Permutations Containing and Avoiding 123 and 132 Patterns

Aaron Robertson ${ }^{1}$
Department of Mathematics
Temple University
Philadelphia, PA 19122
aaron@math.temple.edu

Abstract

We prove that the number of permutations which avoid 132-patterns and have exactly one 123 -pattern, equals $(n-2) 2^{n-3}$, for $n \geq 3$. We then give a bijection onto the set of permutations which avoid 123 -patterns and have exactly one 132-pattern. Finally, we show that the number of permutations which contain exactly one 123pattern and exactly one 132 -pattern is $(n-3)(n-4) 2^{n-5}$, for $n \geq 5$.

Introduction

In 1990, Herb Wilf asked the following: How many permutations of length n avoid a given pattern, p ? By pattern-avoiding we mean the following: Let π be a permutation of length n and let $p=\left(p_{1}, p_{2}, \ldots, p_{k}\right)$ be a permutation of length $k \leq n$ (we will call this a pattern of length k). Let J be a set of r integers, and let $j \in J$. Define $\operatorname{place}(j, J)$ to be 1 if j is the smallest element in $J, 2$ if it is the second smallest, \ldots, and r if it is the largest. The permutation π avoids the pattern p if and only if there does not exist a set of indices $I=\left(i_{1}, i_{2}, \ldots, i_{k}\right)$, such that $p=\left(\right.$ place $\left.\left(\pi\left(i_{1}\right), I\right), \operatorname{place}\left(\pi\left(i_{2}\right), I\right), \ldots, \operatorname{place}\left(\pi\left(i_{k}\right), I\right)\right)$.

In two beautiful papers ([B] and $[\mathrm{N}]$), the number of subsequences containing exactly one 132-pattern and exactly one 123-pattern are enumerated. Noonan shows in [N] that the number of permutations containing exactly one 123-pattern is the simple formula $\frac{3}{n}\binom{2 n}{n+3}$. Bóna proves that the even simpler formula $\binom{2 n-3}{n-3}$ enumerates the number of permutations containing exactly one 132-pattern. Bóna's result proved a conjecture first made by Noonan and Zeilberger in [NZ].

Noonan and Zeilberger considered in [NZ] the number of permutations of length n which contain exactly r p-patterns, for $r \geq 1$. In this article we work towards the following generalization: How many permutations of length n avoid patterns p_{i}, for $i \geq 0$, and contain $r_{j} p_{j}$-patterns, for $j \geq 1, r_{j} \geq 1$? We will first consider the permutations of length n which avoid 132-patterns, but contain exactly one 123 -pattern. We then define a natural bijection between these permutations and the permutations of length n which avoid 123-patterns, but contain exactly one 132-pattern. Finally, we will calculate the number of permutations which contain one 123-pattern and one 132-pattern. These results address questions first raised in [NZ].

[^0]
Known Results

For completeness, two results which are already known are given below.
Lemma 1: The number of permutations of length n with one 12-pattern is $n-1$.
Proof: Induct on n. The base case is trivial. A permutation, ϕ, of length n with one 12pattern must have $n=\phi(1)$ or $n=\phi(2)$. If $n=\phi(1)$, by induction we get $n-2$ permutation. If $n=\phi(2)$, then we must have $n-1=\phi(1)$ (or we would have more than one 12 -pattern). The rest of the entries of ϕ must be decreasing. Hence we get 1 more permutation from this second case, for a total of $n-1$.

Lemma 2: The number of permutations which avoid both the pattern 123 and 132 is 2^{n-1}.
Proof: Let f_{n} denote the number of permutations we are interested in. Then $f_{n}=\sum_{i=1}^{n} f_{n-i}+$ 1 with $f_{0}=0$. To see this, let ρ be a permutation of length $n-1$. Insert the element n into the $i^{\text {th }}$ position of ρ. Call this new permutation of length $n \pi$. To assure that π avoids the 132-pattern, we must have all entries preceding n in π be larger that the entries following n. To assure that π avoids the 123 -pattern, the entries preceding n must be in decreasing order. This argument gives the sum in the recursion. The recursion holds by noting that if $n=1$, there is one permutation which avoids both patterns. To complete the proof note that $f_{n}=2^{n-1}$.

One 123-pattern, but no 132-pattern

Theorem 1: The number of permutations of length n which have exactly one 123-pattern, and avoid the 132-pattern is $(n-2) 2^{n-3}$.

Proof: Let g_{n} denote the number of permutation we desire to count. Call a permutation good if it has exactly one 123 -pattern and avoids the 132 -pattern. Let γ be a permutation of length $n-1$. Insert the element n into the $i^{\text {th }}$ position of γ. Call this newly constructed permutation of length n, π. To assure that π avoids the 132 pattern, we must have all elements preceding n in π be larger than the elements following n in π. For π to be a good permutation, we must consider two disjoint cases.

Case I: The pattern 123 appears in the elements following n in π. This forces the elements preceding n to be in decreasing order. Summing over i, this case accounts for $\sum_{i=1}^{n} g_{n-i}$ permutations.

Case II: The pattern 123 appears in the elements preceding and including n in π. This forces the 3 in the pattern to be n. Hence the elements preceding n must contain exactly one 12 -pattern. (Further there must be at least 2 elements. Hence i must be at least 3). From Lemma 1, this number is $i-2$. We are also forced to avoid both patterns in the elements following n. Lemma 2 implies that there are 2^{n-i-1} such permutations. Summing over i, this case accounts for $\sum_{i=3}^{n-1}(i-2) 2^{n-i-1}+n-2$ permutations.

We have established that the recurrence relation

$$
g_{n}=\sum_{i=1}^{n} g_{n-i}+\sum_{i=3}^{n-1}(i-2) 2^{n-i-1}+n-2,
$$

which holds for $n \geq 3\left(g_{0}=0, g_{1}=0, g_{2}=0\right)$, enumerates the pemutations of length n which avoid the pattern 132 and contain one 123-pattern.

The obvious way to procede would be to find the generating function of g_{n}. However, in this article we would like to employ a different, and in many circumstances more powerful, tool. We will use the Maple procedure findrec in Doron Zeilberger's Maple package EKHAD ${ }^{2}$. (The Maple shareware package gfun could have also been used.) Instructions for its use are available online. To use findrec we compute the first few terms of g_{n}. These are (for $n \geq 4$) $4,12,32,80,192,448,1024$. We type findrec ($[4,12,32,80,192,448,1024], 0,2, \mathrm{n}, \mathrm{N})$ and are given the recurrence $h_{n}=4\left(h_{n-1}-h_{n-2}\right)$ for $n \geq 4$. Define $h_{0}=0, h_{1}=0, h_{2}=0$, and $h_{3}=1$, and it is routine to verify that $g_{n}=h_{n}$ for $n \geq 0$. Another routine calculation shows us that $h_{n}=(n-2) 2^{n-3}$ for $n \geq 3$, thereby proving the statement of the theorem.

One 132-pattern, but no 123-pattern

Theorem 2: The number of permutations of length n which have exactly one 132-pattern, and avoid the 123-pattern is $(n-2) 2^{n-3}$.

Proof: We prove this by exhibiting a (natural) bijection from the permutations counted in Theorem 1 to the permutations counted in this theorem. Define $S:=\{\pi: \pi$ avoids 132pattern and contains one 123 -pattern $\}$ and $T:=\{\pi: \pi$ avoids 123-pattern and contains one 132-pattern $\}$. We will show that $|S|=|T|$, by using the following bijection:

Let $\phi: S \longrightarrow T$. Let $s \in S$, and let $a b c$ be the 123-pattern in s. Then ϕ acts on the elements of s as follows: $\phi(x)=x$ if $x \notin\{b, c\}, \phi(b)=c$, and $\phi(c)=b$. In other words, all elements keep their positions except b and c switch places. An easy examination of several cases shows that this is a bijection, thereby proving the theorem.

One 132-pattern and one 123-pattern

Theorem 3: The number of permutations of length n which have exactly one 132-pattern and one 123 -pattern is $(n-3)(n-4) 2^{n-5}$.

Proof: We use the same insertion technique as in the proof of Theorem 1. Let g_{n} denote the number of permutation we desire to count. Call a permutation good if it has exactly one 123 -pattern and exactly one 132-pattern. Let γ be a permutation of length $n-1$. Insert the element n into the $i^{\text {th }}$ position of γ. Call this newly constructed permutation of length n, π.

[^1]We note that the 132-pattern cannot consist of elements only preceding n. If this were the case, we would have two 123-patterns ending with n. For π to be a good permutation, we must consider the following disjoint cases.

Case I: The 132-pattern consists of elements following n. In this case all elements preceding n must be larger than the elements following n.

Subcase A: The 123-pattern consists of elements following n. Summing over i we get $\sum_{i=1}^{n} g_{n-i}$ good permutations in this subcase.

Subcase B: The elements preceding n have exactly one 12 -pattern. This gives a 123-pattern where the 3 in the pattern is n. We must also avoid the 123 -pattern in the elements following n. Summing over i and using Lemma 1 and Theorem 1, we get $\sum_{i=3}^{n-3}(i-2)(n-i-3) 2^{n-i-2}$ good permutations in this subcase.

Case II: The 132-pattern has the first element preceding n, the last element following n, and n as the middle element. The elements preceding n must be $n-1, n-2, \ldots, n-1+2, n-i$, where $n-i$ immediately precedes n in π. See [B] for a more detailed argument as to why this must be true.

Subcase A: The elements preceding n have exactly one 12-pattern. This gives a 123-pattern where the last element of the pattern is n. We must also avoid both the 123 and the 132 pattern in the elements following n. Summing over i and using Lemma 1 and Lemma 2 we have $\sum_{i=4}^{n-1}(i-3) 2^{n-i-1}$ good permutations in this subcase.

Subcase B: The 123-pattern consists of elements following n. We must have the elements preceding n in π be decreasing to avoid another 123-pattern. Further, the elements following n must not contain a 132-pattern. Using Theorem 1 and summing over i, we get a total of $\sum_{i=2}^{n-3}(n-i-2) 2^{n-i-3}$ good permutations in this subcase.

In total, we find that the following recurrence enumerates the permutations of length n which contain exactly one 123 -pattern and one 132 -pattern.

$$
g_{n}=\sum_{i=1}^{n} g_{n-i}+\sum_{i=1}^{n-4}(2 i(n-i-4)+n-3) 2^{n-i-4}
$$

for $n \geq 5$ and $g_{1}=g_{2}=g_{3}=g_{4}=0$.
Using findrec again by typing findrec ($[2,12,48,160,480,1344,3584], 1,1, n, N$) (where the list is the first few terms of our recurrence for $n \geq 5$) we get the recurrence $f_{n+1}=\frac{2(n+2)}{n} f_{n}$, with $f_{1}=2$. After reindexing, another routine calculation shows that $f_{n}=g_{n}$. Solving f_{n} for an explicit answer, we find that $g_{n}=(n-3)(n-4) 2^{n-5}$.

We conjecture that the number of 132 -avoiding permutations with r 123-patterns is always a sum of powers of 2 . For more evidence, and further extensions see [ERZ].

References

[B] M. Bóna, Permutations with one or two 132-subsequences., Discrete Mathematics, 181, 1998, 267-274.
[ERZ] S. Ekhad, A. Robertson, D. Zeilberger, The Number of Permutations With a Prescribed Number of 132 and 123 Patterns, submitted. For a preprint see www.math.temple.edu/~ [aaron,ekhad,zeilberg]/.
[N] J. Noonan, The Number of Permutations Containing Exactly One Increasing Subsequence of Length 3, Discrete Mathematics, 152, 1996, 307-313.
[NZ] J. Noonan and D. Zeilberger, The Enumeration of Permutations with a Prescribed Number of "Forbidden" Patterns, Advances in Applied Mathematics, 17, 1996, 381-407.

[^0]: ${ }^{1}$ webpage: www.math.temple.edu/~ aaron/
 This paper was supported in part by the NSF under the PI-ship of Doron Zeilberger.

[^1]: ${ }^{2}$ Available for download at www.math.temple.edu/~zeilberg/

