PASCAL TRIANGLES, CATALAN NUMBERS A.ND RENEWAL ARRAYS

D.G. ROGERS
Deparment of Mathematics, The University of Western Australia, Australin

Received 25 October 1976
Revistd í June 1977

Abstract

In respense to some recent questions of L.W. Shapiro, we develop a theory of triangular arrays, called renewal arrays, which have arithmetic properties similar to those of Pascal's triangle. The Lagrange inversion formula has an important place in this theory and there is a close relation between it and the theory of renewal sequences. By way of illustration, we give several examples of renewal arrays of combinatorial interest, including complete generalizations of the familiar Pascal triangle and sequence of Catalan numbers.

1. Introduction

The binomial coefficients are as fundamental in combinatorial theory as they are ubiquitous, but Pascal's triangle is by no means the only such array of numbers which finds a place in that theory. Indeed, Shapiro has recently introduced another triangle of numbers $B_{n, k}$ defined recursively by $B_{1,1}=1$ and

$$
\begin{equation*}
B_{n, k}=B_{n-1, k-1}+2 B_{n-1, k}+B_{n-1, k+1}, \quad n \geqslant 2, \tag{1a}
\end{equation*}
$$

where

$$
\begin{equation*}
B_{n, k}=J, \quad k<1 \text { or } k>n ; n \geqslant 1, \tag{1b}
\end{equation*}
$$

and having meny arithmetical properties in common with Pascal's triangle. Since

$$
\begin{equation*}
B_{n, \prime}=C_{n}=\frac{1}{n+1}\left(\frac{2 n}{n}\right), \quad n \geqslant 1, \tag{2}
\end{equation*}
$$

where C_{n} i $^{\prime}$, the nth Catalan number [18, sequence 577]. Shapiro called this new triangle $:$. Catalan triangle [17].

The numbers $B_{n, k}$ arise in a walk problen, on the non-negative quadrant of the integral square lattice in two dimensional Euclidean space: they are the number of pairs of non-intersecting outu ard directed n-step paths issuing from the origin, the first coordinates of whose other ends differ by k. They have further interpretations in problems on random wa ks, dissections of polygons and relations on ordered sets.

Shapiro noticed, among other things, that

$$
\sum_{n \geqslant k} B_{n, k} x^{n-k}=\left(\sum_{n \geqslant 1} B_{n, 1} x^{n-1}\right)^{n},
$$

D. σ Rogers

thatis, the Catalan triangle is generated by its first column and accordingly asked: is there an arithmetic of arrays with this property?

We offer here some answers to this question in the form of the theory of renewal arrays which is developed in Section 2 and which is closely related to that of rener al sequences (Section 3). A number of examples which illustrate this theory are given (Sections 4,5 and 6), beginning, in Section 4, with a family of arrays which generalizes the Pascal and Cataian triangles and which is associated with the higher Catalan suquences $\left\{c_{r}(n)\right\}, n \geqslant 0$, given by

$$
\begin{equation*}
c_{1}(n)=\frac{1}{t n+1}\binom{(t+1) n}{n}, \quad n \geqslant 0, \quad t \geqslant 0 \tag{3}
\end{equation*}
$$

(so $C_{n}=c_{1}(n)$). These sequences also occur in a family of arrays arising from the enumeration of walks on the integral square lattice when they are restricted in various ways (Section 5). The sequences $\left\{c_{1}(n), n \geqslant 0\right.$, like the sequence $\left\{C_{n}\right\}$, $n \geqslant 0$, occur in a wide variety of combinatorial problems (for the C_{n} see, for example [5, $6,8,21]$ whit. for the $c_{i}(n)$ see, for example [$24, \mathrm{pp} .13-14,26-27$, 168: 194]). Other related sequences arise by aliowing diagonal steps of various gradients in the walk. Futter, more miscellaneous exarnples of the general theory are given in Section 6.

2. Renewal arrays

The convolution $f * g$ of two sequences $f=\left\{f_{n}\right\}, g=\left\{g_{n}\right\}, n \geqslant 0$, is defined by $h=f * g=\left\{h_{n}\right\}, n \geqslant 0$, where

$$
h_{n}=\sum_{r=0}^{n} f_{r} g_{n-r} \quad n \geqslant 0,
$$

or, in 'erms of generating functions,

$$
\sum_{n \geqslant 0} h_{n} x^{n}=\left(\sum_{n \geqslant 0} f_{r} x^{n}\right)\left(\sum_{n \geqslant 0} g_{n} x^{n}\right) .
$$

The --fold corivolution $f^{(r)}=\left\{f_{n}^{(r)}\right\}, n \geqslant 0, r \geqslant 0$, of f with isself may then be defined recursively by

$$
f^{(r)}=f^{(r-1)} * f=f * f^{(r-1)}, \quad r \geq 1,
$$

where $f_{1}^{(0)}=1$ and $f_{n}^{(0)}=0, n>1\left(\right.$ so $\left.f^{(1)}=f\right)$.
The renewal array $\left\{b_{n, m}\right\}, 0 \leqslant m \leqslant n$, generated by the sequence $b=\left\{b_{n}\right\}, n \geqslant 0$, is then the triangular array with

$$
\begin{align*}
& b_{n, m}=b_{n}^{(m+1)}, \quad 0 \leqslant m \leqslant n \tag{4a}\\
& b_{n, m}=0, \quad \therefore \quad \therefore \text { or } m>n, \tag{4b}
\end{align*}
$$

so that, on introducing the generating functions

$$
\mathbb{R}^{(m)}(x)=\sum_{n \geqslant 0} \dot{b}_{n, r} x^{n-m}, \quad B(x)=\sum_{n \geqslant 0} b_{n} x^{n}
$$

we have

$$
\begin{equation*}
\left.B^{(m)}\left(r^{\prime}\right)=\left(R^{\prime} x\right)\right)^{m+1}, \quad m \geqslant 1 \tag{5}
\end{equation*}
$$

Given a renewal array $\left\{b_{r, m}\right\}$, we may obtain recursively a sequence $a==\left\{a_{0}\right\}$, $n \geqslant 0$, such that

$$
\begin{equation*}
B(x)=\sum_{r \geq 0} a_{r}(x B(x))^{r} \tag{6}
\end{equation*}
$$

which is important in the analysis of the array and which we refer to as the A-sequence associated with the array.

Conversely, given any sequence $a=\left\{a_{n}\right\}, n \geqslant 0$, we may define a tri ngular array $\left\{b_{n, m}\right\}$ recursively by (4b) and

$$
\begin{equation*}
b_{n, m}=\sum_{r \geqslant 0} a_{r} b_{n-1, m-1+1} \tag{7}
\end{equation*}
$$

Provided that $b_{0,0}=a_{0}$, it follows inductively that $\left\{b_{n, m}\right\}$ is the renewal array generated by the sequence $b=\left\{b_{n, 0}\right\}, n \equiv 0$, so that (5) holds and then, from (7), (6) holds as well and $a=\left\{c_{r}\right\}, n \geqslant 0$, is the A-sequence of the array. So, with a slight notational change, Sha iro's Catalan triangle is the case where $a_{0}=1=a_{2}$, $a_{1}=2$ and $a_{n}=0, n>2$; and the theory of renewal arrays provides a generalization of his observations in this case.

From the wiy in which the definitions are framed, the correspondence between the sequence $\left\{b_{n}\right\}$ generating the array and the A-sequence $\left\{a_{n}\right\}$ of the array is biunique and, moreover, the \boldsymbol{A}-sequence $\left\{c a_{n}\right\}$ then corresponds to the generating sequence $\left\{c^{n} b_{n}\right\}$ so that, without loss, we may take $b_{0}=a_{0}=1$. What other properties does this correspondence have?

We may obtain from (6), in conjunction with Lagrange's inveision formula, an expression for the $b_{n, m}$ in terms of the a_{r}. Lagrange's inversion formula [23, pp. 132-133] states that if

$$
y=a+x f(y), \quad y(0)=a,
$$

then

$$
g(y)=\sum_{n \geqslant 1} \frac{x}{n!} \frac{d^{n-1}}{d f^{n-1}}\left[g^{\prime}(t)(f(t))^{n}\right]_{t=a} .
$$

We may apply this either directly to (6) or, more easily, tw the equivalent form

$$
\begin{equation*}
\tilde{B}(x)=x \sum_{r \geqslant 0} a_{r}(\tilde{B}(x))^{r}=x A(x \tilde{B}(x)) \tag{8}
\end{equation*}
$$

where

$$
\tilde{B}(x)=x B(x), \quad A(x)=\sum_{n=1} a_{n} x^{n} .
$$

In the latter case, we lave for $m>1$.

$$
(\hat{B}(x))^{m}=\sum_{n=1} \frac{x^{n}}{n!} \frac{d^{n-1}}{d t^{n-1}}\left[m t^{m-1}(A(t))^{n}\right]_{t=0}
$$

leadiag to

$$
\begin{equation*}
b_{n, m}=\frac{m+1}{n+1} a_{n-m}^{(n+1)}, \quad 0 \leqslant m \leqslant n . \tag{9}
\end{equation*}
$$

This lest expression suggests a general construction of enewal arrays familiar from the theory of dams, queues and branching processes (see [22] and the references given there). Given a sequence $\left\{a_{n}\right\}, n \equiv 0$, consider the renewal array $\left\{b_{n, m}\right\}$ generated by the sequence $b=\left\{b_{n}\right\}, n \geqslant 0$, with

$$
b_{n}=\frac{1}{n+1} a_{n}^{(n+1)}
$$

then

$$
b_{n, m}=b_{n}^{(m+1)}=\frac{m+1}{n+1} a_{n-m}^{(n+1)}
$$

and $\left\{a_{n}\right\}, n \geqslant 0$, is the A-sequence of the array. If, for example, $\left\{a_{n}\right\}$ is the probability distribution of the inpyt of a discrete dam, whose content has distribution $g=\left\{g_{n}\right\}, n \geqslant 0$, where $g_{m}=1$ and $g_{n}=0, n \neq m$ and whose regime is that of unit release in unit tine, ther. $b^{(m)}$ is the distribution of the time to first emptiness.
There arc two other sequences of some combinatorial interest associated with the renewal array $\left\{b_{n, m}\right\}$. Firstly, the sequence $\left\{u_{n}\right\}$ of ow sums given by

$$
u_{0}=1 ; \quad u_{n+1}=\sum_{m=0}^{n} b_{n, m}, \quad n \geqslant 0,
$$

for which

$$
\begin{align*}
U(x) & =\sum_{n \geqslant 0} u_{n} x^{n}=1+\sum_{r=1}(x B(x))^{r} \\
& =1+x U(x) B(x) \tag{10}
\end{align*}
$$

and, secordly, the so called Fibonacci sequence $\left\{b_{n}^{*}\right\}$ associated with the array given by

$$
x^{2} B^{*}(x)=x^{2} \sum_{, \equiv 0} b_{n}^{*} x^{n}=\sum_{r=1}\left(x^{2} B(x) y^{r}\right.
$$

or equivalerily

$$
\begin{equation*}
B^{*}(x)=B(x)+x^{2} B^{*}(x) E(x) . \tag{11}
\end{equation*}
$$

Both sequen es occur ia the enumeration of bjects which may be broken up into
disjoint subobjects accordirg to the first occurrence of some property the objects may or may not have Two examples of the latter type of sequence are given in [17] (see also [13]). The row sumis are fam liar, from probabilistic contexts, in the form of renewal sequences, to which we tow turn.

3. Renewal sequences

A sequence $\left\{u_{n}\right\}, n \geqslant 0$, for which

$$
\begin{equation*}
0 \leqslant u_{n} \leqslant u_{0}=1 \tag{12}
\end{equation*}
$$

is a renewal sequence if for some non-negative sequence $\left\{f_{n}\right\}, n \geqslant 1$, we have

$$
\begin{equation*}
u_{n}=\sum_{r=1}^{n} f_{r} u_{n-r} \tag{13}
\end{equation*}
$$

or

$$
\begin{equation*}
U(x)=\sum_{n \geqslant 0} u_{n} x^{n}=1+U(x) F(x), \quad F(x)=\sum_{n \geqslant 1} f_{n} x^{n} . \tag{14}
\end{equation*}
$$

and it then follows that

$$
\begin{equation*}
\sum_{n \geqslant 1} f_{n} \leqslant 1 . \tag{15}
\end{equation*}
$$

Conversely, if u_{n} is defined by (13), with $u_{0}=1$, for some non-negative sequence $\left\{f_{n}\right\}, n \geqslant 1$, satisfying (15), then $\left\{u_{n}\right\}, n \geqslant 0$, is a renewal sequence.

The equivalence of these two formulations arises from the representation of renewal sequences in terms oì sequences of n-step transition probabilities in Markov chains [9, p.5]. For a Markov chain $X=\left\{X_{n}\right\}, n \geqslant 0$, and s a state of the chain we write:

$$
\begin{array}{ll}
u_{n}=p_{s, s}^{(n)}=\operatorname{Prob}\left(X_{n}=s \mid \ddot{\lambda}_{0}=s\right), & n \geqslant 0, \\
f_{n}=\operatorname{Prob}\left(X_{n}:=s, X_{i}=s, 0<i<n \mid X_{0}=s\right), & n \geqslant 1 .
\end{array}
$$

Then (13) holds; and conversely any renewal sequence arises in this way.
Comparing (12) and (13), it is apparent that $\left\{u_{n}\right\}, n \geqslant 0$, is the sequence of row sums of the renewal array generated by the sequence $\left\{f_{n+1}\right\}, n \geqslant 0$. Indeed we may regard the theory of renewel arrays as arising from that of renewal sequences by lifting the purely probabilistic requirement $u_{n} \leqslant 1$, or equivalently $\sum_{n \geqslant 1} f_{n} \leqslant 1$, the conditions $u_{n} \geqslant 0$ and $f_{n} \geqslant 0$ being more combinatorial in character. The sequence $\left\{u_{n}\right\}, n \geqslant 0$, without these probabilistic requirements is said to satisfy the renewa! relation or decomposition (13) (the term "generalized renewal sequence" is also used); and many of the properties of renerval sequences, notably limit results [9 , chapter 1], carry 'ver to sequences satisfying a renewal relation. (See [16] for an application of this extension.)

Thé rencwal aray may itself be analys-d further in terms of renewal relations since, $\mathrm{f}_{\mathrm{f}} a_{0}=1$ in (6 , as in the example; b low, we have the decompositions

$$
\begin{align*}
& \dot{B}(x)=1+x \hat{B}_{1}(x) B(x), \\
& \hat{B}(x)=\sum_{r=1} a_{r}(x B(x))^{r-1}, \tag{16}\\
& B^{*}(x)=1+x(x+\hat{B}(x)) B^{*}(x) .
\end{align*}
$$

4. Higher Catalan triangles

The ton-zero coefficients a_{n} ia ist case of Shapiro's Catalan triangle form the second row below ts apex of the Pascal triangle. This observation admits a ready generalization. This the ordinary Pascal triangle and the Catalan triangle are the first two members $(t=0,1)$ of a family of triangle $s\left\{B_{t}(n, m)\right\}$ for which the A-sequenctis given by

$$
a_{n}=\left\{\begin{array}{l}
t+1 \\
n .
\end{array}\right), 0 \leqslant n \leqslant t+1
$$

so (compare (7))

$$
\begin{equation*}
B_{t}(n, m)=\sum_{r=0}^{t+1}\binom{t+1}{n} B_{t}(n-1, m-1+r) \tag{17}
\end{equation*}
$$

It follows, frem (8), that

$$
\begin{align*}
\tilde{B}_{1}(x) & =x \sum_{n \neq 0} B_{t}(n, 0) x^{n}=x \sum_{r=0}^{t+1}\binom{t+1}{r} \tilde{B}_{t}(x)^{r} \\
& =\lambda\left(1+\tilde{B}_{i}(x)\right)^{t+1} \tag{18}
\end{align*}
$$

from which it follows in turn that (compare (9) and [17, 2.1])

$$
B_{t-1}(n, m)=\frac{m+1}{n+1}\binom{t(n+1)}{n-m}, \quad 0 \leqslant m \leqslant n, t \geqslant 1
$$

and, in particular, that

$$
B_{1}\left(n,()=c_{1}(n+1), \quad n \geqslant 0, t \geqslant 0\right.
$$

5. Walls on the integral square lattice

NCw, starcing from the rec irrence relation generating the ordinary Pascal triangle which we write for ease of interpretation in the form

$$
\begin{equation*}
\vartheta(n, m)=w(n-1, m)+w(n, m-1), \quad n, \cdots \geqslant 0,(n, m) \neq(0,0), \tag{19a}
\end{equation*}
$$

we obtain, on iteration,

$$
w(n, m)=\sum_{s=0}^{t+1}\binom{t+1}{s} w(n-s, m+s-t-1)
$$

which, resembling (19), suggests a link between the two. Taking $u:(0,0)=1$ and

$$
\begin{equation*}
w(n, m)=0, \quad n<0 \quad \text { or } \quad m<0 \tag{19b}
\end{equation*}
$$

so

$$
\begin{equation*}
w(n, m)=\binom{n+m}{m}, \quad n, m \geqslant 0 \tag{19c}
\end{equation*}
$$

then $w(n . m)$ is just the number of outward directed walks on the non-negative quadrant of the integral square lattice from the origin to the poini (n, m), (19a) reflecting the edge structure of the lattice.

Similarly if for t, a non-negative integer, $w_{t}(n, m)$ is given by $w_{t}(0,0)=1$ and

$$
\begin{aligned}
& w_{t}(n, m)=w_{i}(n-1, m)+w_{t}(n, m-1), \quad n, m \geqslant 0,(n, m) \neq(0,0 \\
& w_{t}(n, m)=0, \quad m<0 \text { or } n<t m
\end{aligned}
$$

then $w_{0}(n, m)$ and for $t \geqslant 1, w_{t}(n, m)$ is the number of outward directedi walks on the non-negative quadrant of the integral square lattice from the origen to the point $(n, m)(19 \mathrm{a})$ reflecting the edge structure of the lattice.

Similarly if for t, a non-negative integer, $w_{t}(n, m)$ is given by $w_{t}(0,0)=1$ and

$$
\begin{aligned}
& w_{t}(n, m)=w_{t}(n-1, m)+v_{t}(n, m-1), \quad n, m \geqslant 0,(n, m) \neq(0,0) \\
& w_{t}(n, m)=0, \quad m<0 \text { or } n<t m
\end{aligned}
$$

then $w_{0}(n, m)$ and for $t \geqslant 1, w_{i}(n, m)$ is the number of ouiward directed walks on the non-negative quadrant of the integral square lattice from th origen to the point (n, m) which remain on or below the line $t y=x$. This interpretation allows us to deduce several results. For example, considsring the last time, if ever, such a walk from the origen to the point $(t n+m, n)$ visits the line $t y=x$, we find

$$
\begin{equation*}
w_{t}(t n+m, n)=\sum_{r=0}^{n+m-1} w_{t}(t r, r) w_{t}(t(n-r)+m-1, n-r), \quad n \geqslant 0, m>0 \tag{20a}
\end{equation*}
$$

or

$$
w_{t}(x ; m)=\sum_{n \geqslant 0} w_{t}(t n+m, n) x^{t}=W_{t}^{\prime}(x) W_{t}(x ; m-1), \quad m>1 .
$$

where

$$
W_{t}(x)=W_{t}(x ; 0)
$$

so

$$
\begin{equation*}
W_{\mathrm{t}}(x ; m)=\left(W_{t}(x)\right)^{m+1}, \quad m \geqslant c \tag{206}
\end{equation*}
$$

Again, considering the first time, if ever, such an outward directed walk from the origen to (m, n) visits the line $t y=x$ we find (compare (16))

$$
\left.W_{t}(x)=1+x \hat{W}_{t}(x) W_{:}^{\prime} x\right), \quad \hat{W}_{:}(x)=\left(W_{t}(x)\right)^{\prime},
$$

E. ;compare (18))

$$
\begin{equation*}
W_{t}(x)=1+x\left(W_{t}(x)\right)^{-1}, t \geqslant 0, \tag{21}
\end{equation*}
$$

and then, inductively (compare $(6,8)$)

$$
\begin{equation*}
W_{t}(x)=W_{t-1}\left(x W_{t}(x)\right), \quad t \geqslant 1 . \tag{22}
\end{equation*}
$$

Applying Lagrange's inversion formula to (21) leads to

$$
\begin{equation*}
w_{t}(\operatorname{tn} n)=c_{1}(n), \tag{23}
\end{equation*}
$$

which also follows from (19c) together with

$$
w_{t}(n, m)=w(n, m)-t w(n+1, m-1), \quad 0 \leqslant m \leqslant n .
$$

Writing

$$
b_{t}(n+k, m)=w_{t}(t n+m, n)
$$

it follows from: (20), (23) that $\left\{b_{i}(n, m)\right\}, 0 \leqslant m \leqslant n, t \geqslant 0$, is the renewal array generated by the sequence $\left\{c_{t}(n)\right\}, n \geqslant 0$. Moreover, from (22), for $t \geqslant 1$, the 4 -sequeace of the :ray $\left\{b_{1}(n, m)\right\}$ is $\left\{c_{c_{1}}(n)\right\}, n \geqslant 0$. The liuk between the two arr $2 y s\left\{\mathcal{E}_{t}(n,: n)\right\}$ and $\left\{b_{t}(n, m)\right\}$ is provided by (compare (18) and (21))

$$
\tilde{B}_{t}(x)=x B_{t}(x)=x\left(W_{t}(x)\right)^{+1}=W_{t}(x)-1 .
$$

Further, writing

$$
A_{n}(r, s+1)=w_{s}(s n+r-1, n)
$$

we obtain, from (20a), the "Vandermonde" convolution identity in the form

$$
A_{n}(a+c, b)=\sum_{m=0}^{n} A_{n}(a, b) A_{n}(c, b),
$$

which has been studied by (i) uld [7], among others (See [19] for further interpretations and references.)

R sults, simiar to those above for the integral squar: laytice, hold for :ther latties. For example, if for some fixed integral t, k with $t \geqslant 1, k \geqslant 0$ and all integral n, m wa take the lattice points to be $[n /(k+1), m(k \div 1)]$ and, in addition to unit horizontal and vertical stens, allow diagonal steps from the lattice point $[(n-t) /(k+1),(m-1) /(k+1)]$ to $[n /(k+i), m /(k+1)]$, we outain [16] a family of sequ nnces closely related to those of (3). In particular, if $t=k \geqslant 1$, the associated renewal arrays are generated by the higher Motzkin sequences $\left\{m_{\mathrm{r}}(n)\right\}, n \geqslant 0,[18$,
sequence $456,3,20$], given by

$$
m_{t}(n)=\sum_{i=0}^{[n(t+2)]}\binom{n}{(i+1) i} c_{t}(i), \quad n \geqslant 0, t \geqslant 1
$$

while if $t \geqslant 1, k=0$, the arrays are generated by the higher Schröder $\left\{r_{t}(u)\right\}, n \geqslant 0$, [18, sequence 1163 (also 1170, where there is a misprint), 15] given by

$$
r_{t}(n)=\sum_{i=0}^{n}\binom{n+t(n-i)}{i} c_{t}(n-i), \quad n \geqslant 0, t \geqslant 1
$$

These sequences provide generalizations of the more familiar Morzkin and Schröder sequences $\left\{m_{1}(n)\right\}$ and $\left\{r_{1}(n)\right\}, n \geqslant 0$, respectively in the same way as the sequences $\left\{c_{t}(n)\right\}, n \geqslant 0$, generalize th: Catalan sequence $\left\{C_{n}\right\}, n \geqslant 0$.

6. Further examples

A further family of arrays $\left\{t_{k}\left(n_{1} n_{i}\right)\right\}, 0 \leqslant m \leqslant n, k \geqslant 1$, generated by the sequences $\left\{t_{k}(n)\right\}, n \geqslant 0$, satisfying (compare (8))

$$
\begin{equation*}
T_{k}(x)=x \sum_{n \neq 0} t_{k}(n) x^{n}=x \sum_{r=0}^{k}\left(T_{k}(x)\right)^{r} \tag{24}
\end{equation*}
$$

appears in [10] with the interpretation that $t_{k}(n)$ is the number of planted planar trees with n edges all of whose vertices, except the root, having valence at most ($k+1$), the root having valence at most k. From (24), the A-sequence of the array $\left\{t_{k}(n, m)\right\}$ is

$$
a_{n}= \begin{cases}1, & 0 \leqslant n \leqslant k \\ 0, & n>k\end{cases}
$$

so that the arrav $\left\{b_{1}(n, m)\right\}$ may be regarded as the limiting case where k is infinite. The case $k=1$ is again the ordinary Pascal triangle. The case $k=2$, which also appears in [1], is the Motzkin triangle, [3] generated by the sequence $\left\{m_{1}\left(n_{r}\right)\right\}, n \geqslant 0$. A combinatorial analysis leading to the sequence $\left\{b_{n}^{*}\right\}, n \geqslant 0$, of (11) for this array appears in [14].

Another source of examples is the theory of partitions and Pascal's triangle may itself be seen in this context. As a further example, if $p(n, m)$ is the number of ways of partitioning the non-negative integer n inio non-negative integers of which $m \geqslant 0$ are i's, then $\{p(r m)\}, 0 \leqslant m \leqslant n$, is the renewal array generated by the usual Fibonacci sequence $\left\{x_{n-i}\right\}, n \geqslant 0$, given recursivcly by

$$
x_{n}=x_{n-1}+x_{n-2}, \quad n \geqslant 0
$$

starting with $x_{-1}=0$ and $x_{-2}=1$.
L. Carlitz has pointed out (private communication) that both kinds of Stirling numbers, as well as the associated Stiring riumbers of both kinds (for definitions of these sef; [11]) and other numbers defined in terms of hem (see [2] and the references given there) may be arranged after some notational changes into
renewal arrays. So, for example, the generating sequences $\left\{b_{n}\right\}$ for the renewal arrays associated with the frst and second kind of Stirling numbers have generatfing tithetions $B(x)=-\log _{e}(1-x)$ and $B(x)=e^{x}-1$ respectively.

Refermees

[1] L. Carlitz, Solution of certain recurrences. S:AM J. Appl. Mith. 17 (1969) 251-269.
[2] L. Caritz, Note on the numbers of Joican and Ward, Duke. Math. J. 38 (1971) 783-790.
[3] R. Donaghey and L.W. Shapiro, Motzkin numbers, J. Combinakorial. Theory Ser. A 28 (1977) 291-301.
[4] T. Fine, Extrapolation when very litule is known, Information and Control 16 (1970) 331-360.
[5] H:G. Fo cler, Some probicms in combinatorics, Math. (iaz. 45 (1961) 199-201.
[6] M. Gaidner, Mathenatical Gaınes, Sci. An. 234 (e) (1979) 120-125.
[7] H.W. Gould, Final analysis of Vand rmonte's convolution, Am. Math. Monthly 64 (1957) 409-415.
[8] H.W. Gould, Research bibliography of two special number sequences, Mathematicae Monongalias, Dept. of Math., West Virginia Univ. (1971, revised 1976).
[9] Jf. Kigman Regenerative Phenomana (Wiley, London, 1972).
[10] D A. Klarner, Cortesp-adence between plane trees and binary sequences, J. Combinatorial Therty 9 (1979) 401-411.
[11] J Riordan, Introd iction to Combinatorial Analysis (Wiley, New York, 1958)
[12] $\mathcal{D} \cdot \overrightarrow{\mathrm{s}}$. Rogers, An application of renewal sequences to the dinner problen.
[13] D.. . Rogers, Similarity relations on totally r - vered sets, J. Combinatorial. Theory Sex. A 23 (197?) 88-98.
[14] C.G. Rogers, The enumerstion of a ianily sf ladder graphs by edges. Part I: Connective relatinns: Quari, J. Math. Oxford (2) 28 (157\%).
[15] D.G. Rogets, A Schröder triangle: three comb:natorial probiens. Combinatorial Mathematics V: Prce. Fifh Australian Conference, Lecture Nutes in Mathematics 622 (Springer, Berlin, 1977).
[16, L.G. Rogers, A nete on the enumeratio.. of latice paths with diagonal steps.
[17] L.W. Shapiroc A Catalan triangle, Diserue Math. 14 (1976) 83-90.
[18] N.J.A. Sloane, A Hancibook of Integer Sequences (Academic Press. New York, 1973).
[19] T.P. Speed, Geometric and probabilistic aspects of some conbinatori i identities, J. Aust. Math. Soc. 22 (A) (1976) 462-468.
[20] M. Sved, Generalized binomial cotfficients Combinatorial Mathematics V, Lecture Notes in Mathematics 622 (Springer, Berlin, 1977).
[21] J.H. van Lint, Combinatorial Thecry Seminar, Eindhoven University of Technology, Lecture Notes in Mathematics 382 (Springer, Berlin, 1974).
[2:] J.G. Wendel, Left-centinuous random walk and the Lagrange expansion, Am. Math. Monthly 82 (1975) 494-499.
[23] E.T. Vhittaker and G.N. Watson, A Course of Modern Analysis (Cambridge Univ. Press, L indon, (1946) $4 t^{h} \mathrm{ed}$.
[24] A.M. Vislom and I.M. Yaglom, Challenging Problems in Mathemates with Fiementary Solutioris, Vol. 1 (Holden Day, San Francisc', 1964).

