

n
x=D(x=n+D=Y snjx'.
j=0

2) (Asymptotic behavior) For each n < 0, we have ¢\ = 0 for j > —n, and so only a finite
number of the ¢\’ are nonzero. Furthermore, their sum (not limit) is

Ld -n
Y=Y P =n

j=0 =0

Box 8

5. CONCLUDING REMARKS. We have merely scratched the surface in the study
of the algebra L and its differential operators. For example, the harmonic
logarithms A{)(x) have a very special relationship with the derivative operator,
spelled out in the definition of these functions. Loeb and Rota show that there are
other, at least formal, functions that bear an analogous relationship to other
operators, such as the forward difference operator A defined by Ap(x) = p(x + 1)
— p(x). The functions associated with the operator A are denoted by (%) and
called the logarithmic lower factorial functions. In general, the sequences p{’(x)
associated with various operators can be characterized in several ways, for example
as sequences of logarithmic binomial type, satisfying the identity

Ox+a) = T[] P@niuo.
k=0

The properties of the Roman coefficients seem to indicate that they are a
worthy generalization of the binomial coefficients. (This is not to suggest that there
may not be other worthy generalizations.) As mentioned earlier, it would be a
further confirmation of this fact to discover a nice combinatorial, or probabilistic,
interpretation of these coefficients.

For further details on the matters discussed in this paper, with complete proofs,
we refer the interested reader to reference 5.
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