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In respense to some recent questions of L.W. Shapiro, we develop a theory of triangular
arrays, called renewal arrays, which have arithmetic properties similar to those of Pascal’s
triangle. The Lagrange inversion formula has an important place in this theory and there is a
close relation between :t and the theory of renewal sequences. By way of illustration, we give
several examples of rencwal arrays of combinatorial interest, including complete generalizations
of the familiar Pascal triangle and sequence of Catalan numbers.

1. Introduction

The binomial coefficients are as fundamental in combinatorial theory as they
are ubiquitous, but Pascal’s triangle is by no means the only such array of
numbers which finds a place in thut theory. Indeed, Shapiro has recently intro-
duced another triangle of numbers B, , defined recursively by B, ;=1 and

B,y=B, 1x-112B, i+ B 141, B=2, (1a)
where
B,.=J, k<lork>n;n=1, (1b)

and having m:.ny arithmetical properties in common with Pascal’s triangle. Since

B""=C"=n-1+1(gr-?)’ n=1, (2)
where C, i, the nth Catalan number [18, sequence 577]. Shupiro called this new
triangle +. Catalan triangle [17].

The numbers B, arise in a walk problen. on the non-negative quadrant of the
integral square lattice in two dimensional Euclidean space: they are the number of
pairs of non-intersecting outw ird directed n-step paths issuing from the origin,
the first coordinates of whose other ends differ by k. They have further interpreta-
tions in problems on random wa ks, dissections of polygons and relations on
ordered sets.

shapiro noticed, among other things, that

z Bn.kxn—k = ( Z Bn.lan‘)A’

n=k n=1
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first' column and accordmgly asked:
ith this property?

s o “this question in the form of the theory of
ed-in Seutlon 2 and which xs,closely related to that

:n_?”O, given b3

‘with vthe hlgher_ vafalan» 5.q Aences{t ,n)},

>C,(”)~m+1((t+1)'f)fg ,,30,‘30 . | 3)

(so C = c;(n)) Thev‘ sequences also cccur m a famlly of arrays arising from the
enumeration of walks: on the inte ‘~"1*~square Jattice when they are restricted in
various ways (Section §). l‘he‘ sequx‘ nces {¢,(n)}, n=0, like the sequence {C,},
n=0, occur in a wide va iety of co "bmatoual problems: (for the C, see, for
example [5, 6, 8, 21] whiic for the ¢;(n) see, for ~xample [24, pp. 13-14, 26-27,
168- 294]). Other related sequences arise by ahuvwng diagonal steps of various
gradients in the walk. Fun!'*er, more miscellaneous exaraples of the general theory
are given in Section 6. ‘

2. Remewal arrays

The convolution fxg of two sequences f={f,}, g={g.}. n=0, is defined hy
h=fxg={h,}, n=0, where

n
= Z fa'gn—n RBO,
r=0
or, in ‘erms of generating functions,

}_: h.x"= ( Z f,_x")( Z g,,x").

n=0 n=0 n>0

The ~~fold convolution f=: {0}, n=0, r=0, of f with iiself may then be defined
recursively by

f(r) o f(r—l)*f . f*f(r«l)’ ri= 1’
where f{"=1 and f®=0, n>>1 (so fV=f).

The renewal array {b, .}, 0<m < n, generated by the sequence b={b,}, n=0,
is then the triangular array with

b

n,m

=b™*Y, Gsms=n, (4a)

bn,m = 03 s /‘0 Or M > n, (4b)
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so that, on introducing the generating functions

R™M(x)= Y b,.x""  B(x)= Y, bx"

n=0 n=0

we Lave
B™(¢j=(Bx)™', m=1. ()

Given a renewal array {b,,}, we may obtain recursively a sequence a={a,},
n=0, such that

B(x)=Y a,xBix)), .(6)

which 1s important in the analysis of the array and vhich we refer to as the
A-sequence associated with the array.

Conversely, given any sequence a = {a,}, n=0, we may define a tri ngular
array {b, ,.} recursively by (4b) and

b=,

oy abn 1, m 141- (7;
r=0

Provided that by, = a,, it follows inductively that {b,,} is the renewal array
generated by the sequence b ={b, }, n= 0, so that (5) holds and then, from (7),
(6) holds as well and a ={c,}, n=0, is the A-sequence of the array. So, with a
slight notational change, Shapiro’s Catalan triangle is the case where G,=1= a,,
a;=2 and a, =0, n>2; and the theory of renewal arrays provides = generaliza-
tion of his observations in this case.

From the wuy in which the definitions are framed, the correspondcnce between
the sequence {b,} generating the array and the A-sequence {a,} of the array is
biuzique and, moreover, the A-sequence {ca,} then corresponds to the generating
sequence {c"b,} so that, without loss, we may take b,= a,=1. What other
properties does this correspondence have?

We may obtain from (6), in conjunction with Lagrange’s inversion formula, an
expression for the b, ,, in terms of the a,. Lagrange’s invertion iormula {23, pp.
132-133] states that if

y=a+xf(y), y)=a,
then

n-—1

x d
y)= ) ———[g'(O(f()"]i-.
g\)’) = n! dfn~1[g( )(f( ]
We may apply this cither directly to (6) or, more easily, t» the equivalent form

B(x)=xY, a,(B(x)) =xA{xB(x)), (8)

r=0
where
B(x)= xB(x), Alx)= Z a,x".



' [mt'"*"(A(z))"l,.,o

~1

~b.g¢ =m Q‘me’, 0sm=<n 9

: Thls I st expressnon suggesta a general construction of renewal arrays familiar
from the theorv of dams, queues and branching processes (see [22] and the
“references given there). Given a sequence {a,}, n =0, considr the renewal array
{b,.} generated by the sequence b ={b,}, n=0, with

__,_1... a(n+1)
" on+1 ’
then
b = pmn =M +1 a®+D
nm n n+1 n-—m

and {a,}, n=0, is the A-sequen(;c of the array. If, for example, {a,} is the
probability distribution of the input of a discrete dam, whose content has
distribution g ={g,}, n=0, where g, =1 and g, =0, n# m and whose regime is
that of unit release in unit timie, ther. b™ is the distribution of the time to first
emptiness. :

There are two other sequences of some combir:atorial interest associated with
the renewal array {b, ,}. Firstly, the sequence {u,} of -ow sums given by

"

Up = 17 Uy 41 = E bn,ms n= 0,
m=0
for which
Ux)= Y ux"=1+Y (xB(x))
n=0 r=1
=1+ xU(x)B(x) (10)

and, secordly, the so called Fibonacci sequence {b¥} associated with the array
given by
CB*(x)=x2 Y b¥x"=Y (x®B(x)”
v 20 r=1

or equivalerly

B*(x) = B(x)+ x*B*(x)B(x). (11)

Both sequenes occur in the enumeration of Hbjects which may be broken up into



disjoint subobjects according to the first occurrence of some property the objects
may or may not have Two examples of the latter type of sequence are given in
[17] (see also [13]). The row sumis are fam liar, from probabilistic contexts, in the
form of renewal sequznces, to which we row turn.

3. Renewal sequences

A sequence {u,}, n=0, for which
0:<u, <uy= (12)

is a renewal sequence if for some non-negative sequence {f.}, n=1, we have

s = ‘i"“ £ (1)
Ly I —r \12)
r=1
U(x)= ) ux"=1+Ux)F(x), Fx)=)Y fx" | (14)
and it thea follows that
Y o<1 (15

n=!

Conversely, if u, is defined by (13), with uy= 1, for some non-negative sequence
{f.}, n=1, satisfying (15), then {u,}, n =0, is a renewal sequence.

The equivalence of these two formulations arises from the representation of
renewal sequences in terms of sequences of n-step transition probabilities in
Murkov chains [9, p.5]. For a Markov chain X ={X.}, n=0, and s a state of the
chain we write:

= p™ = Prob (X, == 5|3 = s), n=0,
f,,=Prob(X,l =5, X;=50<i<n|Xy=35), n=1.

Mhnee 12N LAt d.. e mnmcmeramcanle: A ..A..,..AI nnnnnnnnnnnnnnnnn P P
11ICI1 {10 1nUiuy, alld Luliver: ly dlly ICIICWdi CL!UCIILC dll\bb lll LD Wd.y
O Aarmenarina (1) and (12) it 10 annarant that [ 1 n >n ic thao cannanra nf row
\aUlI!Palllls \lb} an'Jd \lJ], 1L 1o ﬂPPal\rlll tilan \un[, = v, 1d v D\-\.lll\«ll\a\.« Ul 1UWwW
cuin:e nnf tha renawal arrav generated hv the ceanence {f 1 =0 Indeed we ma-
OWBIIAD YL VILlW Ll Wwilw YT QAL UG lu] 5vllvlul\lu UJ TiiwWw L]\a\.lu\lll\d\/ {J'1+lj, LV~ J. AlLINAWWVAS Y lllu]
regard the theory of renewel arrays as arising from that of renewal sequences by
lifting the purely probabilistic requirement u,, =< 1? or eqmval_entlv Z =1 L, =1, the

Y
conditions u, =0 : g

{u.l, n=0, thhout these probabilistic reqmrements is saxd to sanstv the renewa'
relation or decomposition (13) (the term “generalized renewal sequence” is also
used); and many of the properties ol renewal sequences, notably limit results {9,
chapter 1], carry over to sequences satisfying a renewal relation. (See [16] for an
applicatior of this extznsion.)



érms of renewal relations
w, ‘'we have the decompositions

ion-zero coefficients a, i ih case ap" 0's. Catalan tnangle form the

second row below ‘ts ‘apex of the Pasca' triangle. This observation admits a ready

- generali: zatmn Thus the ordmary Pascal triangle and the Catalan tnangle are the
first two membeic (t=0, 1) of a famﬂy of trlangks {B, (n,m)} for which the
A-sequencuis given by

A”H_l‘), 0<n t+1
n.J)
0, n>t+1,
so (crmpare (7))
t+1
B(n.m)=Yy (HI)B(n -1, m—1+7). (17)
=0

It follows, frem (8), that

B,(x)=xY, B(n,0)x" —x'f‘l( )1§,(x)’

w0 re 0 \
'::,’u‘.*. E,(_I))'H (18)
from which it follows in turn that (compzre (9) and [17, 2.1))

B,_,(n,m) = m+1 (t(n+1)

ol U m), Osm<snt=1

and, in particular, that

B(n, Y=c(n+1), n=0,¢=0.

S. Walks on the integral square lattice

New, starting from the rec irrence relation generating the ordinary Pascal
triangle which we write for easc _f interpretation in the form

vin m)=wn-1,m Jtw(n,m-1), n =0, (n, m)# (0, 0), {19a)



w
(o=
~3

“t+ 1)
w(u,m)=z_\ s lw(n—s,m+s—t-1)

win mY=0D0n ne o ar o m< 7101\

A TS vy LI Ui e SN Uy \17V0)
SO

w(n m)§/n+m\ nm=0 {19¢)

s \ m }! s >

then w{n. m) is just the number of outward directe¢ walks on the non-negative
quadrant of the integral square lattice from the origin to the point (r, m), (19a)
reflecting the edge structure of the lattice

CQiemmeilaowler: tf FAae v+ 2 v macadicia sadamane wa2s 22 see) 10 miermes bacr <ss N DY 1 .

(S} uuauy i i1ul i, a nvir- lcgduvc 1 llcscl, Wl ‘, lb glVCll Uy \Vt\U., vj)-—- 144
'wt(n! m) = w:(n_ 1! m)+ wt("’y m- 1)’ n) m = 09 (n9 m) # (07 0)7
w,(n,m)=0, m<Qorn<tm,

thoner 2as (2 wre) neveld Fawe s T i fax 322 ) 30 ¢hhn crvesemdone ~F ~srdezrnend dieandéart serallia ~ae
LI Wl rs, 1) IU 10l 1 = Ly, W7, ) 1> LIC 1Iulnvel vl Utwdliu UulicCiicl wadlny uUll
the nan_nasativa nundrant Af tha intagral canara lattina fram tha arigan ta tha
SAlWw LEUSID Ilvsall'\v \iuuuluut Vi uilw llllvslal aL:uulv ACGLULIVS LIV LALW Ulll,\/ll LU LlIw
noint {n m) (10a) reflectino the edae ctructuure of the lattice
poimnt (n, m) (19a) reflecting the edge structurc of the lattice.
Similarly if for ¢, a non-negative integer, w.(n, m) is given bv w.(0, 0) =1 and
J ? o o ; [ S St 4 =) J [ 2] 7
wi(n,m)=w(n-1,m)+:5(n,m-1), n,m=0,(n,m)#(0,0),
w,(n,m)=0, m<O0orn<tm,
then wy(n, m) and for t=1, w,(n, m\ is the number of oniward directed walks on

n O\ 7R ~2 s -, 11C

the non-negative auadrant of the mtearal square lattice from th - origen to the
point (n, m) which remain on or below ¢he line ty = x. This interpzetation allows us
to deduce several results. For ¢xample, considoring the last time, if ever, such a
walk from the origen to the point (tn + r4, n) visits the line ty = x, we find

n+m-—1
w(tm+m,n)= X w,(tr, )w,(t(n—r)+m-1,n—-r), n=0,m>0,
r=0
(’)(m\
\‘JUu’
or
w(x;m)= Y witm+m, n)x' = Wx)W,(x;m-1), m>1
n=0
where
Y7274\ __ YXrs. Fa\y
OAA) T WA, U),
)

W (x;m)=(Wix)""', m=(. {200)
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W(x) i +x’W(x)W x),  Wilx)=(W(x)),

{c,ompare 18y

Wix)= 1+ x(Wian "', 120, (21)
aad then, inductively (compare (6, 8))

Wilx)= W,_,(xW,(x)), t=1. (22)
Applying Lagfa*}ge s ipversion formula to (21) leads to

w,(tn. n)= c,(n), (23)
which also foliows from (19¢) togcther with

wi(n, m)=wn, m)—twin+i,m-1), 0smsn.
Writing

b(n+k m)y=w(tm+m,n)
it follows from (20), (23) that {b,(n, m)}, 0<m=<n,t=0, is the renewal array
generates] by the sequence {c(n)}, n=0. Moreover, from (22), for =1, the

A-seqience of the - iray {b{(n, m}} is {c._;(n)}, n=0. The liuk between the two
arrays {E,(n, m)} and {b,(r, m)} is provided by (compare (18) and (Z1))

B/(x) = xB,(x) = x(W,(x)} "= W,(x) - 1.
Further, writing
A, (r,s+1)=w(sn+r—1,n)

we obtain, from (20a), the “Vandermonde” convolution identity i the form
Asa+cb)= 3 A.(ab)A.lcb),
m=0

which has been studied by (Giould [7], among others (See [19] for further
mterpretations wnd references.)

R:sults, «imiar to those above for the integral squar: lattice, hold for uther
latices. For vxample, if for some fixed integral t,k with t=1,k=0 and all
integral n, m we take the lattice points to be [n/(k + 1), m (k- 1)] and, in addition
to unit horizontal and vertical stens, allow diagonal steps from the lattice point
[(n—)/(k+1),{m-1)/{k+1)] to [n/(k + i), m/(k +1)],we ovtain [16] a family of
sequ:nces closelv related to those of (3). In particular, if t=k =1, the associated
renewal arrays are gencrated by the higher Motzkin sequences {m,(n)}, 1 =0, [18,
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sequence 456, 3, 20], given by

{n"(H-'l)] "
m,(n)= ” (i), n=0,1=>1,
(n) i; ((H])i)c(l) n=0,1=1,

while if =1, k =0, the arrays are generated by the higher Schroder {r,(u)}, n=0,
[18, sequence 1163 (also 1170, where there is a misprint); 15] given by

. o« (n+tin—i) )
rl(n)= Z ( i )C,(n—z), ?130,[?1.

i=0
These sequences provide generalizations of the more familiar Morzkin and
Schroder sequences {m,(n)} and {r,(n)}, n =0, respectively in the same way as the
sequences {c,(n)}, n =0, generalize th: Catalan sequence {C,}, n=0.

€. Further examples

A further family of arrays {t.(n, n)},0<m=<n, k=1, generated by the sequ-
ences {t,(n)}, n =0, satisfying (compare (8))

k
Ti(@)=xY, t(mx"=x} (T(x)) (24)
n=0 r=0
appears in [10] with the internretation that #,(n) is the number of planted planar
trees with n edges all of whose vertices, except the root, having valence at most
(k +1), the root having valence at most k. From (24), the A-sequence of the array
{r(n, m)} is
{1, O<sn<k,
a, =
0. n>k,

so that the arrav {b,(n, m)} may be regarded as the limiting case where k is
infinite. The case k =1 is again the ordinary Pascal triangle. The case k =2, which
also appears in [1], is the Motzkin triangle, [3] generated by the sequence
{m;(n)}, n=0. A combinatorial analysis leading to the sequence {6¥}, n=0, of
(11) for this array appears in [14].

Another source of examples is the theory of partitions and Pascal’s triangle may
itself be seen in this context. As a furiher example, f p(n, m) is the number of
ways of partitioning the non-negative integer n in:0 non-negative integers of
which m =0 are i’s, then {p(r m)}, 0<m<n, is the renewal array generated by
the usual Fibonacci sequence {x, -}, n=0, given vecursivcly by

xn:xn<-1+xn~~2’ n=0

starting with x_; =0 and x_, = 1.

L. Carlitz has pointed out (private communication) that both kinds of Stirling
numbers, as ‘well as the associated Stirting numbers of both kinds {for definttions
of these see [11]) and other numbers defined in terms of chem (see [2] and the
references given there) mav be arranged. after some nciational changes into
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arrays So for exathpie, the generatmg sequences {b,} for the rencwal
| ALTAYS; ,ocnated w1th the first and second kind of Stirling numbers have generat-
' mg tﬂnscuons Bix) = -log,(l x)-and B(x)=¢*—1 respectivelv.
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