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Abstract

Naturalg analogues of classical statistics on the symmetric gr&4@se introduced; parameters
like: the g-length, theqg-inversionnumber, theg-descent nutper and theg-major index. Hereq
is a positive integer. MacMahon'’s theorem (Combinatory Analysis |-Il (1916)) about the equi-
distribution of the inversion number and the revarsgor index is generalized to all positive integers
g. It is also shwn that theg-inversion number and thg-reverse major indexra equi-distributed
over subsets fopermutdions avoiding certain patterns. Natuglanalogues of the Bell and the
Stirling numbers are related to thegstatistics—through the counting of the above pattern-avoiding
permutations.
© 2003 Elsevier Ltd. All rights reserved.

1. Introduction

MacMahon'’s celebrated theorem about the equi-distribution oletinggth (or theinver-
sion-numbey and themajor indexstatistics on the symmetric grodg [10]—has received
far-reaching refinements and generalizationmstigh the last three decades. For a brief re-
view on these refinements—sde]. In [ 12] we extended the various classic§) statistics,
in a natural way, to the alternating groéy1. This was done via the canonical presenta-
tions of the elements of these groups, and by a certain covering map.1 — .

Further refinements of MacMahon’s theorem were obtained Zhipy the introduction
of the ‘delent statistics on these groups. Then these equi-distribution theoremS,farere
‘lifted’ back, via f: A1 — S, thus yielding equi-distribution theorems 8 1.
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This paper continueslP] and mght be considered as itsanalogue Note hat here
g is a positive integer; the generalization to an arbitrqris still open. We introduce
the g-analoguesof the classical statistics on the symmetric groups: gdength, the
g-inversionnumber the g-descent numbeithe g-major indexand theq-reversemajor
indexof a permutation. Thg-delentstatistics are also introduced. We then extend classical
properties to thesg-analogues. For example, it is proved that thlength equals theg-
inversion nunber of a permutation; furthermore, it is proved that ¢hversion number
and theg-reverse major index are equi-distributed®n.q—1. See below.

It is redized that the above map: An+1 — S is the restriction toAn+1 of a covering
map f2: §.y1 — S. More gerrally, we have similar covering magdg: Sy q-1 — S for
all positive integers]. These maps are defined via the canonical presentations of the ele-
ments inSy;q—1. Itis proved thathe mapfy sends theg-stéistics onS, 41 to the corre-
sponding classical statistics &, seeProposition 8.@elow. For example, it € §1q-1,
it is proved there that thg-inversion number ofr equals the inversion number & ().

Dashed patterns in permutations wertraduced by Babson and Steingrimss@h [
For example, permutations contains the patterl — 32)if o =[...,a,...,¢,b,...]
for somea < b < c; if no sucha, b, ¢ exist thens is said to avoid1l — 32). Connections
between the number of permutations avoidihg 32)—and varous combinatorial objects,
like the Bell and the Stirling numbers, aselivas the number of left-to-right-minima
in pernutations were proved by Claessog].[Via the variousqg-staistics we obtain
g-analogues for these connections and results.

For a pernutaionm € S1q—1 it is proved tha theg-descentind theg-delentnumbers
of = are equal exactly when avoids a certain colleg@n of dashed patterns, and that
thenumber of these permutations(— 1)! ) ", qkS(n, k), whereS(n, k) are the Stirling
numbers of the second kind, s€erollary 2.8. Also, thenumber of permutations i q—1
for which theqg-delenthnumber equal& — 1 is (q — 1)!ch(n, k), wherec(n, k) are the
Stirling numbes of the first kind; se®roposition 2.9

Equi-distribution ofg-stdistics is studied irSection 11 A g-analogueof MacMahon'’s
classical equi-distribution theorem is given, s&beorem 2.5below. Multivariate
refinements of MacMahon’s theorem, due to Foatau&w@rberger and othersg,[12, 14],
also have correspondimmganalogues. These analogues are describ&gdation 11.1see
Theorem 11.%nd its consequences.

An intensive study of equi-distribution oveubsets of permutatns avoiding patterns
has been carried out recently, cfl, [5, 6, 13]. In Section 11.2it is shown that
certaing-statistics are equi-distributed on the above subsets of dashed-patterns-avoiding
permutations. Se€heorems 2.@nd11.7below.

2. Themain results

Throughout the papey is a positive integer. Recall the unique canonical presentation
of a permtation in S, as a product of shortest coset representatives along the principal
flag, seeSection 3.Ibelow. Theg-lengthof a permtations € S, £q (), is thenumber of
Coxeter generators in the canonical presentationrofvhere the gnerators, ..., 551
are not counted.
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n

invg () == Z mg (i),

i=0+1
where
Mg@i) :==min{i —q,#j <i |7 (j) > n()}}.

Also invg(r) := 0if n < g. Thusfy () = £(r) and invi () = inv(r).
As in the (classical) casg= 1, we have

Proposition 2.1 (SeeProposition 4.2 For everyo € &

Proposition 2.2 (SeeProposition 6.1 For everyr € A, £2(r) is the length with respect
to the set of generatofgy, ..., an—2} C An, where @ := 15§ +1.

Define theq-delent numberdel (), to be thenumber of timessy appears in the
canonical presentation af.

For 0 < k < n — 1 define thekth almost Idt-to-right-minimain a permutationr € &,
(denotedaX.|.t.r.min) as the set of indices

Delci1(r) == {i |k+2<i<n#j<i|n(j)<m@)}<k.
Thus Dej(n) is the set oRd4~LL.t.rmininz. SeeExample 5.1Melow.

Proposition 2.3 (SeeProposition 5.2 The number of occurrences ofg in the
canonical presentation of € S, dek;1(w), equals the number offal.t.rmin inz.

The second delent statistics gleh even permutations iA,+1 and the first delent statistics
deh on S, have analogous interpretations. See, for exantpigposition 6.1
Theqg-descent sedf 7 € S, -1 is defined as

Deg(w) = {i | i is ag-descentinr},
and theg-descent numbes defined as
deg () := #Deg (7).
Form € S1q-1 define they-major index
majq(n) = Z i
ieDeg ()
and theg-reverse major index
rmajq,m(n) = Z (m-—i),
ieDeg ()

wherem=n+q — 1.
Thus Degs is the standard descent set of a permutatioiginThe ddfinition of the
g-descent set is justified bie following phenomena:
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(1) Des is the descent set on the alternating gréypwith respect to the distinguished
set of geeratorgay, . .., ap—2}, wherea; := 151, seeProposition 6.1

(2) Theg-descent set, Dgsis grongly related with pattern avoiding permutations, see
Proposition 9.3

(3) Deg is involved in the definition of thel-(reverse) major index, and thus in the
g-analogue of MacMahon’s equi-distribution theorefhhéorem 11.p

Givenq, denote by
Pal(q) ={(c1—02—--—0q—(Q+2),(q+1) |0 e}

the set with these! dashed patterns. For example, Rat= {(1 — 32)} Pa(2) =
{1—2-43,(2-1-43}.

Denote by Avoigy(n 4+ g — 1) the set ofpermutations inS,4_1 avoiding all theq!
pdterns in Pat).

Proposition 2.4 (SeeProposition 9.3 A permuations € S,1q-1 avoidsPa(q) exadly
whenDely(7) — 1 = Deg(n):

Avoidg(n+q — 1) = {7 € S1yq-1 | Dely(m) — 1 = Deg(m)}.
The following is ag-analogue of MacMahon'’s equi-distribution theorem.
Theorem 2.5 (SeeTheorem 11.2
Z tMalg n+q-107) _ Z £iMVq ()
TE€S+g-1 TE€Sig-1
=qA+tA+t+tg . (L+t+ - +t"2 4 t" ).

Far reaching multivariate refinements ofddMahon’s theorem, which imply equi-
distribution on subsets of permutations, were given by Foata angd&udberger and others,
cf. [7, 8,12, 14]. In Section 11..we desctbe somej-analogues of these refinements, see
Theorem 11.4ndCorollary 11.6below.

The doveq-statistics are equi-distributed on permutations avoidinggPat

Theorem 2.6 (SeeCorollary 11.8.
'Majq nyq-1(7) deg(m) invg (), deg; ()
Z b p = Z ) b .
7 ~1eAvoidg(n+q—1) 7 ~1eAvoidg(n+q—1)

For exampe, forg =1

Z timajn(n)tgein) _ Z tlnv(n)tges(n).
7~1leAvoid(1-32) 7~1leAvoid(1-32)
Forq=2
Z t;_maJZ,n+1(”)tge&(ﬂ)
n~leAvoid(1-2-432-1-43)
- ) me(mdenr)

7~leAvoid(1-2—-43,2—1-43)
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Bell and Stirling numbers (of both kinds) appear naturally in the enumeration of
permutations withrespect to theig-stdistics.

Let c(n, k) be thekth Stirling number 6the firstkind andS(n, k) be thekth Stirling
number of the second kind. Let tmth g-Bell number bebg(n) = >y qkS(n, k). Let

Bq(X) =Y meo bq(n)’;—? denote the exponential generating functionl®f(n)}. Then
Bq(X) = exp(qe* —q).

The classical formuldi(n) = %Z?io rr—r,] [4] (see also 5, (1.6.10)]) generalizes as
follows:

1 e ren
b (M) = qu, :
r=0 :

> R

seeRemarkl0.

Proposition 2.7 (SeeProposition 10.8

#o € S11q-1 | Delg(o) — 1 = Deg (o) anddel (o) =k — 1}
= (- 1'g*sn, k.
Corollary 2.8 (SeePropositions 9.and10.5.
(@ — D!bg(n) =#{nm € S1q-1 | Delg(r) — 1 = Deg ()} = Avoidg(n+q — 1).
Proposition 2.9 (SeeProposition 10.1)
#m € Si1g-1 | dely(mr) =k — 1} = cq(n, K),
where g(n, k) = g*(q — 1)!c(n, k).

3. Preliminaries
3.1. The g canonical presentation

A basic tool, both in [L2] and in this paper, is the canonical presentation of a
permutation, which we now describe.

Recall that the transpositioss= (i,i + 1), 1 <i < n — 1, are the Coxeter generators
of the symmetric groug,. For each 1< j < n — 1 define

R®={1s].5/Sj 1.....5/Sj 1S} 1)

and note thaRy, ..., R> | C S,.
The following is a classical theorem; see for exam@epp. 61-62]. See alsdlp,
Theorem 3.1].

Theorem 3.1. Letw € &, then here exist unique elemenis € RJ-S, 1<j<n-1,
suchthatw = ws - - - wp—1. Thus, the presentationm = w1 - - - wp—1 iS Unique; it is called
thecanonical presentation of w.
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Note thatRJ-S is the complete list of representaivof minimal length of right cosets of
Sj in §j4+1. Thus, the canonical presentatiomofe S, is the unique presentation af as
a product of shortest coset representatives along the principal flag

e=S9 <S9S << S.

We remark that a similar canonical presentation for the alternating gragps given
in [12], seeSection 3.2below.

The descent set Dés) of a permuationz € S, is a classical notion. InfZ] the ‘delent
statistic was introduced: Det) is the set of indiceswhich are left-to-right-minima ofr,
and de{r) = #Del(r). By Proposition 7.2 of 2], del(zr) equals the number of times that
s1 = (1, 2) appears in the canonical presentatiornr of

Theorem 9.1 is the main theorem 4] and we now state its part abo8 (it also has
a dmilar part aboutAy).

Theorem 3.2. For every subset PC [n— 1]and D, C [n — 1]

Z q rmajg, ()

{meSh|Dess(m ~1)C Dy, Delg(m ~1)C Dy}

- 3 qlstm.

{7 eSh|Dess(m ~1)CDy,Delg(m ~1)C Dy}

In the fdlowing case, a simple explicit generating function is given.

Theorem 3.3 ([12 Theorem 6.1]).

Z qes(a)tdels(a) — Z qrmajgn(a)tdels(a)
ceS ceS

=A+agtH@d+q +q2t)...(1+q oot qt .
3.2. The alternating group

The alternating group serves as a motivating example. Here are some results from
[12], which areapplied inSection 6and Appendixand in the formulation and proof of
Proposition 8.5The reader who is not interested in this motivating example may skip this
subsection.

Let

g =955+ (1<i<n-1) and A:={a|1<i=<n-1}.

The setA generates the alternating groupros 1 letters An1. This gererating set and its
following properties appear iri[].

Proposition 3.4 ([11, Proposition 2.5]). The déining relations of A are

@ap?=1 (i —jl>1y; (@air1)=1 (@<i<n-1;
a=1 and =1 (l<i<n-1.
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Foreach 1< j < n— 1 define
Rf:{l,aj,ajaj_l,...,aj -.-ap,@j---aay, aj - - apay ) 2)

and note thaRy), ..., R® | C Anj1.

Theorem 3.5. Letv € Ant1, then here exist unique elements € RA1<j<n-—1,
suchthatv = vs - - - vp—1, and this presentation is unique.

This presentation is called thecanonical presentation of
Foro € Any1 let£a(o) be the length of thé\ canonical presentation ef. Let

Desa(o) == {i | La(o) < La(oa)}

and dega(o) = #Dew(o), define maj(oc) = ZieDe%(a)i, and rmaj\m(a) =

Y ieDesy(o)(N — ). Let del(o) be the number of appearancesaq“r1 in its A canonical
presentation. Itis proved irLP] that this number equals the number of almost-left-to-right-
minimaino.

Theorems 3.5nd3.5allow us to introduce in12] the falowing covaing map:

Definition 3.6. Define f: Any1 — §, as follows.

fla = f(ayh=s and f@)=s, 2<i<n-L1
Now extendf: R* — R?via

f(ajaj_1---a) =SjSj_1--- S, fa---a) = (g "'afl) =sj---S1.
Finally, letv € Any1, v = v1-- - vp—1 itS Unique A canonical presentation, then

f(v) = f(v)--- fun-2)
which is clearly theS canonical presentation df(v).
Proposition 3.7 ([12, Propositions 5.3-5.4])For everyr € Ant1,

() = Ls(f (), Desa(r) = Dess(f (7)), Dela(r) = Dels(f (7))
Thusdesa () = dess(f (), maja (;r) = majg(f (7)), rmajAnH(n) = rmajg, (f (r)) and

dela(m) = dels(f (7)).
4, Basic concepts|

Letr € . Recall that its lengti? () equals the number of the Coxeter generators
S1, ..., Sh—1 In its canonical presentation. It is well known thgtr) also equals ingr),
thenumber of inversions ot . Also, it is easily seen that ifwr) can be written as

n
inv(r) = Zm(i),
i=2



36 A.Reev, Y.Rdchman / European Journal of Combinatorics 26 (2005) 29-57

where

m@) =min{i —1,#j <i | 7(j) > =()}}.
Thus, the following definition is a naturgtanalogue of these two classical statistics.
Definition 4.1. Letw € S,.

1. (£q)Lq(m) as follows:
Lq(w) = the number of Coxeter generators in the canonical presentation of
w, where s, ..., -1 are not counted (thus, for exampléz(s;y) = 0 and
L(a1929153%51) = 3).

2. (invg) begining ofSection 2

Thust1(r) = £() and inv(rr) = inv().
As in the (classical) casg = 1, we have

Proposition 4.2. For everyo € §,
Zq(ﬁ) = ian(O').

Proof. We may asume thaty < n. Leto = wi---wn-1 With w; € R; be the
canonical presentation af, anddenoter = wji---wn—2, thenz € S,_1, herce

7 =[byg,...,bp_1,n]. If wh_1 = 1theno € $,_1 and we are done by induction. Hence
assumewp—1 # 1, so thatwp—1 = Sh—1--- for some 1< k < n — 1, and therefore
o=1I[bg,...,bk_1,n, b, ..., bn_1].

Casel. 1< k < q, in which case
Ly(wn—1)) =n—qg and o =[by,...,bk_1,n,bx, ..., bq,..., b1l
Thenforg <i <n-—1,
#Hj<i+llo(j)>c(+D}=#j<il|bj>hb}+1
(the ‘+1' comes frorm > by). Thereforamg(i + 1, o) = mq(i, 7) + 1, since

Mg +1,0)=minfi +1—-q;#j <i+1|o(j)>o( +D}}
=minfi +1—q;#{j <i | bj > b} + 1}
=min{i —q;#j <i|bj >bi}}+1=mg(,7)+ 1

Thus
n n—1 n-1
invg(o) = Z mg(i, o) = qu(i +1,0)= qu(i,n) +M=q)
i=g+1 i=q i=q
(by induction)
=Lq(7) +n—q=~Lq(7w) + lg(wn-1) = £q(0).
Case 2. ¢ + 1 =< k, here {q(wn-1) = f1(wp-1) = N — Kk o =

(b1,...,bq, ..., bk—1,n, by, ..., by_1]. Here
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2. mg(k,0) =0(i =k), and, asin Case 1,
3.mgli +1L0)=mg(i,7)+1lifk<i <n-1.

It follows that

n k—1 n—1
invg(o) = > mgli,o)= Y mgli,7)+ Y mg(i,m)+n—k
i=q+1 i=g+1 i=k
n—-1
=) mq(i. ) + (n — k) (by induction)
i=q

The following lemma was proved i1 p].

Lemma4.3 ([12 Lemma3.7]).Let w = s,---5, be the canonical presentation of

w € S. Then the canonical presentation af ! is obtained from the presentation
wl = S, S; by commuting moves only—without any braid moves. Similarly for

v, vle Ant1.
Proposition 4.4. For everyo € &,

tq(c™ = tq(0),  hence alsanvg(c 1) = invg (o).
Proof. Lemma 4.3easily implies thatzq(o‘l) = {q(0), while this, together with
Proposition 4.2mplies the equality iny(ofl) =invg(o). O
5. Basic conceptsl|

A natural g-analogue of the del statistics frorhq] is introduced inthis section. This
allows us to introduce below a (less intuitivgpanalogue of the descent statistics.

5.1. The destatistics

Recall the definitions of Del and del (of typ&sand A) from [12]: given a permutation
w in §,, Dels(w) is the set of indices which ateft-to-right-minima(l.t.r.min) in w, and
Dela(w) is the set of indices which am@most Idt-to-right-minima(a.l.t.r.min) inw. Let

s = (,i +21),i =1,...,n—1, denote the Coxeter generatorsSf The fdlowing
classical fact is of fundamental importance in this paper.
Let Rj = {1,sj,8jSj—1,...,SjSj—1---S1} and letw € &, then here exist unique

elementswj € Rj,1 < j < n—1, such thatw = ws---wn-1; this is the (nique)
canonical presentation af, see Tkeorem 3.1in12].

Similarly = s15+1,i = 1,...,n — 1, are the corresponding generators for the
alternating groupAn+1, and there is a corresponding unique canonical presentation for
the elements oA 1, see &ction 3 in fL2]. The following was observed irlp):



38 A.Reev, Y.Rdchman / European Journal of Combinatorics 26 (2005) 29-57

1. The number of times; appears in the canonical presentatioruofi.e. dek(w))
equals the number of Ltrmin iw (hence #De&l(w) = dels(w)), see L2
Proposition 7.2].

2. The number of times, appears inv equals the number of a.l.t.r.minin. Moreover,
if w € Ant1, thatnumber equals the number of tirrm'igl appears in thé\--canonical
presenttion of w, which by definition is del(w), anddela(w) = #Dela(w), see
[12, Proposition 7.6].

In this paper, ‘sub S’ is replaced by ‘sub 1': [@ek Del; and de§ = del;, etc. Smilarly
(in Ap) ‘sub A is replaced by ‘sub 2. We shall also encounter ‘gjilfor every positive
integerq.

Definition 5.1. Letnr € Syandletl<q<n-—1.

1. Define dej(x) to be thenumber of times, appears in the canonical presentation

of .
2. For 0< k < n—1 define thé&th almost-ldt-to-right-minimain a permutatiomr € $,

(denotedaX.|.t.r.min) as the set of indices
Deli1(m) == f{i | k+2<i<n#j<i|n(j) <)<k
Thus De}(r) is the set oB9~L.Lt.rmininz.

SeeExample 5.1(®elow.

Notethat ifi < k + 1 then, trivially, #{j < i | #(j) < #(i)} < k, however tlese indices
are not counted a&¥.|.t..min. Also note thaa®.l.t.r.min is simply |.t.r.min.

Proposition5.2. Let w € S,. Then for every nonnegative integer k, the number of
occurrences ofs.1 in the canonical presentation ofv, dek,1(w), equals the number
of ak.l.t..min inw. Writing k + 1 = q wehave

#Dely(w) = dely(w).

Proof. (Generalizes the Proof of Proposition 7.6 1?]). We first need th following two
lemmas.

Lemmab5.3. Letl <k+1<n,letw € §, and letr € S41. Alsoleti < n. Theni is
ak.l.t..min ofw if and only if i is &.l.t..min of 7 w. In particular, the number ofal.t..min
of w equals the number ofd.t.r.min of rw.

Proof. Denote w = [by,...,by] (namelyw(r) = by), and comparev with rw: =
permutes only thdy’'s in {1,...,k + 1}. If bj € {1,...,k + 1}, the tdal number of
bj’s smaler thanb; is < k; in paticular suchi is &.l.t.r.min in bothw andzw, provided

i > k+ 2. Ifonthe other hant) ¢ {1, ..., k+ 1} thenb; is greater than all the elements
in that subst; thus such is ak.l.t..min of w if and only if i is ak.l.t..min of zw. This
implies he proof. [

Lemmab5.4. Letl < k < n—1and denote gn—1] = %S+1---S-1. Leto € S1
and writeo = [by, ..., bn_1,n]. Then & n—1j0 = [c1, ..., Ca_1, K], and the two tuples
(by, ..., bn—1) @and(cy, ..., ch—1) are order-isomorphic, namely for all j, bj < bj if
andonly if ¢ < cj.
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Proof. Comparings with s n—1j0, we sedhat

1. the (position with) in o is replaced irsi n—1j0 byk;
2. eachjino,k <] <n-—1,isreplaced by + 1in Sk n-10;
3. eachj, 1 < j <k — 1lisunchanged.

This implies the proof. O

The Poof of Proposition5.2is by induction om. If n < k + 1, the number o&X.I.t.r.min
of any permtation in §, is zero, and alse«1 ¢ ), herce5.2holds in that case.

Next assum®.2holds forn — 1 andprove forn. Letw = w - - - wn—1 be the canonical
presentdon of w € S, and denoter = w1---wp_2, theno € S_1. If wp_1 = 1
thenw € S$,—1 and the proof follows by induction. So lat,—1 # 1, then we can write
Wn_1 = S-1S_2--- v, whered > k+1andv € {1, &, KS%-1, ..., %%_1---S1} hence
v € Sy1. If d > k+ 2 then recessarilyw = 1 and inthat case the nuber oftimessc;1
appears inw and ino is the same. Il = k + 1, that number inv is one more than in
o. We show hat the same holds for the numberafl.t.r.min for these two permutations
o andw.

By Lemma 3.4 of 2], it suffices to prove that statement for the inverse permutations
w~t ando 1. Now, w™! = 75g n_1j0 %, wherer = v=! € Sy, herce byLemma 5.3
it suffices to compare the number af.l.t..min in ¢~1 with that in §g.n_1j0 ~1. By
Lemma5.40 ! = [by,...,bn_1,n] andsg.n_1j0 % = [C1, ..., Cn_1,d] where theb's
and thec’s are orekr isomorphic.

The case d> k + 2. Here the two last positionsa+n o~ 1anddin s[d,n_l]o‘l—are
notak.|.t.r.min, and the above order isomorphism implies the proof in that case.

The @se d= k + 1. By a similar argument, now the last positiongg n—1j0 ~* (which
isk + 1) is one additionaX.|.t.r.min.

The proof now follows. [
Proposition 5.5. For every positive integer g and every permutatiore Syyq—1
del () = dely(x 7).

Proof. This is a straightforward consequence of Lemma 3.7 18, [which says the
following: let 7 € &, and letr = s;---5, be its canonical presentation. Then
the canonical presentation of ~! is obtained from the equation™ = s, ---s, by
commuting moves only, without any braid moves. Thus, the number of times a particular
sj appears inr and in 1 is the same. This clearly implies the proof.]

Corollary 5.6. For every positive integer g and every permutation € S,q_1 the

number of & L.1.t..min in equals the number offa?.l.t.rmin inz 1.

Proof. CombiningProposition 5.2vith Proposition 5.5 O

Remark 5.7. Settingg = k + 1 in Lemma 5.3 deduce that for any two permutatioins
andn in $4q-1, if o andn belong to the same right cosetf, i.e.n € §o, then

Dely(n) = Dely(o) (and therefore dgln) = del(0)).
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The same is alsaue for tre left co®ts: lety € o §; then again
Delg(n) = Dely(o) (and therefore dgln) = del(0)).

This easily follows fromDefinition 5.1, since if o = [by,...,bq,...,byl, T € & and
n=ort,thenny = [bf(l), e, bf(q), bq+1, ..., bnl.

Let nowo andn belong to the same left coset or right cosetSyf then by he same
reasoning, for ang < d, del () = dely(o) since§; € &. Since

n—-1 n-1
lg(n) =) del(n, and (q(o) =) dek(o),
d=q d=q

deduce that in that cagg(n) = £q(o).
5.2. The g-descent set

Recall that is adescendfz if 7(i) > 7 (i +1), and let De&r) denote the (‘classical’)
descent-set ofr. The following definition seems to be the appropriateanalogue for
descents.

Definition 5.8. i is ag-descenin 7 € §,.q-1 if i > g and at least one of the following
two conditons holds:

(1) i € Deqn);
(2) i +1lisanadtltrmininz.

ThusDeg(r) = (Desn) N{g,q+ 1,...,n — 1}) U (Dely(w) — 1), herce for allq,
Delg() — 1 C Deg(r) where Dey(r) —1={i —1|i € Dely(m)}.

Note that wherg = 1, condition (2) says that+ 1 is I.tr.min, which implies that is a
descent. Thus, a 1-descent is just a descent in the classical sense.

Definition 5.9. 1. Theg-descent sedf 7 € §,1q-1 is defined as
Deg () == {i | i isag-descentinr}.

2. Theg-descent numbesf 7 is defined as dgs$r) = #Deg ().
3. Theg-major indexand theg-reverse major indexf r € S 41 are defined as

may, () = Z i and  rmaj () = Z (m-—1i),

icDeg () ieDeg ()
wherem=n+q — 1.

Example5.10. Leto =[7,8,6,5,2,9,4,1, 3].
Whenq = 2, Deb(c) = {3,4,5, 7,8} and Des(c) = Deb(c) —1=1{2,3,4,6, 7}.
Whenq = 3, Dek(o) = {4,5,7, 8,9}, herce Deg(o) = {3,4,6,7} U{3,4,6,7,8} =
(3,4,6,7,8}.

Also, Des(c) = {4, 6,7, 8}, etc.
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6. Motivating examples

Whenq = 1, the corresponding statistics alassical. By definition, for every € S,,
L1(w) = {Ls(mw), Des(n) = Dess(w), and Del(wr) = Dels(w). It follows that for
everyr € &, deg(r) = dess(wr), may (r) = majs(), ramp () = rmajg (), and
deh (;r) = dels(r). Thedelent stéstics, dek, were intoduced in 12].

The correspondind\-stdistics were also studied il §]; theseA-statistics correspond
to the caseq = 2 and are restricted to the alternating groups. This is the following
proposition.

Proposition 6.1. For every even permutation € Sy+1

(1) €2() = £a(m),
(2) Deg () = Desa(r), and
(3) Deb(rr) = Dela(m).

Proof. (1) follows from [12, Proposition 4.5]. (2) follows fromLemma A.1in the
Appendix For (3) see]2, Proposition 7.5].

An alternative and more conceptual proof is given below Remark 8.9.

Corollary 6.2. For every even permutation € Syy1, des(w) = des(r), map(w) =
Maja (), ramp, , () = rmaj, (), anddeb () = dela(n).

7. Thedoublecosetsof S; € S,14-1

Let §, be the subgroup d&1q-1 generated bysy, ..., sg—1}. Itis shavn here that the
previousg-statistics are invariant on the double coset§pin S, q-1.

Proposition 7.1. For any two pemutationst ando in Syyq-1, if 7 ando belong to the
sanedouble coset of S(namelyr € §0;), then

(1) Dely(w) = Dely(c), herce del(r) = dek;
(2) Deg(r) = Deg(0), herce deg(m) = deg;;
(3) invg(r) = invg(o) = £q(r) = Lq(0).

Proof. It suffices to pove thatif there existsr € &, suchbatr = ro orm = o7, then

equalities 1-3 hold.
(1) Part 1 was proved iRemark 5.7
(2) Denoter = [by, ..., bryg-1]andr = (b}, ..., bn+q 11. Since Deg(w) = (Degm)N
{0,9+1,...,n}) U (Dely(7) — 1), and the same for D@er;) it suffices to prove the
following: leti > g andi € Dego), then étheri € Degx) ori 4+ 1 € Dely(r).

We prove first the case ofie right cosetsr = 7o. Itis given thath; > bj.

Casel.bi,bit1 ¢ {1,...,q}. Thenb; = b andbj 1 = b 41 and we are done.

Case2.bj ¢ {1,...,q}andbi;1 € {1,...,q}. Thenb = b > q while b|+1 e{l,...,q}
and we are done.
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Case3.bj,bi;+1 € {1,...,g}. Then @amostq — 1 bjs ino are left and smaller thaln ;.
Thus (by 1)i + 1 € Dely(o) = Delg ().

We prove net the case of théeft cosetsr = ot.
By the agument inRemark 5.7 the chim holds ifi > . Therdore examine the case
i =0.If g € Degn), then we are done. Recall thiag > bg1 and &sumeq ¢ Deg(r)
(i.e.b;(q) < bgy1). It follows that

#j <q+1|byj) <bgr1} <q,

henceq + 1 € Delq(r), whichcompletes the proof of part 2.

(3) This follows fromRemark 5.7and fromProposition 4.2sinceinvg () = £q() and
similarly foro. 0O

8. Thecoveringmap f,

Motivated byProposition 8.%elow, we introduce the mafy from §1q4-1 onto &,
which sends all the elements in the same double cos& ¢d the same element &,. The
function fq is applied later to ‘pull-back’ the equi-distribution results from the (classical)
caseg = 1 to thegeneraly-case.

Definition 8.1. Letm € S1q-1 and letr = 5, - - -5, be its canonical presentation, then
define fq: Shyg—1 = S as follows:

fq(m) = fq(sy) - fq(s)),
wherefq(sy) = -+ - = fq(sg-1) = 1, andfy(sj) = Sj—q+1if j > 0.

Remark 8.2. Itis easy to verify that for any, gz, fg, o fq, = fgq1q,—1. Thus, for every
naturalg, fq = f5 .

Proposition 8.3. The map { isinvariant on the double cosets of:&eto € §.4-1 and
T € 0, then §(o) = fq(m).

Proof. Itsuffices toprovethatifo € §1q—1 andr € § thenfq(ot) = fq(ro) = fq(0).
By Remark 8.2it suffices to prove whelq = 2 andhence whernr = 5. As usial, let
o = wy---wn € Sy1 be the canonical presentation ®f By analysing the wo cases
w1 = 1 andw; = sy, it easily follows thatfa(s10) = fa(0).

We now $iow that fa(os1) = f2(o). Theproofin that case follows from the definition
of f, and by induction om, by analysig the fdlowing cases:

Wn = 1,

Wn = $S-1- - S Withk > 3;

Wn = SnS—1--- S, and

Wn = S$$h-1- - RS1.

We verfy, for example, the cask > 3. Denoter = wi---wp_1, SO0 = mwwp. Now

f2(0s1) = fa2(ws1 - wn) = fa(ws1) f2(wn) = (by induction)= f2(x) f2(wn) = f2(0).
The proof in the last two cases followsimilarly, and from the fact that

fa(snsh-1--- ) = fa(saSn-1---981) = S-1-- S
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Note that fq is not a group homomorphism. For example, det= 2,9 = s and
h = s1%. Then fo(g) = fa(h) = s so fa(g) fath) = 1, butgh = 555, herce
fa(gh) = s1. Nevertteless we do have the following

Proposition 8.4. For any permutationr, fq(z 1) = (fq(x))~1.

Proof. Again by Remark 8.2 it suffices to prove foq = 2. The proof is based on
Lemma 4.3 Denotesy = 1, then note that i§sj = sjs then alsos_18j—1 = Sj—1S5-1
(the converse is false, @85y # $51).

Letw = s, ---S, be the canonical presentationof By commuting movesg ! =

S, --S; = --- = Sp,---Sp, Where the right hand side is the canonical presentation
of 71, By defiition, fo(z=1) = sp,_1---Sp,_1. Now by the samea@mmuting moves
Si—1-""Sy-1 = -+ = Sp;—1---Sp,—1 and the left hand side equal$q(rr))~1, which

completes the proof. ]

Proposition 8.5. Recall from [L2] andSedion 3.2the map f: A+1 — $. Then fis the
restiction f = fz[a,,, Of f210 Anya.

Proof. Letm € Ant1, and letr = afll e afr' beits A-canonical presentation, where all
€j = =£1. By definition, f(7) = s, ---s,. Replace eacla; in the above presentation
by aj = s1Sj41 then, by commuting moves ‘push’ eash as much as possible to the
left. After some cancellations, @ cannot move any more to the left if it is already the
left-most factor, or if it is preceded by ap onits left. It follows that

T :b31+1...3231...3231...3r+1...
whereb € {1, 51}, and ths is anS-canonical presentation. Thea(r) = s, - - - 5, and the
proof follows. [

Restrictirg the maps fq to Anyq—1 we get nore ‘f-pairs’ (see 12, Sedion 5])
with corresponding statistics, equi-distriburts and generating-futions-identities for the
alternating groups.

The main result here is

Proposition 8.6. Foreverym € Syyq-1

(1) Dely(w) — g+ 1= Del(fq()), and in particular,del () = dek(fq(r)).
(2) Deg(wr) — g+ 1 = Des(fq()) and in particular,des, (r) = deg(fq(x)).
(3) invg(m) = invi(fq(m)) = Lq(mr) = £1(fq(m)).

HereDely(w) —r = {i —r |i € Delg(x)} and similarly forDesg; () —r.
The proofis given below.
Remark 8.7. Recall thatRj = {1, s, §jSj—1,...,SjSj—1--S1}.

(1) Letw = wi---wnyq—2 Where allwj € R; be the canonical presentation of
w € Shyg-1. Thenfg(w) = fq(wy) - - - fq(wniq-2) isthe canonical presentation of
fq(w). Note hat fg(wy) = - - - = fq(wg-1) = 1.

(2) In addtion, let alsow’ = wj --- w;]+q_2, where alsou} € Rj. It is obvious that
fq(w) = fq(w’) ifandonly if fq(wj) = fq(w}) forall j.
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(3) Theddfinition of a.ltrminino = [by, ..., by]—and therefore also the definition
of the set Dg|(o)—applies vhenever the integets, . . ., b, are distinct.

(4) Letby,..., by, andcy, ..., ¢y be two sets bdistinct integers, letM be an ineger
satisfyingbj, cj < M forall j, let 1 < k < nand denote

Gz[bls"'vbn]v O*=[b17"'7bk711vakv"'sbn]

and
n = [Cly-'-anL }7* = [Clv"'sckflv Msckv"'vcn]'
Then it is rather easy to verify that Qgb) = Delq(n) if and only if Dek(c*) =

Lemma8.8. Letw, w' € S4q-1 satisfy f(w) = fgq(w’), then

1. Del(w) = Delg(w").
2. Deg(w) = Degy(w).

Proof. Since f1(w) = w, we assume that] > 2.

(1) By thed€finition of fq and byRemark 8.7t suffices to prove the following claim:
Let wj, wj € Rj satisfy fq(wj) = fq(wj), 9 = ] = n+qg-2 and letw =
Wq -+ - Wnyg—2 andw’ = wa e w;]+q72. Then De}(w) = Delg(w’).
The proofis by inductionon > 1. Ifn=1,w = w' = 1.
The induction step:
Denotem =n+q — 1, sow = wq - - - wm-1 andw’ = wg - - - wy,_,, then enotes =
wq -+ wm—z ando’ = wg - - wp,_,. Sinceboth permutations are in—1 < Sy, we have

o =1[by,...,bmo1, M] and o' =]cy,...,Cn1, M.

By induction, Dej(o) = Delg(o”). If wm—1 = 1 then alsow;, ; = 1 and we are done.
Thus, assume both ag¢ 1. Recall thatfg(wm-1) = fq(w;,_,) and letwm_1 =
Smo1-- & andw;, ; = Sm-1---S. If kK > q, it follows thatwm-1 = wy, ; and we
are done. So let, k' < g. By conparing both cases with the calse= g we may assume
thatk = g andk’ < g, hercew;, ; = wm_15-1--- S
Compare first wmn—_1 with o’wm_1:

oOWm-1 = [bls ceey bqflv mv bQ1 ceey bmfl]s
U/wm—l = [Cla L) Cq—lv mv CCI7 K] Cm—l]v

and by induction andRemark 8.74), Del(cwm-1) = Delg(c’'wm-1). Conpare now
o'wm-_1 With o'w;, ; = (6'wm-1)Sg-1- - Sk':

o' wm_r=1[CL e, ,Cg—1, M, Cq, . . ., Cm—1] and
o'wi_1=1[CL...,C0_1,M,Ce,...,Cq—1,...... , Cm—1].
A simple agument now shows thaty < i is a9~ Ll.ltrmin Del(o'wm-1) =

Delg(c’w/, ;) and the proof of part 1 is complete.
(2) The proof is similar to that of part 1. Denote=n+q — 1, thenwrite w =w1q - - -

Wm-1=0wm-1 Where o =wy---wm_2, and simlarly w' =wj---wy,_;=0'w/_;.
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We assume thatfq(wj) = fq(w}) for all j. Thus fq(o) = fq(c) and by induction,
Deg (o) = Deg(c’). By an argument similar to thahithe proof of part 1, it follows
that Deg(cwm-1) = Deg(c’wm-1) and it remains to show that Dg®'wm-1) =
Des;(0'wp,_,). Again asin the poof of part 1, we may assume thak,_1 = Sm-1--- S
andw;, ; = Sm-1---& Wheret < g. We pove the casé = q — 1, the other cases being
proved sinilarly.

Writeo’ = [ay, ..., am-1, M. Nowo'w;, ; = 0'wm-15-1, herce

G/wm_l = [al’ AR ] aq_27 aq_l’ m’ aq’ AR am_l]’
o'wp_ g =Ia1,...,8q-2,M, 8-1.aq, . . . , am-1].

Clearly,q € DeSo’wm-1) (thereforeq € Deg(c'wm-1)), but it is possible thaf ¢
Deso’'wy, ;). However, at rost alltheq — 1 integersay, ..., ag—1 are smaller thamyg
(butm > ag), henceg + 1 € Delg(o’wy,_;), whichimplies thatq € Deg;(o'wy,,_,).

For all oher indices # q it is easy to check thdt € Deg (c'wm-1) if and only if
i € Degy(c'wy,_;), and the poof is canplete. [

The Proof of Proposition 8.6. (1) Let 7 € S1q-1 and letz’ denote the permutation
obtained fromr by erasing—in the canonical presentationmef-all the appearances of
the Coxetergenerators, ..., sg—1. Clearly, fq(n) = fq('), herce suffices to prove
that

(a) Del(w) = Delg(z’), and
(b) Dely(n") —q+ 1 = Del(fq(")), i.e. Del(x’) = Del(fq(z")) +q — 1.

Letmr = w1---wg-1wq - --wm-1(M = n + g — 1) be the canonical presentation of
m:wj € Rj. Denoter = w1 ---wg—1 ando = wyq - - - wm_1, thenboth are given in their
canonical presentations. Clearly(zr) = 1 andn’ = ¢’ = wa ---wp,_4, Where for each
j w} is obtained fromw;j by erasing all the appearancessf. .., s3—1, and theefore
fq(wj) = fq(w’j). By Lemma 8.8 Dely(0) = Delg(c”) = Dely("). Sincer = o and
T € §, byRemark 5.Delq () = Delg(o)—and (a) is proved.

Part(b) follows from the following fact:

Letz’ = s, ---5, be the canonical presentation of the abavdtherefore alli; > q),
then fq(7’) = s, q+1---S,—q+1. If fq(x') = [a1,...,an], it follows thatz’ =
[1,...,9-,aa+qg—1,...,an+qg—1]. If2 <, it then follows thati is a I.t.r.min of
fq(x’) ifandonly if i +q — 1isa%L.L.t.r.min of 7', whichproves (b). O

(2) Recall that
Deg(7) = (Desw)N{g,q+1,...,n}) U (Dely(r) — 1).

Special CaseAssumer does not involve any ofy, ..., Sq—1. As alove, if fq(r) =
[a1,...,an]thenr =[1,...,9—L,aa+q—1,...,ay+q— 1], herce

Degn)N{q,g+1,...,n4+q— 1} = Deg fq(n)) +q— 1.
By part 1
Deg () = ([Deq fq())] U [Del(fq(r)) — 1) +q — 1.
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Since br anyo € §,Deqo) 2 Del(o) — 1, it follows that the right hand side equals
Deg fq()) + g — 1, and this completes the proof of this case.

The general casd_et r € S,1q—1 be arbitrary. Letr’ be the pemutaion obined
from 7 by delding all the appearances ¢f, ..., s5_1 from its canonical presentation.
Then fq() = fq(x') and the proof easily follows from the above special case and from
Lemma 8.82).

(3) By Proposition 4.2invq(mr) = £q(). By the definitions of{q and fq, £q(n) =
£(fq(m)), and firally, £(c) = inv(c) for any permutationr. [

Remark 8.9. Proposition 6.1 now follows from Proposition 8.6 combined with
Propositions 3.and8.5.

Lemma 8.10. Foreveryr € &
#qul(n) =q!- g% = (q — 1)!. qlehm+1,

Moreover, let g: A q-1 — S be the regiction gq = fq | Aniq1 of fq to Anjq-1.
Then

#og L) = # Ty ().

Proof. Denotem = n+q — 1, so fq: Sy — . Consider the canonical presentation of
7 € S and write itast = 7™ . yp_1, wherex ™D e S _1 andvn_1 € Ro_1 =
{1 s-1,-1%-2, ..., S-1%-2---S1}. Thus

#itor) = #1g M) # i n-0) = 1 g s )
(by induction). If del(vn—1) = O then #;1(vo_1) = 1. If deh(vn_1) = 1 then
q
#qul(vn,l) = (, sincein that casen_1 = Sp—1---S and
fq_l(Un—l) = {wm-1, Wm-18-1, - - - » Wm-18q—1 - - - St}

wherewm_1 = Sm—1Sm—2 - - - S Theproof now follows.
The argument fogg is similar. The factor 12 comedrom the fact that #qfl(l) =#§

while #g; 1(1) = #Aq. O
Falowing [12], we introduce

Definition 8.11. Let my andmg be two statistics on the symmetric groups. We say that
(Mg, mq) is an fq-pair if for all n andz € S1q-1, Mq(7) = M1(fq(1)).

As a coollary of Proposition 8.&andRemark11.1, we have
Corollary 8.12. The follovingare fy-pairs:
(invy, invg), (€1, £q), (deh, dely), (desg, deg), and (rmay, , rMaj n1q—1)-

The same argument as in the proof of Proposition 5.8 2 fogetrer with Lemma 8.10
now proves
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Proposition 8.13. Let(mg, mq) be an §-pair of statistics on the symmetric groups. Then

mq (), dely () m del
Z tl q t2 b — q| Z t]_ l(U)tzel(U).

TE€Sg-1 oeS

Resticting fq to Anq—1 weobtain similarly, that

mg (), delq(m) 1 My (o), dek (o)
Doy T = 3qr Y ),
TE€A -1 oeS

Remark 8.14. As in [12], Proposition 8.1&llows us to lift equi-distribution theorems
from § to S§y4q-1, as welas toAn 1. This is denonstrated ifTheorem 11.3We leave
the formulation and the proof of the correspondifig.q—1 staement for the reader.

9. Dashed patterns

Dashed patterns in permutations were introduce@]inHor example, the permutation
o contains the pattertl—32)if o =[...,a,...,C,b,...]forsomea < b < c; if no such
a, b, cexistthern is said to avoid1—32). In [3] the auhor shows connections between the
number of permutations avoidiri@ — 32) and various combinatorial objects, like the Bell
and the Stirling numbers, as well as the number of left-to-right-minima in permutations.
In this and in the next sections we obtain theanalogues for these connections and
resuts.

In Section 5.2it was observed that, always, Dglr) — 1 € Deg (). It is proved
in Proposition 9.3hat equality holds exactly for permutations avoiding a certain set of
dashed-patterns.

Definition 9.1. 1. Givenq, denote by

Palq) = {(o1—02—---—0og—(Q+2)(Q+1) |0 € K}

the set with thesq! dashed patterns.
For example, P&2) = {(1 — 2 —43), (2—1— 43)}.

2. Denote by Avoig(m), m = n 4 q — 1, the set of permutations ii,, avoiding all
the ! paterns in Pafg), and lethq(m) denote the number of the permutations in
Sn avoiding Patq). Thushg(m) = #Avoidy(m) is the nunber of the permutations
in Sy+q—1 avoiding Patq). Note hathq(m) = n!if m < g + 1. As usual, define
hq(0) = 1.

Connections betweem, (n) and theg-Bell andg-Stirling numbers are given iBection 10

Remark 9.2. A permuationz € Sq—1 does satisfy one of the patterns in @gtif and
only if there exists a subsequence

l<ii<iz<.--<igyi<n+q-1,

suchthatm(iq+1) > m(igr1+1) and forevery 1< j < q,m(ij) < m(ig+1 + 1). In such
acasejg+1 + 1 (namelyr (i1 + 1)) isnotanad=L.l.t.rmininz.
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Proposition 9.3. A permuationw € S,;q—1 avoidsPalq) exadly whenDely(7) — 1 =
Desy(r):

Avoidq(n+q — 1) = {7 € S1q-1|Delg(7) — 1 = Deg(m)}.
In particular,
hqin+q—1) =#r € Siyg-1|Delg(7) — 1 = Deg(7)}.

Proof. (1) Recall fromSection 5.2that, always, De|(r) — 1 € Deg(w). Letm =
[b1, ..., bnig-1] € Sitq-1 Satisfy De} () — 1 = Degy (), which inplies that Degr) N
{d,...,n+qg—1} € Dely(r) — 1, and show that avoids Pafq). If not, byRemark 9.2
we obtain a descent in atiqy1, while igy1 + 1 isnot ad-lltrmininx; thusigy1 isin
Degn)N{g,...,n+qg— 1} butnotin De}(7) — 1, a contradiction.

(2) Denoter = [by,...,bnyg-1]. Assume nw that x e Avoidg(n), let k €
Des7) N{Q,...,n+q — 1} (sobx > bky1) and show thak + 1 € Dely(), that is,
k+ 1 (namelybyy1) isad~L.L.t.r.mininz. If not, there exisy (or more)b;’s in 7, smdler
than and left ofbx1—hence also left obk. Togetherwith by > by;1 this shows that
m ¢ Avoidq(n + q — 1), a ontradiction. [

Corallary 9.4. The covering mapgfmapsAvoidg(Sy+q-1) to Avoid1 (Sy):
fq: Avoidg(Shg-1) = Avoidi(S)).

Similarly,
f2 1 Avoidq(Sh4g—1) = Avoidg—1(Sh1q-2).

Proof. This follows straightforwardly fronfPropositions 8.&nd9.3. [

10. ¢-Bdll and ¢-Stirling numbers
10.1. The g-Bell numbers

Recall thatS(n, k) are the Stirling numbers of the second kind, i.e. the numbeks of
patitions of the sefn] = {1, ..., n}. Recall also that the Bell numbéx(n) is the total
number of thepartitions of [n]: b(n) = )", S(n, k).

Definition 10.1. Define theg-Bell numbers p(n) by
ba(n) = > g*s(n. k).
k

Remark 10.2. Letq > 1 be an integer and consider partitions @f] into k subsets, where
each subset is coloured by onegpéolours. The number of sucfrcolouredk-partitions is
obviouslygkS(n, k). It follows that the taal number of sucly-coloured partitions ofn] is
thenth g-Bell numberbg(n).

Proposition 10.&elow shows that
#{o € S11q-1 | Delg(o) — 1 = Deg(o) and de§ (o) = k — 1}
= (@ - D!gsh, k,
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and therefore
@ — D!bg(n) =#nm € Si1q-1/Dely(mr) — 1 = Degy(m)}.

Theqg-Bell numbers are studied first.
Whenq = 1, by considering the subset inkgpartition of [n] which containsn, one
easily deduces the well-known recurrence relation

-1
bi(n) = Z <n K >b1(n —k-1).

k
In the generat) colours case, apply the same argument, now taking into account that each
subset—and in particular the one containmg-can be coloured bg colours. This proves:

Lemma 10.3. For each nteger g> 1 we have the following recurrence relation
n—1
b = bg(n —k —1).
4 () q;( . >q(n )

Remark 10.4. 1. Let Bg(x) = Y o2, bq(n)ﬁ—r; denote the exponential generating
function of {bq(n)}. As in page 42 in 15, Lemma 10.3implies thatB’(x) =
qe*Bq(x). Togethemwith B(0) = 1 (sirnce, by definitionpg(0) = 1), this implies
that

Bq(X) = exp(e — q).

2. The classical formula
o

1 rn
bi(n) = e Ml
r=0

generalizes as follows:
1<xqirn
bq(n) == g ;) r .

The proof follows, essentially unchanged, the argument on page 2%]in [

10.2. Connections with patte-avoiding permutations

Recall that Pag) = {(01 — 02— - —0oqg — (@ + 2)( + 1)) | 0 € §} and thathg(n)
denotes the number of the permutation§iravoiding all thesey! paterns in Patg).

Proposition 10.5. The g-Bell numbers g(n) and the numbers J(n + q — 1) of
permutations in § 41 that avoidPatq), satisfy

By Proposition9.3 this implies that
@ — Dlbg(n) =#{nm € Si4q-1 | Dely(r) — 1 = Degy(m)}.

The proof requires the following recurrence.
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Lemma 10.6. If n > q then

n—q _
hg( =g <n ‘ q)hq(n —k—1.
k=0

Proof. The proofis by a rather standard argument.

LetK € {g+ 1,9+ 2,...,n} be a subset, withkK| = k, herce 0< k < n—q. Letk
bethe word obtained by writing the numberskéfin an increasing order. Note that there
are (", 9) suchK's—hence(", ) suchk’s. Let 1 < i < g and lets") be a permtation

ofthe set{l,...,i —1,i +1,...,n}\K, which awids Patq). By defirition, since there
aren — 1 — k elements in that set, there drg(n — k — 1) sucho ’s. Now construct (the
word) n" = ¢ Wik, theny® e S, and it avoids Pdt)) since here is no descent in the

parti « of 1) (seeRemark 9.2 For each 1< i < q, thenumber ofy!)’s thus constructed
is Yo (" )ha(n —k — 1), herce

n—q
hq(n) =q Z <n K q)hq(n —k— 1.
k=0

Conversely, assumg € §, avoids Patq). Among 1 ..., q, leti appear the rightmost
in n and write the wordy asn = oik, then none of 1..., g appears inc. Thenumbers
in k are increasing since otheise, if there is a descent iy Remark 9.2vould imply that
n does satisfy one of the dashed patterns irfd@at contradiction. Since avoids Patq),
obviously the part of n also avoids P4t)). It follows thatn is the above permutation
n = n@. This proves thereverse inequdity and completes the proof.]

The proof of Proposition 10.5 now follows by induction om > 0. The casen = 0 is
clear. Assume > 1, then byL,emma 10.6

n—1
n—-1
mm+q—nzq§:<k )wm—l—k+q—n
k=0

(by induction)

nlon_a
=QZ( K )~(q—1)!«bq(n—k—1)
k=0

n-1 n—1
=(-1!- bg(n—k -1
@-1 P§<k>¢ ﬁ
(by Lemma 10.3

=(q— 1! bg(n).

This proves the first equation of the proposition. Together viéfinition 9.1 and
Proposition 9.3this imies thathg (n4+gq—1) = #{n € Si1q-1 | Delg(r)—1 = Degy ()},
hence

(@ — Dlbg(n) =#{n € S11q-1 | Delg(r) — 1 =Deg(m)}. O
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In the case = 1,
b1(n) = b(n) = #Avoidi(n) = #{oc € S, | Deli(c) — 1 = Desi (o)},

which aparsin B].
Let

o0 Xn
Ha() =) ha(n+q -1
n=0 .

be the exponential generating function of tygn + q — 1)’s. By Remark10.41) and
Proposition 10.%ve have

Corollary 10.7.
Hq(x) = (@ — 1! - expqe* - q).
10.3. Stirling numbers of the second kind

The following refinement of the second equatiorPebposition 10.5s proved in this
subsection.

Proposition 10.8.

#o € Si1q-1 | Delg(o) — 1 = Deg (o) anddely (o) =k — 1}
= (q - D'g*S(n. k).

Deduce that
1
Z qdeh(n) — a . bq(n),

{reSn|Dely () —1=Deg ()}

and more generally,

) gieb@ — @= D' " g%sin. b

{o0€S1q-1|Delq(0)—1=Deg (o)} q k
RGeS
q

. qu(n).

Proof. We firstprove the casg = 1 nanely, that
#o € S, | Deli(c) —1=Des(oc) and del(o) =k —1} = S(n, k).

Recall thatS(n, k) is the number of partitions ¢f] into k non-empty subsets. Given such a
patition D1 U - .- U Dg = [n], assume w.l.0.g. that the numbers in eabh are increasing:
Dj is{di1 < di2 < ---}, and also, the mimal elementsl; 1,d> 1, ... are decreasing:
di11 > d21 > .-+ > dk1. Corresponding to that partition@voonstruct the permutation
o =[D1, Do, ...],nanelyc =[d11,d12,...,d21,022,...,01,dk2...].
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Now Del(o), the Ilt.rmin of o, are exatly at the (k — 1) positions of
d21,d31, ..., dk1, andobviously the descents occur at bet) — 1. This esablishes an
injection of the set of th& partitions of [n] into the above set, which implies that

cardo € S, | Deli(o) —1=Des(c) and del(oc) =k -1} > S(n, k).

Since he sum on alk’s of both sides equals(n), this implies the caseg = 1.
The generat] case follows fronProposition 8.6andfrom Lemma 8.10

Letw € . By Proposition 8.6
Deli(r) —1=Des(x) ifandonlyif Deb(fq’l(n)) — 1= Deg( qul(n)),

and also, dekz) = k — 1 if andonly if delq(fq‘l(n)) =k — 1. DenoteDq(n, k) = {o €
Si+g-1 | Delg(o) — 1 = Deg (o) and de(o) = k — 1}, so thatD1(n, K) = {7 € & |
Delq() — 1 = Des () and def () = k — 1}. It follows that

Dq(n, k) == U fqil(n’)s

e D]_(n,k)

a digoint union. ByLemma 8.10#fq*1(7r) =(@-D!- qk for all # € D1(n, k), and the
proof now follows easily from the cage=1. O

10.4. Stirling numbers of the first kind
Letc(n, k) be the signless Stirling numbers of the first kind.

Proposition 10.9. ¢c(n, k) = #{r € S, | dels(r) = deh(xwr) = k — 1}, namely, ¢n, k)
equals the number of permutations inw@ith k — 1 .t.r.min.

For the proof, see Proposition 5.8 ifhJ].
The following is ag-analogue oProposition 10.9

Proposition 10.10.

#m € Siig-1 | dely(m) = k- 1} = cq(n, k),
where g(n, k) = g¥(q — D)'c(n, k).
Proof. The proof is essentially identical to the proof Bfoposition 10.8with the set
Dq(n, k) being replaced here by the sdt(n, k) = {7 € Si4q-1 | del(r) = k — 1}.
ThenHi(n, k) = {r € S, | deh(r) = k— 1}, and by Proposition 5.8 in1[2], #H1(n, k) =
c(n, k), thesignless Stirling nuimer of the first kindThe proof now follows. [
11. Equi-distribution

11.1. MacMahon type theorems for g-statistics

Recall the definition of rmgj, 41 from Definition 5.9
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Remark 11.1. Note that forr € S4q-1,

rMay . q_1(7) = rmajy ,(fq(m)) = rmajg, (fq(1)).

This follows since byProposition 8.€),i € Deg(r) if andonly if i — g+ 1 €
Des (fq(m)).

The following is ag-analogue of MacMahon'’s equi-distribution theorem.
Theorem 11.2. For every positive integer n and g

Z trmaqunﬁ_q_l(n): Z tinvq(n)

T€Stg-1 TE€S+g-1

QA+tYA+t+t2q) - A+t +---+t"2 4" 1g).

This theorem is obtained from the next one by substituting 1.

Theorem 11.3. For every positive integer n and g

Majg ntq—1(7)  dely () invg (), del ()
> b CRE D DI
7T€Sn+q—1 JTGSH—q—l
= q!(1+ tatoq) (1 + t1 + t262Q) - - -
X (L4t + -+t 2+ 1)

Proof. By Proposition 8.6and Remark11.1, (rmajs , rmajq’n+q_1) and (inv, invg) are
fq-pairs. The proof now follows frorRroposition 8.1&ndTheorem 3.3 [

The following is ag-analogue of Foata—Suatzenberger’s equi-distribution theoreif [
Theorem 1].
Theorem 11.4. For every positive integer n and q and every subset Bg,n + q — 1]
Z tivg(m) _ Z Ml nq-10T)
(€Shiq-1IDeg (r1)=B} {TeShtq-1/Desy(r1)=B}
This theorem is obtained from the next one by substituBpag= [q, n + q — 1].

Theorem 11.5. For every positive integer n and q and every subsetsHqg, n+ q — 1]
andB < [g,n+q—1]

Z tinvq ()

{m €Sh4g—1/Desy (r~1)=B1,Dely (r ~1)=By}

— Z trmallq,nJrq—l(ﬂ)'

{r €Sh4q-1/Deg(r~1)=By1,Dely(r ~1)=By}
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Proof. By Proposition 8.6and Remark11.1, it suffices to prove that for every subset
B;1 € [n—1]andBy C [n — 1]

3 finva(fq ()

{r €Shyq-1IDes (fq(r~1)=By,Dely (fq(r~1))=By}

_ 3 prmaiy n(fq(r)).

{7 €Sh1q-1/Desi(fq(x~1))=B1,Deli (fq (7 ~1)=By}

By Proposition 8.4fq(n*1) = fq (r)~ L. Thus, dacting o = fq(m), it suffices to prove
that

Z #qul(a) . tinvl(o)

{o€Sh|Des (0 ~1)=By,Dely (o ~1)=By}

= > #1y Ho) - MA@,
{o€S|Desg (0 ~1)=B1.Dely (6 ~1)=By}

By Propositions 5.2nd5.5, for everyo € S, with Deli(c 1) = By, deh(oc) = #By.
Thus, byLemma 8.10#f; (o) = (q — 1)! - q*P2** for all permutations in the sums.
Hence, the theorem is reduced to

(q—1)!- q#Bz+1 . Z tinva(e)
{o€Sh|Des (0 ~1)=B1,Dely (6 ~1)=By}

=(q— 1) g"Btt. > £MaiLn (@),
{o€Sh|Des (6~ 1)=By,Del (6 —1)=By}

Theorem 3.Zompletes the proof.
Theorem 11.4mpliesg-analogues of two classical identities, due7p14].

Corollary 11.6. For every positive integer n and q

invg (), degy (7 1) rmajy niq—1(7), deg (x4
(D Yresaill L =YreSuqalt b , and

invq(T), "Majg nyq-10(t 1) rMajq n.q-1(7), Majg 1075
() Yresugall b =2 reSuqrll b :

11.2. Equi-distibution on Avoid(n)

The main theorem on equi-distribution on permutations avoiding patterns is the
following.

Theorem 11.7. For every positive integer n and g and every subsetBq, ..., n+q—2]

Z trmathnJrq,l(n')

{m ~LeAvoidg(n+q—1)|Deg (r ~1)=B}

— Z tinvq ()

{m~LeAvoidg (n+q—1)|Deg(r ~1)=B}
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Proof. SubstitutingB; = B — 1 = B in Theorem 11.5wve obtain, for every subset
B<lg,n+q—1]
Z tinvq(n)

{r€Si4g—1/Degy (r ~H)=Delq(r ~1)—1=B}
= Z tmalg.ntq-1(7)
{m€Si4g—1lDegy (r ~1)=Delq(r ~1)—1=B}
By Proposition 9.3
{7 € Sviq-1/Deg(r ) = Delq(x 1) — 1= B}
= {7~ € Avoidg(n + q — 1)|Deg(x ) = B}.
This completes the proof.[]
Theorem 11.Tmplies
Corollary 11.8. For every positive integer n and q
Z timajq,m_l(n)tges](n) _ Z tilnvq(n) tgei1(7r)
7 ~1eAvoidg(n+g—1) 7 ~1eAvoidg(n+g—1)

The following is an extension of MacMahon’s theorem to permutations avoiding
paterns.

Theorem 11.9. For every positive integer n and g
Z trmajq,m_q_l(n) — Z tinvq(n)
n~leAvoidg(n+q—1) n~leAvoidg(n+q—1)

Proof. Substitutey = 1 in Corollary 11.8 [
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Appendix. Desy = Desy4: the proof

LemmaA.l. Letw =[by,...,bnt1] € Any1. Letl <i <n—1,thenie Desa(w) if
and only if one of the following two conditions hold.

1. bit1 > bijo, or
2. bit1 <bjypand by, by, ..., b > bjjo.

In particular, 1 € Desa(w) if and only if B > bz (and/) or Iy > bg.
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Proof. The basic tool is the formula
La(w) = Ls(w) — dels(w).

Assume firstthat 2< i < n — 1, thenv = wa = [bp, b1, ..., b42,bi+1,...]. Now
comparels(w) with £s(v), anddels(w) with dels(v), then gply the above formula, and
the proof follows. Here are the details.

The cas€ <i <n—1andbj;1 > bj;o.

If b1 < by thents(w) = £s(v). Now, delo) is the number of I.t.r.min i. Interchanging
by < bz in w adds one such I.t.r.min, while interchangimg1 > bj2 reduces that (deg)
number by one, or leaves it unchanged. In particulas@el < dels(v). It follows that
a(w) = Ls(w) — delg(w) > s(v) — dels(v) = €a(v), i.e. ta(wa) < ¢a(w), herce
i € Desa(w).

Similarly for the other cases. by > by (andbj11 > bjy2), verify thatés(w) =
£s(v) + 2, while dek(w) < dels(v) + 2, and agairthis implies thai € Desa(w). This
completes the proof of 2.a.

The cas€ <i <n—1andbj;1 < bj;o.

First, assuméy; < by, thenls(v) = €s(w) + 2. If by, by, ..., b > bjy2 then also
dels(v) = dels(w) + 2, henc& a(wa;) = £a(v) = La(w), andi € Desa(w). If bj < bj4»
for some 1< j <i then de§(v) = dels(w) + 1 and it fdlows thati ¢ Desa(w).

If by > by thenls(v) = £s(w). Assuming thabg, by, ..., b > bj;2, deduce that
also deg(v) = dels(w), hercei € Desa(w). If bj < bj;2 for some 1< j < i then
dels(v) = dels(w) — 1, sola(waj) = £a(v) = La(w) — L andi ¢ Desa(w).

Finally assume that= 1, thenv = wa; = ws1S = [byp, bz, by, by, bs, .. .]. Obviously,
¢s(w) — £s(v) depends only on the order relations amdngby, bz, and sinilarly for
dels(w) — dels(v). We can therefore assume thidg, by, b3} = {1, 2, 3}, then deck the
3! = 6 possible cases af = [by, by, bz, ...]. For example, assuma = [1,3,2,...],
thenwa; =[3,2,1,...] = v, s0fs(v) = £s(w) + 2 while dels(v) = dels(w) + 2, hence
1 € Desa(w).

Similarly for the remaining five cases]
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