Aaron Robertson¹ Department of Mathematics Temple University Philadelphia, PA 19122 aaron@math.temple.edu

Abstract

We prove that the number of permutations which avoid 132-patterns and have exactly one 123-pattern, equals $(n-2)2^{n-3}$, for $n \ge 3$. We then give a bijection onto the set of permutations which avoid 123-patterns and have exactly one 132-pattern. Finally, we show that the number of permutations which contain exactly one 123pattern and exactly one 132-pattern is $(n-3)(n-4)2^{n-5}$, for $n \ge 5$.

Introduction

In 1990, Herb Wilf asked the following: How many permutations of length n avoid a given pattern, p? By pattern-avoiding we mean the following: Let π be a permutation of length n and let $p = (p_1, p_2, \ldots, p_k)$ be a permutation of length $k \leq n$ (we will call this a pattern of length k). Let J be a set of r integers, and let $j \in J$. Define place(j, J) to be 1 if j is the smallest element in J, 2 if it is the second smallest, ..., and r if it is the largest. The permutation π avoids the pattern p if and only if there does not exist a set of indices $I = (i_1, i_2, \ldots, i_k)$, such that $p = (place(\pi(i_1), I), place(\pi(i_2), I), \ldots, place(\pi(i_k), I))$.

In two beautiful papers ([B] and [N]), the number of subsequences containing exactly one 132-pattern and exactly one 123-pattern are enumerated. Noonan shows in [N] that the number of permutations containing exactly one 123-pattern is the simple formula $\frac{3}{n} \binom{2n}{n+3}$. Bóna proves that the even simpler formula $\binom{2n-3}{n-3}$ enumerates the number of permutations containing exactly one 132-pattern. Bóna's result proved a conjecture first made by Noonan and Zeilberger in [NZ].

Noonan and Zeilberger considered in [NZ] the number of permutations of length n which contain exactly r p-patterns, for $r \ge 1$. In this article we work towards the following generalization: How many permutations of length n avoid patterns p_i , for $i \ge 0$, and contain $r_j p_j$ -patterns, for $j \ge 1$, $r_j \ge 1$? We will first consider the permutations of length n which avoid 132-patterns, but contain exactly one 123-pattern. We then define a natural bijection between these permutations and the permutations of length n which avoid 123-patterns, but contain exactly one 132-pattern. Finally, we will calculate the number of permutations which contain one 123-pattern and one 132-pattern. These results address questions first raised in [NZ].

¹webpage: www.math.temple.edu/~aaron/

This paper was supported in part by the NSF under the PI-ship of Doron Zeilberger.

Known Results

For completeness, two results which are already known are given below.

Lemma 1: The number of permutations of length n with one 12-pattern is n - 1.

<u>Proof:</u> Induct on n. The base case is trivial. A permutation, ϕ , of length n with one 12pattern must have $n = \phi(1)$ or $n = \phi(2)$. If $n = \phi(1)$, by induction we get n-2 permutation. If $n = \phi(2)$, then we must have $n - 1 = \phi(1)$ (or we would have more than one 12-pattern). The rest of the entries of ϕ must be decreasing. Hence we get 1 more permutation from this second case, for a total of n - 1.

Lemma 2: The number of permutations which avoid both the pattern 123 and 132 is 2^{n-1} .

<u>Proof:</u> Let f_n denote the number of permutations we are interested in. Then $f_n = \sum_{i=1}^n f_{n-i} + 1$ with $f_0 = 0$. To see this, let ρ be a permutation of length n - 1. Insert the element n into the i^{th} position of ρ . Call this new permutation of length $n \pi$. To assure that π avoids the 132-pattern, we must have all entries preceding n in π be larger that the entries following n. To assure that π avoids the 123-pattern, the entries preceding n must be in decreasing order. This argument gives the sum in the recursion. The recursion holds by noting that if n = 1, there is one permutation which avoids both patterns. To complete the proof note that $f_n = 2^{n-1}$.

One 123-pattern, but no 132-pattern

Theorem 1: The number of permutations of length n which have exactly one 123-pattern, and avoid the 132-pattern is $(n-2)2^{n-3}$.

<u>Proof:</u> Let g_n denote the number of permutation we desire to count. Call a permutation good if it has exactly one 123-pattern and avoids the 132-pattern. Let γ be a permutation of length n - 1. Insert the element n into the i^{th} position of γ . Call this newly constructed permutation of length n, π . To assure that π avoids the 132 pattern, we must have all elements preceding n in π be larger than the elements following n in π . For π to be a good permutation, we must consider two disjoint cases.

Case I: The pattern 123 appears in the elements following n in π . This forces the elements preceding n to be in decreasing order. Summing over i, this case accounts for $\sum_{i=1}^{n} g_{n-i}$ permutations.

Case II: The pattern 123 appears in the elements preceding and including n in π . This forces the 3 in the pattern to be n. Hence the elements preceding n must contain exactly one 12-pattern. (Further there must be at least 2 elements. Hence i must be at least 3). From Lemma 1, this number is i - 2. We are also forced to avoid both patterns in the elements following n. Lemma 2 implies that there are 2^{n-i-1} such permutations. Summing over i, this case accounts for $\sum_{i=3}^{n-1} (i-2)2^{n-i-1} + n - 2$ permutations.

We have established that the recurrence relation

$$g_n = \sum_{i=1}^n g_{n-i} + \sum_{i=3}^{n-1} (i-2)2^{n-i-1} + n-2,$$

which holds for $n \ge 3$ ($g_0 = 0, g_1 = 0, g_2 = 0$), enumerates the permutations of length n which avoid the pattern 132 and contain one 123-pattern.

The obvious way to procede would be to find the generating function of g_n . However, in this article we would like to employ a different, and in many circumstances more powerful, tool. We will use the Maple procedure findrec in Doron Zeilberger's Maple package EKHAD². (The Maple shareware package gfun could have also been used.) Instructions for its use are available online. To use findrec we compute the first few terms of g_n . These are (for $n \ge 4$) 4, 12, 32, 80, 192, 448, 1024. We type findrec([4,12,32,80,192,448,1024],0,2,n,N) and are given the recurrence $h_n = 4(h_{n-1} - h_{n-2})$ for $n \ge 4$. Define $h_0 = 0, h_1 = 0, h_2 = 0$, and $h_3 = 1$, and it is routine to verify that $g_n = h_n$ for $n \ge 0$. Another routine calculation shows us that $h_n = (n-2)2^{n-3}$ for $n \ge 3$, thereby proving the statement of the theorem.

One 132-pattern, but no 123-pattern

Theorem 2: The number of permutations of length n which have exactly one 132-pattern, and avoid the 123-pattern is $(n-2)2^{n-3}$.

<u>Proof:</u> We prove this by exhibiting a (natural) bijection from the permutations counted in Theorem 1 to the permutations counted in this theorem. Define $S := \{\pi : \pi \text{ avoids } 132\text{-pattern} \text{ and } contains one 123\text{-pattern} \}$ and $T := \{\pi : \pi \text{ avoids } 123\text{-pattern} \text{ and contains one } 132\text{-pattern} \}$. We will show that |S| = |T|, by using the following bijection:

Let $\phi : S \longrightarrow T$. Let $s \in S$, and let *abc* be the 123-pattern in *s*. Then ϕ acts on the elements of *s* as follows: $\phi(x) = x$ if $x \notin \{b, c\}, \phi(b) = c$, and $\phi(c) = b$. In other words, all elements keep their positions except *b* and *c* switch places. An easy examination of several cases shows that this is a bijection, thereby proving the theorem.

One 132-pattern and one 123-pattern

Theorem 3: The number of permutations of length n which have exactly one 132-pattern and one 123-pattern is $(n-3)(n-4)2^{n-5}$.

<u>Proof:</u> We use the same insertion technique as in the proof of Theorem 1. Let g_n denote the number of permutation we desire to count. Call a permutation good if it has exactly one 123-pattern and exactly one 132-pattern. Let γ be a permutation of length n-1. Insert the element n into the i^{th} position of γ . Call this newly constructed permutation of length n, π .

²Available for download at www.math.temple.edu/~zeilberg/

We note that the 132-pattern cannot consist of elements only preceding n. If this were the case, we would have two 123-patterns ending with n. For π to be a good permutation, we must consider the following disjoint cases.

Case I: The 132-pattern consists of elements following n. In this case all elements preceding n must be larger than the elements following n.

Subcase A: The 123-pattern consists of elements following n. Summing over i we get $\sum_{i=1}^{n} g_{n-i}$ good permutations in this subcase.

Subcase B: The elements preceding n have exactly one 12-pattern. This gives a 123-pattern where the 3 in the pattern is n. We must also avoid the 123-pattern in the elements following n. Summing over i and using Lemma 1 and Theorem 1, we get $\sum_{i=3}^{n-3} (i-2)(n-i-3)2^{n-i-2}$ good permutations in this subcase.

Case II: The 132-pattern has the first element preceding n, the last element following n, and n as the middle element. The elements preceding n must be $n-1, n-2, \ldots, n-1+2, n-i$, where n-i immediately precedes n in π . See [B] for a more detailed argument as to why this must be true.

Subcase A: The elements preceding n have exactly one 12-pattern. This gives a 123-pattern where the last element of the pattern is n. We must also avoid both the 123 and the 132 pattern in the elements following n. Summing over i and using Lemma 1 and Lemma 2 we have $\sum_{i=4}^{n-1} (i-3)2^{n-i-1}$ good permutations in this subcase.

Subcase B: The 123-pattern consists of elements following n. We must have the elements preceding n in π be decreasing to avoid another 123-pattern. Further, the elements following n must not contain a 132-pattern. Using Theorem 1 and summing over i, we get a total of $\sum_{i=2}^{n-3} (n-i-2)2^{n-i-3}$ good permutations in this subcase.

In total, we find that the following recurrence enumerates the permutations of length n which contain exactly one 123-pattern and one 132-pattern.

$$g_n = \sum_{i=1}^n g_{n-i} + \sum_{i=1}^{n-4} (2i(n-i-4) + n - 3)2^{n-i-4}$$

for $n \ge 5$ and $g_1 = g_2 = g_3 = g_4 = 0$.

Using findrec again by typing findrec([2,12,48,160,480,1344,3584],1,1,n,N) (where the list is the first few terms of our recurrence for $n \ge 5$) we get the recurrence $f_{n+1} = \frac{2(n+2)}{n}f_n$, with $f_1 = 2$. After reindexing, another routine calculation shows that $f_n = g_n$. Solving f_n for an explicit answer, we find that $g_n = (n-3)(n-4)2^{n-5}$.

We conjecture that the number of 132-avoiding permutations with r 123-patterns is always a sum of powers of 2. For more evidence, and further extensions see [ERZ].

References

[B] M. Bóna, *Permutations with one or two* 132-subsequences., Discrete Mathematics, **181**, 1998, 267-274.

[ERZ] S. Ekhad, A. Robertson, D. Zeilberger, *The Number of Permutations With a Prescribed Number of* 132 *and* 123 *Patterns*, submitted. For a preprint see www.math.temple.edu/~[aaron,ekhad,zeilberg]/.

[N] J. Noonan, The Number of Permutations Containing Exactly One Increasing Subsequence of Length 3, Discrete Mathematics, **152**, 1996, 307-313.

[NZ] J. Noonan and D. Zeilberger, *The Enumeration of Permutations with a Prescribed Number of "Forbidden" Patterns*, Advances in Applied Mathematics, **17**, 1996, 381-407.