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Abstract 

In this paper, we derive general formulae that reproduce well-known instances of 
recurrence relations for the classical orthogonal polynomials as special cases. 
These recurrence relations are derived, using only elementary mathematics, 
directly from the general Rodrigues’ formula for the classical orthogonal 
polynomials – a ‘first-principles’ derivation – and represent a unified presentation 
of various approaches to the exact solution of an important class of second-order 
linear ordinary differential equations. When re-expressed in ladder-operator form, 
the recurrence relations are seen to represent to a basic development of the work 
of Jafarizadeh and Fakhri [5] and allow a ‘Schrödinger operator factorization’ of 
the defining equation of the classical orthogonal polynomials, as well as an 
operational formula for the solution of this defining equation. The identity 
between the Rodrigues’ formula and the operational formula is determined and 
standard examples involving the application of the ladder-operator approach 
presented. The relationship with previous work is discussed. 
 
Mathematics Subject Classification: 33C45; 42C05 
 
Keywords:  classical orthogonal polynomials; ladder-operators; operational   
                     formula 
 
 
1.   Rodrigues’ Formula Solutions to Second-Order Differential 
Equations 
 
In this paper we consider the second-order linear ordinary differential equation 
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                                     0)z(y)z(yq(z))z(yp(z) nnnn   =λ+′+′′                               (1) 

 
where 0n ≥  is a non-negative integer , the dashes denote differentiation with  
 
respect to the function argument z, nλ is independent of z, and 
 

)0(pz)0(pz
2
p)z(p 2 +′+
′′

=  and )0(qzq)z(q +′=                          (2) 

 
that is, p(z) is a quadratic function, q(z) a linear function of z. Equation (1) has  
 
known (classical) orthogonal polynomial solutions, with normalising factors nK  
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⎞

⎜
⎝
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with respect to the weight function )z(w  in the interval (a, b) – which interval  
 
need not be finite – provided that  [3] 
 
                                                n2qn2p)n1(n λ=′−′′−                                         (4)                  

 
Given an ordinary differential equation (1.1), the weighting function )z(w is  
 
determined by a first-order ordinary differential equation, a Pearson equation [2] 
 

)]x(p)z(w)][z(pk)x(q[)]z(p)z(w[
dz
d k1k ′+=+                         (5) 

 
with 0k ≥  a non-negative integer. As p(z) and q(z) are given, (5) may be solved  
 
for w(z) and we have then (up to a normalisation factor) a solution (3) of (1),  
 
provided that p(z), q(z) and nλ  satisfy the ‘integration condition’ (4) (which we  
 
assume throughout).  
 
Now, another well-known approach to the solution of (1), is to (effectively)  
‘factorize’ the second-order linear differential operator on the left-hand side of  
 
(1) – called here the ‘Schrödinger factorization’ approach to the solution of  
 
(1). Since the solution of (1) is unique, it is apparent that the two solution  
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processes for (1) – the Rodrigues’ formula solution and the factorization  
 
approach –  must yield the same answers under the same set of circumstances, and  
 
the question arises as to the exact connection between the Rodrigues’ formula  
 
solution to (1) and the Schrödinger factorization approach to (1). It is this  
 
question that we address, below, in the body of the paper. 
 
There is a considerable volume of literature on the Rodrigues’ formula and  
 
factorization approaches to equation (1) and its solution. For the purpose of  
 
comparison, however, we restrict the discussion of this literature to a few of the  
 
most pertinent references. Of particular interest here, by way of comparison with  
 
the results presented below, is the work of Erdelyi et al [3], Jafarizadeh and Fakhri  
 
[5], Lorente [8], Kaufman [6], Nikiforov and Uvarov [11], Van Iseghem [13] and 
 
Yanez, Dehesa and Nikiforov [14], which we discuss in detail in section 5,  
 
(Of course reference [3] has been a ‘standard’ for many years.) 
 
The approach to the Schrödinger factorization that we develop below is based on  
 
the demonstration, in section 2, of recurrence relations for the Rodrigues’ formula  
 
(3). The demonstrations in section 2 are based on techniques going well-back  

 
[1], [4] that depend on the mathematical structure of the Rodrigues' formula (3). 
 
The ladder-operator formalism that emerges from the analysis of the mathematical  
 
structure of the Rodrigues' formula (3), presented in section 3, is ‘first cousin’ to  
 
that developed by Jafarizadeh and Fakhri [5], who, however, obtain their ladder- 
 
operators by factorizing (the equivalent of) (1) directly. As a development, an  
 
extra element is here extracted and an assumption eliminated from the Jafarizadeh  
 
and Fakhri formalism and an operational identity established between the  
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Rodrigues’ formula solution and the ladder-operator solution to (1). Examples  
 
of the ladder-operators method are presented in section 4 and we round-off our  
 
presentation with a brief discussion and acknowledgement of the work of previous  
 
authors, and some further closing remarks, in section 5. 
 
 
2.   The Recurrence Relations for the Rodrigues’ Formula 
 
The basic relations that link the factorization methodology with the Rodrigues’  
 
formula solution to (1) [(3)] are recurrence relations for (3). In this section  
 
the derivations of differential recurrence relations and a three term recurrence  
 
relation for the Rodrigues’ formula solution, (3), to equation (1) are outlined.  
 
In the next section we show how the differential recurrence relations for (3) can  
 
be used to set-up the Schrödinger factorization approach to solving (1).  
 
The technique that we adopt in the derivations below is to derive and manipulate,  
 
through elimination, equations involving derivatives of ).z(p)z(w k

 The  
 
philosophy motivating this approach is obvious on examining the structure of  
 
(3). We require five equations in total, of which the first is the Pearson equation  
 
(5). The remaining four equations are obtained by differentiating (5) and by  
 
the application of Leibnitz’ rule for differentiating a product.  
 
So, from (5) we find that )nk( =  
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while, from the direct application of Leibnitz’ rule to )],z(p)z(w)[z(p n
 we get 
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---------- (7)
 

 
The fourth and fifth equations are obtained in a manner similar to (6) and (7).  
 
From (5) we find that )1nk( −=  
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---------- (8)
 

 

and, from the direct application of Leibnitz’ rule to )],z(p)z(w)[z(p 1n−
 we get 
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---------- (9) 
 

We write-out, first, the expression for the ‘raising’ differential recurrence relation,  
 
then we present the three term recurrence relation and, finally, we write-out the  
 
expression for the ‘lowering’ differential recurrence relation. 
 

So, eliminating ]wp[
dz
d n

1n+

⎟
⎠
⎞

⎜
⎝
⎛  and ]wp[

dz
d n

1n−

⎟
⎠
⎞

⎜
⎝
⎛  from (5), (8) and (7),  

 
with (3) in mind, we get the ‘raising’ differential recurrence relation 
 

)z(y
K

K
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---------- (10) 

 

(Note that, from (3) and (5) with ,0k =  we find that [11] 
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Next, from (7), (8) and (9) we may eliminate ],wp[
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recurrence relation in the form 
 

=′′−+′′′−+′ ++ )z(yK)p)1n(q)(p)1n(q2( 1n1n  
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)z(yK]}qpp)p)1n(q2)[(p)1n(q(p)p)1n(q(2){pnq(n 1n1n
2

−−′′−′′′−+′′′−+−′′−+′′′+′+
  

  ---------- (11) 
 

Finally, eliminating )z(y 1n+  from (10) and (11) we find the ‘lowering’  
 
differential recurrence relation 
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---------- (12) 

 
 

 
3.   The Schrödinger Factorization Method 

One of the best-known ways of providing solutions to equation (1) is to  
 
introduce ‘ladder operators’ [5], [6], [8]. Ladder-operators are first-order linear  
 
differential operators that relate different solutions of (1) to one another via  
 
differentiation and elementary algebra. The big advantage of employing ladder- 
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operators is that given any one of the ladder-operator solutions, any other solution  
 
can be obtained simply by applying the appropriate ladder-operator a sufficient  
 
number of times. In addition, it is possible to re-arrange the basic equation, (1),  
 
so that it may be represented in a particular factorized form that we have called  
 
here the Schrödinger factorized form or Schrödinger factorization.  
 
Specifically, the ladder operators come in ‘matched pairs’: a ‘raising’ ladder  
 
operator, +

nL  
 

                                  )z(
dz
d)z(pL nnn

+++ β+α+⎟
⎠
⎞

⎜
⎝
⎛=                                            (13) 

 

with ++ βα n n  and  independent of z, and a ‘lowering’ ladder operator, −
nL  

 

)z(
dz
d)z(pL nnn

−−− β+α+⎟
⎠
⎞

⎜
⎝
⎛=                                           (14) 

 

with −− βα n n  and  independent of z also. The basic property of the ‘raising’ ladder  
 
operator, ,Ln

+  is that it relates successive solutions of (1) through 
 

                                               )z(y)z(yL 1nnnn +
++ γ=                                           (15) 

 
while the corresponding relation for the ‘lowering’ ladder operator, ,Ln

−
 is  

 

                                               )z(y)z(yL 1nnnn −
−− γ=                                           (16) 

with −+ γγ n n  and  independent of z. Using the ‘ladder operator representation’, (13)  
 
and (14), we may reproduce the second-order linear ODE (1) (or its equivalent)  
 
by combining (15) with (16) as either, +

−
−−+

− 1nnn1n LLor    LL . Indeed if we define  
 

                                                         −+
− γγ= n1nnE                                                (17) 

 
see immediately that 
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                                          )z(yE(z)yLL nnnn1n =−+
−                                     (18) 

and 
                                        )z(yE)z(yLL 1nn1n1nn −−

+
−

− =                                  (19)                                 
 
The relationship between the Rodrigues’ formula solution and the ladder operator  
 
approach to (1) is, in the light of section 2, immediate. If we rewrite (15) and  
 
(16) in full, using (13) and (14) respectively, then we get 
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+++ γ=β+α+                            (20) 
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Comparing (20) with (10), we identify the coefficients of (13) as 
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Also, by comparing (21) with (12), we find that 
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Further to this, combining the results from equations (22c) and (23c), we get  
 
 



Rodrigues’ formula approach to operator factorization                                  2341 

 
an expression for 

−+
− γγ= n1nnE  as 

      

2
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                                                                                                         ---------- (24) 

 
Finally, we still have a three-term recurrence relation between the different levels  
 
of solution to (1), that is 
 

)z(yc)z(y)bza()z(y 1nnnnn1n −+ +++                            (25) 

where the coefficients  ,c  and b , a nnn  with nnn c  and  b ,a  independent of z, can  
 
be evaluated by a basic comparison between (25) and (11). Interestingly, the  
 
normalization factors for the  the(z),yn classical orthogonal polynomials, may be  
 
obtained directly from (25) [7]. 
 
The ladder operator representation gives us, then, an alternative solution method  
 
for the ODE (1), as mentioned above. In fact given (z),y0  we may obtain all  
 

other solutions 1,n (z),y  n ≥  from equation (15), since 0.n ,0n ≥≠γ+  To obtain  

 
(z),y0  we make use of the fact, from (21) and (23), that (z)y0  is obtained as a  

 
solution to 
 

0
dz

)z(dy0 =                                                        (26) 

 
In other words, (z)y0  is a constant, which is well-known [3, 11] from the theory  
 
of classical orthogonal polynomials. This is, of course, only the case if we identify  
 
the equivalence between (18), say, and the original equation (1). Indeed, if we  
 
write-out (18) in full and compare the result with (1) in the form 
 

0)]z(y)z(yq(z))z(yp(z)[p(z) nnnn   =λ+′+′′                            (27) 
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then we see that we require the consistency conditions  
 

)z(q)(z)()z(p n1nn1n ≡β+β+α+α+′ −+
−

−+
−                           (28) 

and 

nnnn1n1nn )z(pE)z)(z()z(p λ≡−β+αβ+α+α −−+
−

+
−

−                       (29) 
 
Similarly, if we write-out (19) in full and compare the result with the adjusted  
 
equation (27) ( 1nn −→ ) then we see that we require the further consistency  
 
condition 
 

1nnnn1n1n1n )z(pE)z)(z()z(p −
−−+

−
+
−

+
− λ≡−β+αβ+α+α                   (30) 

 
A straightforward calculation, a matter of substitution and simplification, shows  
 
that the identities (28) to (30) are indeed satisfied. In Table 1, we present the  
 
factorized form of the Legendre, the Laguerre and the Hermite equations, along  
 
with their respective Rodrigues’ formulae. 
 
By construction, the ladder operator representation gives identical answers to the  
 
Rodrigues formula. Indeed, by repeated application of the raising operator on  
 

(z),y0 we get a so-called operational formula for ),z(yn  that is 
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By choosing (see [3] and [11]) 1,(z)y0 ≡  we must therefore expect to find 
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To confirm this, we may proceed by mathematical induction on n. First, for ,0n =   

 
we have 1(z)y0 ≡  in both cases, as 1K0 ≡  by convention (see [3] and [11] again).  
 
Next, we assume the result (31) is true for arbitrary 0.n >  Finally, we have 
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or, by (32) and the induction assumption 
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However, from (13), (22) and (10), we see that 
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and, from (33) and (34), the assertion holds true. 

 
 
4.  Examples  
 
It is not a difficult task to apply the general formulae we have presented above to  
 
any specific class of classical orthogonal polynomials. We consider in detail the  
 
generation of the first few terms of the Jacobi polynomials, while presenting  
 
similar results for the Legendre, Laguerre and Hermite polynomials in tabular  
form in Table 2. The Jacobi polynomials arise as solutions [3] of the Jacobi  
 
equation  
 

     0P)1n(n P]z)2([P)z1( ),(
n

),(
n

),(
n

2 =+β+α++
′

+β+α−α−β+
″

− βαβαβα      (36) 
 
With the normalization encapsulated in 
 

!n2)1(K nn
n −=                                                  (37) 

 
we obtain the recurrence relation generating the Jacobi polynomials, via (36),  
 
(20), (22), and (31), as  
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Choosing [3] 
 

1)z(P ),(
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we see from (38) that 
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---------- (39c) 

 
and so on and so forth. We recognise ),z(P ),(

0
βα

 )z(P ),(
0

βα
 and )z(P ),(

2
βα

 as the first  
 
three terms of the sequence of Jacobi polynomials generated by (38) and (39a).  
 
Naturally, the Rodrigues’ formula (3), with the appropriate choice of ,Kn )z(w   
 

and )z(p  develops the identical sequence of Jacobi polynomials also, as may be  
 
checked from the actual formula, that is, from [3] 
 

])z1()z1[(
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d)z1()z1(

!n2
)1()z(P nn

n
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n
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In Table 2 we summarize the above procedure for the Legendre, Laguerre and  
 
Hermite polynomials. As ‘basic data’ for the construction of Table 2, we have the  
 
following. For the Legendre polynomials we have the equation and normalization 
 

,0P)1n(n Pz2P)z1( nnn
2 =++′−′′−     !n2)1(K nn

n −=                     (41) 
 
while for the Laguerre polynomials and Hermite polynomials we have,  
 
respectively 
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,0nL L)z1(Lz nnn =+′−+′′      !nKn =                                    (42) 
and  

,0nH2 Hz2Hz nnn =+′−′′      n
n )1(K −=                              (43) 

 
Finally, in all three cases, Legendre, Laguerre and Hermite polynomials, we  
 
assume that .1)z(y0 =  Again, the Rodrigues’ formula (3), with the appropriate  
 
choice of ,Kn )z(w  and )z(p  develops the identical sequence of Legendre,  
 
Laguerre and Hermite polynomials also. This may be checked using the explicit  
 
Rodrigues’ formulae from Table 1.  
 
Of course, the analysis presented here may be applied to the other examples of  
 
classical orthogonal polynomials also (see references [3] and  [11] for their  
 
detailed description).The basic process, summarized by (20) and (22)  
 
(essentially) defines a generic infinite sequence for the general classical  
 
orthogonal polynomial solutions of equation (1). As the process is iterative, it  
 
may be implemented on a computer and as many or as few terms in the sequence  
of polynomials ‘turned-out’ as is required. The same is equally true of the  
 
recurrence relation (25), given (z)y0  and (z).y1  In this case we require the  
 
coefficients ,c  and b ,a nnn  but this is a straightforward determination as  
 
mentioned already. Also, it is not difficult to show that 
 

n n n n n n n n n n na   ,   b   ,   c− + + − + + − +α = α − γ β = β − γ γ = γ                             (44) 
 
from which the coefficients nnn c  and b ,a  may be found by basic arithmetic. 
 
 
5.  Summary and Discussion 
 
We have derived ‘ladder-operator’ differential recursive formulae – and an  
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associated operational formula  – for the solutions of (1), by deducing the  
 
recurrence relations (10), (11) and (12) directly from the Rodrigues formula  
 
(2), using the Pearson equation (4) and elementary mathematics only. The  
 
ladder-operators (13) and (14), following from the recurrence relations (10) and  
 
(12), lead then to a Schrödinger factorization for (1). In Tables 1 and 2, a short  
 
collection of some of the results of this analysis is presented.  
 
The derivations in section 2, inspired (mostly) by the methodology of references  
 
[1] and [4], constitute a ‘first-principles’ deduction of the recurrence relations  
 
(10), (11) and (12) for the classical orthogonal polynomials (3) and so for the  
 
Schrödinger ladder-operators (13) and (14) for equation (1) also. Note,  
 
however, that the presentations of references [1] and [4] are based on a different  
 
starting formula than (3) so that their derivations differ in detail from those of  
 
section 2, as do the specific form of their final results. 
 
The recurrence formulae of section 2 are well and widely known. However, their  
 
derivation through the manipulation of the general Rodrigues’ formula (3) is not  
 
of such a wide currency and previous essays in this direction differ from the  
 
approach of section 2 either in starting point, as in references [1] and [4], or else  
 
in scope of application. So, on the one hand,  the recurrence relations of section 2  
 
have been obtained from the Rodrigues formula solution of (1) by Nikiforov and  
 
Uvarov [11] and also, in a development of the work of Nikiforov and Uvarov  
 
[11], by Yanez, Dehesa and Nikiforov [14]. However, Nikiforov and Uvarov [11]  
 
and Yanez et al [14] do not derive the recurrence relations from the Rodrigues  
 
formula (1.3) directly, but through an analysis, via contour integration, of a  
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contour integral representation of  (3). Similarly, Erdelyi et al [3] quote their  
 
equivalent to (10), (11) and (12) (with ‘their’ (10) implicit in the discussion).  
 
However, their derivation differs in starting point (and in details) also. On the  
 
other hand, parallel to the method developed in section 2 is that presented by Van  
 
Iseghem [13]. Van Iseghem does manipulate (3) directly, but derives equations  
 
(6) and (7) only, and so produces solely the ‘raising’ differential recurrence  
 
relation, that is, equation (10). (Van Iseghem [13] does derive her equivalent of  
 
(11), but again from the viewpoint of Nikiforov and Uvarov [11].) 
 
In addition to these differences between the work in section 2, and that of 
 
references [3], [11], [13] and [14], we note that, the  coefficients in the recurrence  
 
formulae of section 2 are given in terms of the coefficients of the original second- 
 
order linear differential equation, (1), directly, thus making applying these  
 
recurrence formulae, to any particular instance of a differential equation, simpler.  
 
None of the above quoted authors relate their recurrence relations to the  
 
factorization of equation (1). So, we move on and consider previous work  
 
associated with the development of ladder-operators along the lines of section 3.  
 
Again, such formulae as (20), (21) or (25) are well known, but, once more,  
 
essays in developing formulae such as (20), (21) or (25) differ from the  
 
approach of section 3 either in starting point or in scope of application. For  
 
example, Lorente [8] derives a ‘Schrödinger operator factorization’ for, and  
 
solutions to (orthogonal polynomials) equation (1), through the application of   
 
recurrence relations derived from its Rodrigues’ formula by Nikiforov and Uvarov  
 
[11] and so (implicitly) Lorente has a different starting point from that of section  
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3. Actually, Lorente [8] produces a factorized form of an equation related to (1).  
 
As a second example, we consider Kaufman [6], who also started with ‘ladder  
 
operator relations’ and proceeded to construct second-order ordinary differential  
 
equations  in the manner of Lorente. Kaufman, however, considered only special  
 
cases of ladder operators [6], which he considered as given. In the Rodrigues’  
 
formula procedure, ladder operators are derived for the general Rodrigues’  
 
formula, (3) (or see Lorente [8] again).  
 
Another ladder-operator methodology, and one which is closest to that presented  
 
in section 3, is that of Jafarizadeh and Fakhri [5]. In fact, the present work ends- 
 
up, as reported in section 3, as a development of the factorization methodology of  
 
Jafarizadeh and Fakhri [5]. However, Jafarizadeh and Fakhri [5] start, not with the  
 
Rodrigues’ formula (3), but with the assumed factorizations (18) and (19) of  
 
equation (1). In addition, Jafarizadeh and Fakhri [5] do not assume the specific  
 
forms (20) and (21) for the ‘raising’ and ‘lowering’ operations but utilize,  
 
instead, the ‘composite’ format of 
 

)z(ŷ)z(ŷ)z(
dz

)z(ŷd)z(p 1nnnn
n

+
++ =β+α+                               (45) 

and 

)z(ŷE)z(ŷ)z(
dz

)z(ŷd)z(p 1nnnnn
n

−
−− =β+α+                          (46) 

 

and, to determine the unknown coefficients ,E and  , nnn
±± βα  require the further  

 
assumption that 0E0 =  [5]. The use, in section 3, of the direct approach of section  
 
2 produces the factorized form ,E n1nn

−+
− γγ= from which, as 00 =γ− , we get  

 
0E0 =  identically, as a result. Further, the operational formula (31) depends on  
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the different approach of section 3. Apparently, by comparison, the relationship  
 
between the approach of Jafarizadeh and Fakhri [5] and the present approach, is  
 
determined through 
 

1n   ),z(ŷ)()z(y n

1n

1k
kn ≥⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
γ=

−

=

+∏                                  (47) 

 
provided we agree that .1)z(ŷ)z(y 00 ==  
 
We round-off our discussion with a few general points of interest. First, we note  
 
that the Schrödinger factorizations in addition to being well-known in the theory  
 
of  Sturm-Liouville eigenvalue problems and intimately related to the concepts of  
 
supersymmetry and ‘shape invariance’ [5], are basic to the theory of special  
 
functions [10]. Indeed the factorization approach to (1) lends itself to further  
 
developments, especially where the task of linking generating functions and  
 
recurrence relations is concerned. In particular, by making use of recurrence  
 
relations, we can utilise existing methodology (see [9] and [12]) to produce a  
 
multitude of generating functions, which are known to be of great utility in  
 
applications. Finally, we note that we have restricted ourselves to the basic  
 
classical orthogonal polynomials. The methodology for producing ‘raising’ and  
 
‘lowering’ operators and factorized forms can be extended to a consideration of  
 
the associated polynomials and their defining differential equation, although the  
 
formulae are somewhat more involved. 
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Table 1.  Important Equations, Factorized with their Rodrigues' Formula [3] 
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Table 2.  Recurrence Relations and the First Few Terms of their Sequences 
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