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INVERSE RELATIONS AND COMBINATORIAL IDENTITIES
JOHN RIORDAN, Bell Telephone Laboratories, Murray Hill, N. J.

1. Introduction. The inverse relations considered here are typified by

yn=(x+1)n=2(’;)xk, n=0,1,-
¢l
) =1 = (o )

or in a form more suggestive of the Jacobian injunction “always invert,” by

an(x) = (1 + @) = Z(:)x"
(12)
=3 (—1)"+"(Z)ak(x).

Such relations occur frequently in combinatorial analysis in a variety of con-
texts. Each pair is associated with an identity, such as, in the present instance,

bemzer(})()

with 8,. the Kronecker delta. (The sum, here as above, is taken over the full
range of nonzero values of the summand, with the convention that (}) =0, <0,
and need not be indicated.) As will appear, these orthogonal combinatorial
identities have wider implication than the associated pairs of relations from
which they proceed. In particular, they imply other pairs of relations and other
identities, and thus provide a guide line through the forest of these prolific en-
tities. Unfortunately the guide is weak since what emerges is the usual em-
barrassment of riches, with open paths in many directions.

The object of this paper is to assemble a variety of old and new results on
the subjects of the title. A study of the relations in equations (1), which despite
appearances are worth extended attention, sets the stage for Stirling numbers,
for relations associated with Legendre and Chebyshev polynomials, and for other
results.

2. The simplest inverse relations. It is convenient to begin with the pair of
relations of equations (1) or (la). Equation (2) follows from substitution of
either into the other and equating coefficients of powers of the variable x or y.
Since it is an orthogonality on the coefficients it follows that (1) and (1a) may be
replaced by

(1b) o = Z(”)bk, b= Y (—1)n+k(:)a,,.

k
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486 INVERSE RELATIONS AND COMBINATORIAL IDENTITIES [May

Moreover, sign factors may be moved at pleasure; a more symmetrical form is

(10) tn = E(—-l)"(Z)bk, b = Z(—l)"(Z)ak.

Further, the orthogonality may be taken as associated with matrix multi-
plication; the coefficients of the relations are associated with a matrix and its
inverse. Thus equations (1b) are associated with matrices B= {bij} and

B-'={B,;}, where
1 A
b,~1=(,>, ﬁ¢f=(—‘1)'+’(.);
J J

in fact, by (2), BB~'=B"!'B=1, with I the identity matrix. Both matrices are
of triangular form, of finite or infinite extent. Thus the familiar arrays of co-
efficients

1 1

11 -1 1

1 21 1 -2 1
1 3 31 -1 3-3 1

ordinarily not regarded as mathematical objects become so by adding the
brackets or braces indicating matrices.
Next, 6nm= Omn, 50 (2) is the same as

()

implying
(3) a,.=2<:>bk, b,,=E(—1)"+’°(:>a.k

the relations connecting binomial moments @,, and probabilities b,, and usually
not related to (1). The arrays of coefficients are now

111 1... 1 -1 1 -1...
1 2 3 1 -2 3
1 3 1 -3
1 1

The triangle of coefficients has been rotated.
Next,
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n+p <k+j7>
2b Sum = Ontpmip = — 1)tk
(2b) oty = 25 (—1) (k+p>m+p

which implies

n+?) (n-l-i))
4 y = br, b, = — 1)tk .
() ’ Z<k+pk = oy 1 e

Equations (4) have been used by L. Carlitz in [2]. It is worth noticing that the
arrays of these coefficients are those for p =0 with the first » columns removed;
thus for p=1, they are

1 1

2 1 -2 1

3 3 1 3 -3 1

4 6 4 1 -4 6 -4 1

These several points show the orthogonality condition, equation (2), to be
prolific in consequences. Another variation follows from the matrix equation:
BB-!'=1, which implies (BB~')»=B?B-»=I. .Writing B?= {b,;(p)}, we find
that

k .
bij(?) = Zb'zk(P - 1)(].) = PH'"(;): P = + 1: * 2} *

Hence no essentially new pair of inverse relations appears.
Turn now to numbers introduced by I. Lah [6]; they are defined by

(=2)n = 2 L@ = () (= — 1) - - - (—2 — n+ 1),
whose inverse is (¥)»= 2 Lat(—%)s so that 8,n= D La.:Lim. But (see problem

16 of Chapter 2 of [8])
L = ( 1)"11!(”—1)
e EI\E — 1

nlfn—1\ k! [k —1
6”"‘: — 1)tk — -
2.(-1) k!(k—l) m! (m—l)

2z )

or, using (2) 8um=(n!/m!)8,_1,m-1. This points the way to other modifications of
(2), yielding more inverse relations; these are given 0,m=0.nF(n, m) if F(n, n)
=1, F(n, m)# « for the range of # and m in question.

and
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3. Stirling numbers. The Stirling numbers of first kind, s(z, k), and second
kind, S(n, k), are usually defined by the inverse relations

©) (@) = 22 s(n, Bk, & = 3 S(n, k) (a)s
with (x),=x(x—1) - - - (x—n-41). Hence, as is well known,
(6) Sum = D s(n, B)S(k, m) = 2 S(n, k)s(k, m)
and hence, as above,

(5a) an = 2 s(n, B)bs, b= 2 S, k)a.

All the parallel implications of (2) hold equally. The pair of relations, similar to

(3),
an = o sk, Wb,  bn= 2 Sk, n)a,

suggest a kind of moment, unfortunately nonexistent in probability and sta-
tistics. The numbers associated with the powers of matrices have been studied,
however, by E. T. Bellin [1].

One example of further possibilities now open is as follows. Take the basic
pair as

(5b) a.(%) = X S(n, k)a*, an = D s(n, k)a(x)
and write

) an(x;1) — ans(2;1) = an(2)

so that

03 1) = an(®) + Gs(s) + - - - + ao(x) = 3 2% 3 Sm, B)

® an = Y s(n, B)[a(x; 1) — aa(z; 1)]

= Z [s(”, k) - s(", k+ 1)]ak(x; 1)

is a new pair. Since, with a prime denoting a derivative, it follows from S(z, &)

=S(n—1, k—1)+kS(n—1, k) that

(%) = %ap-1(x) + xai_1(x), n=1,2 -
it follows by (7) that
9 aa(x;1) = 1 4 xa,—1(x; 1) + xa._1(x; 1), n=1,2 -

which implies a simple recurrence relation for the coefficients.
This is readily generalized by writing

an(x;j) — @n1(%37) = aa(x;5 — 1), i=12,-.
Then it is found similarly that ao(x; j) =1,



1964] INVERSE RELATIONS AND COMBINATORIAL IDENTITIES 489

i1
1) ) = (” +i )+ tana(w3)) + vl a(55f), = 1,2, -

Thus if
(11) an(x;j) = E ank(j)xk; .7 = 1’ 21 st
k=0
with @,0(7) = (**371), @0o(4) =1, @ni(§) = kan—1,4(J) +@n-1,-1(7), then
(12) w = 2 bu(f)ai(x; 7) J=12---,
k=0
where

but) = 2 (=04( ] ) s 6+ .

Similar results follow from the introduction of polynomials
an(2;1) + an—1(x; 1) = a,(x)

(13) ) ) ) )
on(%;7) + ona(%;7) = aa(x;5 — 1), i=23--
Indeed
+i-1
1) a(ws)) = (—1>"(” ! >+ s (w39) + ! (5)

while B (5) = 2_1-o {)s(n, k+1), where
(15) an = E Brr(f) e (%5 7).

Similar developments may be obtained for polynomials associated with b, (x)

=Y s(n, k)x*.

4. Chebyshev polynomials. The Chebyshev polynomials T',(x)=cos 8,
0 =cosx, are associated with a pair of inverse relations which may be written as

follows
n (n—k)
ok
n—k\ k *

n
(16) Qn = Z(k)bn—%’ by = Z("’l)k
It is assumed that both @, and b, are null for negative indices. The orthogonality
they imply is
n n—2 (n—m—
)
Jj/n—m—j m—7

e )]

1”
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Indeed, if a,= Z2k§n Cnibn—ok, bn= Z gksn Dnk@n_ox then
Bmo = D Gabntjm—i = D Gntjm—ibnj

with j not greater than the smaller of m and #/2.
The first half of (17) has been proved simply and directly by H. W. Gould
[4]. A direct proof of (16) may be given as follows. Write

(19) ) = X (-op (" P
%k sn n—k\ k

Then bo(x) =1, bi(x) =x=xbo(x), ba(x) =x2—2. For n=3, 4, - - -, it is easy to
show that
19 ba(x) = xbp_1(x) — bp_o(x), n=234---
since

n [(n—EFk n—Fk n—k—1

n—k( k )=( k >+< E—1 )

or
(19a) xba(x) = bpp1(x) + bpi(x), n=23":--

while xb1(x) =ba(x) +2b0(x), xbo(x) =b1(x). If x"= D anba_au(x) then equation
(19a) and its initial modifications imply
Qnk = Gp1 T G121, k< [n/2]
Qon,n = zazn-—l,n—l
A2nt1n = Q2nyn 'I" A2n,n—1
with brackets indicating integral part. These are the familiar recurrences for
binomial coefficients and, along with boundary conditions, they prove (16).
It is worth noting that the alternative procedure of working from a,(x)

= Y otz ()x™ % is not so simple.
The “rotated” form of (16) is

n -+ 2k n+2k/n+k
20 n = bnvok, n = —1)* k-2
(20) a ;Ep( 3 ) +2k b g( ) n+k( L >a+2k

If new polynomials 8, (x; 1) are defined by
(21) (x5 1) — bp—a(x; 1) = ba(x)
with b.(x) the polynomial defined above (equation (18)), then
bo(x; 1) = bo(x) = 1, bi(x; 1) = b1(x) = %, ba(x; 1) = ba(w) + bo(x) = 22 — 1

and, since
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S00) -0,

(22)
ba(x; 1) = %an(—l)k (" ; k) a2
and
an =2 (:)b,._zk(x) = Z(:) [Bar(; 1) — bazm(x; 1)]
(23)

-5[(2)-(, )

The polynomial b,(x; 1) is the Chebyshev polynomial U,(x/2) where U,(x)
=sin(n-+1)0/sin 0, cos § =x. Extension of (21) to

bn(x§j) - bn—2(x3j) = bn(xij - 1), 7i=23-.-

leads to nothing interesting. On the other hand, B.(x; 1) 4B._s(x; 1) =b.(x)
yields the pair

) _Z(n-l-l) oy b= 3 (= 1)’° n+1 (n—l‘l—k)an_zk,

+1-% k

whose orthogonality relation is just (17) with # replaced by n-+1. Thus (24)
may be generalized to

An = Z <n + P) bn—?k

k

—k
=E(_1)kh{:—fi<n+: )an_zk, $=0,1,2--

Returning to (17), rewritten as
—m — —_m—7—1
e e (T (]
J m—j m—7—1
) - —j—1
e () )
m—j J j—1
two identities may be screened out, namely
(26) 1= 5 o) (")
7=0 J m—17
27) <2m_l)= Z(—l)m+f+l<")("_m_j_1>.
m =0 ] m —] -1

(25)

(17a)
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The Chebyshev inverse relations given in (16) are an instance of the follow-
ing, due to H. W. Gould [4]

(@) = Z(Z)F(a+bk — %

(28) - + bk
a a
F(a) = —1)* bk — k).
@ = = (*7 e+ 01— b
For b= —2, in present notation (28) may be written
n n n— 2k
n = bn—sr, b, = —1)* n—
¢ g.(k) * ZD n—Zk( b )“ "

and the corresponding orthogonal relation may be written
S o (IS0 )]
=0 J m—j m—j—1
-3 -2 —2—1
z (D)
i=0 m—j J j—1

Then, if fam= 2 ;% (— 1)) (*727) with fao=1, fa=2, it is found by recur-

rence that
—2 3m — 1
fnm:fn-—l,m=f0m= (_1)m< )=( ).
m m

()2 ()
m 0 7 m—j
m—1 — —_—7 -
(29) 5> (_1)m+i+1<7f> (n 2m ‘ g 1).
0 7 m—7—1
It is worth noting that the first form of (29) may also be written

()-GO
) -2 ()0)

an instance of the protean character of binomial identities.

It

8m0

Hence,

I

It

or

5. Associated Legendre polynomials. If P,(x) is a Legendre polynomial, the
associated polynomial in question is
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(30) ) = (= pa (2 - Z(”)x

k

What is its inverse? More precisely, if

(31) = 25 (—1)"8ugu(%)

what are the coefficients 3,z?
Of the many recurrences for ¢,(x), the following (cf. problem 15 of Chapter 7
of [8]) is apt for present purposes:

gn (%) + 2¢a’ (2) = n’gn_1(x)
with primes denoting derivatives. By (31)
nat + (n — Dart = 3 (1) 8u[gf (2) + 2 ()] = 20 (—1)"*Buk?gi-1()
or D, (—1)r 18, in?qi(x) = 2 (—1)"*B,uk’qe1(x). Hence,

AN 7\?
Bt = (”/k)zﬁn—l,k—l = < k> Bnk,0 = ( k) Bk

with the last a definition. Using this in (31) yields

n 2
(31a) 2= 2 (=) Braan).
Then Bo=1 and since ¢:(0) =1

(32) 0= 3 =)o,

a recurrence which may be taken as a definition of the numbers. The first few
values are

n 0 1 2 3 4 5 6 7
6. 1 1 3 19 211 3651 90921 3091513

It is tempting to suppose that (32) may be replaced by some simpler linear or
quasi-linear recurrence like

k
> Ai(m)Bari = 0,

=0

where the A4 ;(n) are polynomials in %, but Professor Carlitz has proved (private
communication) that the latter is impossible. The relations gsn4a1(—1)=0 and
gan(—1) = (—=1)**)) lead, however, to

(33) > (—1>kﬁ,,_%(")2(2k>.

2k/ \ k
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The numbers 8, appear in other notations in L. Carlitz [3], where they arise in
the expansion

1
Rt

with Jg(2) the Bessel function. Carlitz also gives the inverse relations
n\? 7\?

6o w@=-S()aca r=ZEn())ue

which however have the same orthogonality as (30) and (31a), namely

B Ay (e

To find a pair of inverses associated with Legendre polynomials involving
only binomial coefficients, consider 7,(x)=(14+x)"¢.(x/(14+x))=P,(1+2x).

Then
(@) = i (n + k) <2k> = i (n + k) (@),

=0 \ 2k k =0 \ 2k

sp(x) = (2:) %k,

For simplicity, this may be examined for the related function

gn
!2

(36)

(3) m = (")
The recurrence for p,(x) is found to be
pa(%) = (2 + 2)pn-1(%) — pa—a(), n=23--
while p1(x) = (2+x)po(x) —1=1+4=x. Using these as before, it is found that
2k4+1 2n
oo = Do s ()

which is the inverse of (37).

6. Generating functions. Exponential generating functions lead directly to
a number of inverse relations with binomial coefficients. The simplest pair, Eq.
(1b), is equivalent to exp xa=exp x(b+1), a*=a,, b*=b,, exp x(a —1) =exp xb,
with a, b umbral or Blissard variables. More generally the inverse relations

(39) =2, < :) Cn—kbk, b = ( " ) Y-k @k

k
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are equivalent to exp xa = exp(d 4 ¢), exp xb = exp(e¢ + v), and it is necessary
that exp(¢c+7v) =1. Of course, @, b, ¢, v are all umbral.

As a first example, take exp xc=(e!*—1)¢{~! so that ¢*=c,=(z-+1)"1 Then
exp xy=1t(et—1)"1=exp Bt with B, a Bernoulli number (in the even suffix nota-
tion). Then

(40) 0, = Z(:) (n— b4 1), b= < Z) Busrti

are inverse relations.
Next, consider 2 exp xa=exp x(b+1)+exp x(b—1) = (e*+e~%) exp xb. Then
exp ¥y =2(e*+e¢*)"1=exp xE with E, a Euler number (Ez,;1=0), and

(41) 4= ( ”) bocgy b= 3 <2’;) Entnu

2k

is an inverse pair. Its “rotated” form is
n+ 24 n+ 2
(42) an = Z( . >bn+2,-, by = E( . >E2f4n+2f-
2j 2j
For sums having only odd binomial coefficients the generating function rela-
tion is exp xa=13(e*—e¢?) exp xb=(1/2x)(e*—e*)x exp xb and

2%

ez — e—z

exp xy = = exp «xd,
the last in a notation convenient for present purposes. The numbers d, appar-
ently have no patronymic. The inverse relations are

n n
(43) =2, < > bn—ot—1, by = D, ( 5 k) dorCn—ok.

2k +1

Now turn to an instance of the Lagrange theorem in the form

w

() 16 = 10) + T Z D wger.ny

n=1
with w=zge~%, D=d/dx, and the prime denoting a derivative. Then, if f(2)
=exp zb, b*=b,

n—1 —_— 1 n
@y = Dn—1l‘f/(x)enz]z=o =50+ n)1= Z ("’ )nn_1-kbk+1 — Z ( :)nn—l—kkbk.

k=0 k k=0

But, directly from (44),
0 zne—ﬂl

expzb = bo+ D,

n=1 n!

Qn,
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which implies b, = Y, (—1)"*+*(2)k"~*q,. The inverse pair

(45) @ = 2 ( :) w1k kby, by = 3 (—1)nt ( ’}:) Erta,

is an instance of the Abel inverses given by H. W. Gould [5]. Some examples
of its use are as follows.

Take f(z) =(1—2)"1, so that b,=n!. But, with S(x, k) a Stirling number of
the second kind, A the difference operator,

nl = nlS(n,n) = A*0r = Y (-—1)"“‘(2) kT kk
and by (45)

(46) =3 ( ’;) A1k )

a relation appearing in [9].
Next, take f(2) =¢~*(1 —x)~'=exp 2D, with D,=A"0!, a displacement num-
ber (=subfactorial). Then f'(2) = ze~*(1 —2)~2 and

w= 2 (") Dlstt = 2] Do)
with both derivatives evaluated at x=0. Thus
= Z("; 1)k-k!(n — )ik = (g — 1)
the last by use of (46). Hence, by (45)
@n (n—1r= Z(Z) w=*kD,  Da= >, (—1)"+k<:> Erk(k — 1)F,

The first of these appeared in [9], the second is due to H. J. Ryser [10].
Next take f(z) = exp %2, so that b, =x"; then (45) becomes

(48) an=a,(x) = 2 ( :) w1k Rk, an =, (=1 ( Z) k*ai(x).

These are actually relations for enumerating cycle-free mappings or labeled
forests of rooted trees; the coefficient of x* in @,(x) is the number of forests with
» labeled points and & rooted trees, which is to say that a,(x) is the enumerator
of labeled rooted forests with # labeled points by number of rooted trees. The
reader may be reminded that R(y), the enumerator of rooted trees with all
points labeled by number of points, satisfies the equation ze~?=7y with z=R(y),
and if
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-
a(x,y) = 2 an(x)y"/n!

n=1

then a(x, y) =exp xR(y). Now

1, 5) = T ex(y/nt = expRO) =y RO) = 5 (0 + Diye/al,
Hence by (48)
(49) (n+ 1)~ = Z(Z) woHy, 1= Y (—1)n+k(’,:) Frt(k + 1),

The corresponding enumeration for labeled forests of (free) trees goes as
follows. First, if 4,(x) is the enumerator of forests of trees with # labeled points
by number of trees, then

Az, y) = Z‘i A (x)y/n! = exp z[R(y) — Rx(y)/2]
0 —exprz — /2), z=R(), =y

and if exp x(z—2%/2) = D, B,(x)z"/n! then

!
o B = B0 g

Thus by (46)
(52) Auw) =Y ( :) WkEB(®),  Bu(x) = 3 (—1)mH ( Z) Bt A, (3).

The first of equations (52) is equivalent to a result of Alfred Rényi [7]; the
second, its inverse, seems to be new. The result of Rényi just mentioned, in
present notation, is as follows. Write

An(x) = Z A, B.(x) = Z Bt
then by the first of (52), and by (51)

I R DI R LR ]

71 k=0
Thus 4,.1=#""? (the number of labeled trees with # points),
Ape = n**(n — 1)(n 4 6)/2, Aus = w%(n — 1)(n — 2)(n* + 13n 4+ 60)/8.
On the other hand, the second half of (52), or

n
Anpa(z) = = Z( k) Tr1dni(x),  Te= k2
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leads to
A =1

n
An,n-—1=<2)
1
An,n——2=3<n+ )
4
n+ 2 n
Ap oz =15
" < 6 >+<4>
n+3 n+1 n
Apnsg = 105 15 5
e (8)+b(6>+<5>

but there seems to be no simple general form.
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THE NUMBER OF PARTITIONS OF A SET
GIAN-CARLO ROTA, Massachusetts Institute of Technology

Let S be a finite nonempty set with # elements. A partition of S is a family of
disjoint subsets of S called “blocks” whose union is .S. The number B, of dis-
tinct partitions of .S has been the object of several arithmetical and combina-
torial investigations. The earliest occurrence in print of these numbers has never
been traced; as expected, the numbers have been attributed to Euler, but an
explicit reference to Euler has not been given, and Bell [7] doubts that it can



