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Abstract

Naturalq analogues of classical statistics on the symmetric groupsSn are introduced; parameters
like: the q-length, theq-inversionnumber, theq-descent number and theq-major index. Hereq
is a positive integer. MacMahon’s theorem (Combinatory Analysis I–II (1916)) about the equi-
distribution of the inversion number and the reversemajor index is generalized to all positive integers
q. It is also shown that theq-inversion number and theq-reverse major index are equi-distributed
over subsets of permutations avoiding certain patterns. Naturalq analogues of the Bell and the
Stirling numbers are related to theseq statistics—through the counting of the above pattern-avoiding
permutations.
© 2003 Elsevier Ltd. All rights reserved.

1. Introduction

MacMahon’s celebrated theorem about the equi-distribution of thelength(or theinver-
sion-number) and themajor indexstatistics on the symmetric groupSn [10]—has received
far-reaching refinements and generalizations through the last three decades. For a brief re-
view on these refinements—see [12]. In [12] we extended the various classicalSn statistics,
in a natural way, to the alternating groupAn+1. This was done via the canonical presenta-
tions of the elements of these groups, and by a certain covering mapf : An+1 → Sn.

Further refinements of MacMahon’s theorem were obtained in [12] by the introduction
of the ‘delent’ statistics on these groups. Then these equi-distribution theorems forSn were
‘ lifted’ back, via f : An+1 → Sn, thus yielding equi-distribution theorems forAn+1.
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This paper continues [12] and might be considered as itsq-analogue. Note that here
q is a positive integer; the generalization to an arbitraryq is still open. We introduce
the q-analoguesof the classical statistics on the symmetric groups: theq-length, the
q-inversionnumber, the q-descent number, the q-major indexand theq-reverse-major
indexof a permutation. Theq-delentstatistics are also introduced. We then extend classical
properties to theseq-analogues. For example, it is proved that theq-length equals theq-
inversion number of a permutation; furthermore, it is proved that theq-inversion number
and theq-reverse major index are equi-distributed onSn+q−1. See below.

It is realized that the above mapf : An+1 → Sn is the restriction toAn+1 of a covering
map f2: Sn+1 → Sn. More generally, we have similar covering mapsfq: Sn+q−1 → Sn for
all positive integersq. These maps are defined via the canonical presentations of the ele-
ments inSn+q−1. It is proved that the mapfq sends theq-statistics onSn+q−1 to the corre-
sponding classical statistics onSn, seeProposition 8.6below. For example, ifπ ∈ Sn+q−1,
it is proved there that theq-inversion number ofπ equals the inversion number offq(π).

Dashed patterns in permutations were introduced by Babson and Steingrimsson [2].
For example, apermutationσ contains the pattern(1 − 32) if σ = [. . . , a, . . . , c, b, . . .]
for somea < b < c; if no sucha, b, c exist thenσ is said to avoid(1 − 32). Connections
between the number of permutations avoiding(1−32)—and various combinatorial objects,
like the Bell and the Stirling numbers, as well as the number of left-to-right-minima
in permutations were proved by Claesson [3]. Via the variousq-statistics we obtain
q-analogues for these connections and results.

For a permutation π ∈ Sn+q−1 it is proved that theq-descentand theq-delentnumbers
of π are equal exactly whenπ avoids a certain collection of dashed patterns, and that
thenumber of these permutations is(q − 1)! ∑k qkS(n, k), whereS(n, k) are the Stirling
numbers of the second kind, seeCorollary 2.8. Also,thenumber of permutations inSn+q−1
for which theq-delentnumber equalsk − 1 is (q − 1)!qkc(n, k), wherec(n, k) are the
Stirling numbers of the first kind; seeProposition 2.9.

Equi-distribution ofq-statistics is studied inSection 11. A q-analogueof MacMahon’s
classical equi-distribution theorem is given, seeTheorem 2.5below. Multivariate
refinements of MacMahon’s theorem, due to Foata–Sch¨utzenberger and others [7, 12, 14],
also have correspondingq-analogues. These analogues are described inSection 11.1, see
Theorem 11.5and its consequences.

An intensive study of equi-distribution over subsets of permutations avoiding patterns
has been carried out recently, cf. [1, 5, 6, 13]. In Section 11.2it is shown that
certainq-statistics are equi-distributed on the above subsets of dashed-patterns-avoiding
permutations. SeeTheorems 2.6and11.7below.

2. The main results

Throughout the paperq is a positive integer. Recall the unique canonical presentation
of a permutation in Sn as a product of shortest coset representatives along the principal
flag, seeSection 3.1below. Theq-lengthof a permutationπ ∈ Sn, �q(π), is thenumber of
Coxeter generators in the canonical presentation ofπ , where the generatorss1, . . . , sq−1
are not counted.
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invq(π) :=
n∑

i=q+1

mq(i ),

where

mq(i ) := min{i − q, #{ j < i | π( j ) > π(i )}}.
Also invq(π) := 0 if n ≤ q. Thus�1(π) = �(π) and inv1(π) = inv(π).

As in the (classical) caseq = 1, we have

Proposition 2.1 (SeeProposition 4.2). For everyσ ∈ Sn

�q(σ ) = invq(σ ).

Proposition 2.2 (SeeProposition 6.1). For everyπ ∈ An, �2(π) is the length with respect
to the set of generators{a1, . . . , an−2} ⊂ An, where ai := s1si+1.

Define theq-delent number, delq(π), to be thenumber of timessq appears in the
canonical presentation ofπ .

For 0≤ k ≤ n − 1 define thekth almost left-to-right-minimain a permutationπ ∈ Sn

(denotedak.l.t.r.min) as the set of indices

Delk+1(π) := {i | k + 2 ≤ i ≤ n, #{ j < i | π( j ) < π(i )} ≤ k}.
Thus Delq(π) is the set ofaq−1.l.t.r.min inπ . SeeExample 5.10below.

Proposition 2.3 (SeeProposition 5.2). The number of occurrences of sk+1 in the
canonical presentation ofπ ∈ Sn, delk+1(w), equals the number of ak.l.t.r.min inπ .

The second delent statistics del2 on even permutations inAn+1 and the first delent statistics
del1 on Sn have analogous interpretations. See, for example,Proposition 6.1.

Theq-descent setof π ∈ Sn+q−1 is defined as

Desq(π) := {i | i is aq-descent inπ},
and theq-descent numberis defined as

desq(π) := #Desq(π).

Forπ ∈ Sn+q−1 define theq-major index

majq(π) :=
∑

i∈Desq(π)

i

and theq-reverse major index

rmajq,m(π) :=
∑

i∈Desq(π)

(m − i ),

wherem = n + q − 1.
Thus Des1 is the standard descent set of a permutation inSn. The definition of the

q-descent set is justified bythe following phenomena:
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(1) Des2 is the descent set on the alternating groupAn with respect to the distinguished
set of generators{a1, . . . , an−2}, whereai := s1si+1, seeProposition 6.1.

(2) Theq-descent set, Desq, is strongly related with pattern avoiding permutations, see
Proposition 9.3.

(3) Desq is involved in the definition of theq-(reverse) major index, and thus in the
q-analogue of MacMahon’s equi-distribution theorem (Theorem 11.2).

Givenq, denote by

Pat(q) = {(σ1 − σ2 − · · · − σq − (q + 2), (q + 1)) | σ ∈ Sq}
the set with theseq! dashed patterns. For example, Pat(1) = {(1 − 32)} Pat(2) =
{(1 − 2 − 43), (2 − 1 − 43)}.

Denote by Avoidq(n + q − 1) the set ofpermutations inSn+q−1 avoiding all theq!
patterns in Pat(q).

Proposition 2.4 (SeeProposition 9.3). A permutationπ ∈ Sn+q−1 avoidsPat(q) exactly
whenDelq(π) − 1 = Desq(π):

Avoidq(n + q − 1) = {π ∈ Sn+q−1 | Delq(π) − 1 = Desq(π)}.
The following is aq-analogue of MacMahon’s equi-distribution theorem.

Theorem 2.5 (SeeTheorem 11.2).∑
π∈Sn+q−1

t rmajq,n+q−1(π) =
∑

π∈Sn+q−1

t invq(π)

= q!(1 + tq)(1 + t + t2q) · · · (1 + t + · · · + tn−2 + tn−1q).

Far reaching multivariate refinements of MacMahon’s theorem, which imply equi-
distribution on subsets of permutations, were given by Foata and Sch¨utenberger and others,
cf. [7, 8, 12, 14]. In Section 11.1we describe someq-analogues of these refinements, see
Theorem 11.4andCorollary 11.6below.

The aboveq-statistics are equi-distributed on permutations avoiding Pat(q).

Theorem 2.6 (SeeCorollary 11.8).∑
π−1∈Avoidq(n+q−1)

t
rmajq,n+q−1(π)

1 t
desq(π)

2 =
∑

π−1∈Avoidq(n+q−1)

t
invq(π)

1 t
desq(π)

2 .

For example, for q = 1∑
π−1∈Avoid(1−32)

t
rmajn(π)

1 tdes(π)
2 =

∑
π−1∈Avoid(1−32)

t inv(π)
1 tdes(π)

2 .

Forq = 2 ∑
π−1∈Avoid(1−2−43,2−1−43)

t
rmaj2,n+1(π)

1 tdes2(π)
2

=
∑

π−1∈Avoid(1−2−43,2−1−43)

t inv2(π)
1 tdes2(π)

2 .
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Bell and Stirling numbers (of both kinds) appear naturally in the enumeration of
permutations withrespect to theirq-statistics.

Let c(n, k) be thekth Stirling number of the first kind andS(n, k) be thekth Stirling
number of the second kind. Let thenth q-Bell number bebq(n) := ∑

k qkS(n, k). Let
Bq(x) := ∑∞

n=0 bq(n) xn

n! denote the exponential generating function of{bq(n)}. Then

Bq(x) = exp(qex − q).

The classical formulab1(n) = 1
e

∑∞
r=0

r n

r ! [4] (see also [15, (1.6.10)]) generalizes as
follows:

bq(n) = 1

eq

∞∑
r=0

qr r n

r ! ,

seeRemark10.4.

Proposition 2.7 (SeeProposition 10.8).

#{σ ∈ Sn+q−1 | Delq(σ ) − 1 = Desq(σ ) anddelq(σ ) = k − 1}
= (q − 1)!qkS(n, k).

Corollary 2.8 (SeePropositions 9.3and10.5).

(q − 1)!bq(n) = #{π ∈ Sn+q−1 | Delq(π) − 1 = Desq(π)} = Avoidq(n + q − 1).

Proposition 2.9 (SeeProposition 10.10).

#{π ∈ Sn+q−1 | delq(π) = k − 1} = cq(n, k),

where cq(n, k) = qk(q − 1)!c(n, k).

3. Preliminaries

3.1. The Sn canonical presentation

A basic tool, both in [12] and in this paper, is the canonical presentation of a
permutation, which we now describe.

Recall that the transpositionssi = (i , i + 1), 1 ≤ i < n − 1, are the Coxeter generators
of the symmetric groupSn. For each 1≤ j ≤ n − 1 define

RS
j = {1, sj , sj sj −1, . . . , sj sj −1 · · · s1} (1)

and note thatRS
1 , . . . , RS

n−1 ⊆ Sn.
The following is a classical theorem; see for example [9, pp. 61–62]. See also [12,

Theorem 3.1].

Theorem 3.1. Let w ∈ Sn, then there exist unique elementsw j ∈ RS
j , 1 ≤ j ≤ n − 1,

suchthatw = w1 · · · wn−1. Thus, the presentationw = w1 · · · wn−1 is unique; it is called
thecanonical presentation of w.



34 A. Regev, Y.Roichman / European Journal of Combinatorics 26 (2005) 29–57

Note thatRS
j is the complete list of representatives of minimal length of right cosets of

Sj in Sj +1. Thus, the canonical presentation ofw ∈ Sn is the unique presentation ofw as
a product of shortest coset representatives along the principal flag

{e} = S1 < S2 < · · · < Sn.

We remark that a similar canonical presentation for the alternating groupsAn is given
in [12], seeSection 3.2below.

The descent set Des(π) of a permutationπ ∈ Sn is a classical notion. In [12] the ‘delent’
statistic was introduced: Del(π) is the set of indicesi which are left-to-right-minima ofπ ,
and del(π) = #Del(π). By Proposition 7.2 of [12], del(π) equals the number of times that
s1 = (1, 2) appears in the canonical presentation ofπ .

Theorem 9.1 is the main theorem of [12] and we now state its part aboutSn (it also has
a similar part aboutAn).

Theorem 3.2. For every subset D1 ⊆ [n − 1] and D2 ⊆ [n − 1]∑
{π∈Sn|DesS(π−1)⊆D1,DelS(π−1)⊆D2}

qrmajSn(π)

=
∑

{π∈Sn|DesS(π−1)⊆D1,DelS(π−1)⊆D2}
q�S(π).

In the following case, a simple explicit generating function is given.

Theorem 3.3 ([12, Theorem 6.1]).

∑
σ∈Sn

q�S(σ )tdelS(σ ) =
∑
σ∈Sn

qrmajSn (σ )tdelS(σ )

= (1 + qt)(1 + q + q2t) · · · (1 + q + · · · + qn−1t).

3.2. The alternating group

The alternating group serves as a motivating example. Here are some results from
[12], which areapplied inSection 6andAppendixand in the formulation and proof of
Proposition 8.5. The reader who is not interested in this motivating example may skip this
subsection.

Let

ai := s1si+1 (1 ≤ i ≤ n − 1) and A := {ai | 1 ≤ i ≤ n − 1}.
The setA generates the alternating group onn+ 1 lettersAn+1. This generating set and its
following properties appear in [11].

Proposition 3.4 ([11, Proposition 2.5]).The defining relations of A are

(ai aj )
2 = 1 (|i − j | > 1); (ai ai+1)

3 = 1 (1 ≤ i < n − 1);
a3

1 = 1 and a2
i = 1 (1 < i ≤ n − 1).
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For each 1≤ j ≤ n − 1 define

RA
j = {1, aj , aj aj −1, . . . , aj · · · a2, aj · · · a2a1, aj · · · a2a−1

1 } (2)

and note thatRA
1 , . . . , RA

n−1 ⊆ An+1.

Theorem 3.5. Let v ∈ An+1, then there exist unique elementsv j ∈ RA
j , 1 ≤ j ≤ n − 1,

suchthatv = v1 · · · vn−1, and this presentation is unique.

This presentation is called theA canonical presentation ofv.
Forσ ∈ An+1 let �A(σ ) be the length of theA canonical presentation ofσ . Let

DesA(σ ) := {i | �A(σ ) ≤ �A(σai )}
and desA(σ ) := #DesA(σ ), define majA(σ ) := ∑

i∈Desa(σ ) i , and rmajAn+1
(σ ) :=∑

i∈Desa(σ )(n − i ). Let delA(σ ) be the number of appearances ofa±1
1 in its A canonical

presentation. It is proved in [12] that this number equals the number of almost-left-to-right-
minima inσ .

Theorems 3.1and3.5allow us to introduce in [12] the following covering map:

Definition 3.6. Define f : An+1 → Sn as follows.

f (a1) = f (a−1
1 ) = s1 and f (ai ) = si , 2 ≤ i ≤ n − 1.

Now extendf : RA
j → RS

j via

f (aj aj −1 · · · a�) = sj sj −1 · · · s�, f (aj · · · a1) = f (aj · · · a−1
1 ) = sj · · · s1.

Finally, letv ∈ An+1, v = v1 · · · vn−1 its uniqueA canonical presentation, then

f (v) = f (v1) · · · f (vn−1)

which is clearly theScanonical presentation off (v).

Proposition 3.7 ([12, Propositions 5.3–5.4]).For everyπ ∈ An+1,

�A(π) = �S( f (π)), DesA(π) = DesS( f (π)), DelA(π) = DelS( f (π))

ThusdesA(π) = desS( f (π)), majA(π) = majS( f (π)), rmajAn+1
(π) = rmajSn

( f (π)) and
delA(π) = delS( f (π)).

4. Basic concepts I

Let π ∈ Sn. Recall that its length�(π) equals the number of the Coxeter generators
s1, . . . , sn−1 in its canonical presentation. It is well known that�(π) also equals inv(π),
thenumber of inversions ofπ . Also, it is easily seen that inv(π) can be written as

inv(π) =
n∑

i=2

m(i ),
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where

m(i ) = min{i − 1, #{ j < i | π( j ) > π(i )}}.
Thus, the following definition is a naturalq-analogue of these two classical statistics.

Definition 4.1. Let π ∈ Sn.

1. (�q)�q(π) as follows:
�q(π) := the number of Coxeter generators in the canonical presentation of
π , where s1, . . . , sq−1 are not counted (thus, for example,�2(s1) = 0 and
�2(s1s2s1s3s2s1) = 3).

2. (invq) begining ofSection 2.

Thus�1(π) = �(π) and inv1(π) = inv(π).
As in the (classical) caseq = 1, we have

Proposition 4.2. For everyσ ∈ Sn

�q(σ ) = invq(σ ).

Proof. We may assume thatq < n. Let σ = w1 · · · wn−1 with w j ∈ Rj be the
canonical presentation ofσ , and denoteπ = w1 · · ·wn−2, then π ∈ Sn−1, hence
π = [b1, . . . , bn−1, n]. If wn−1 = 1 thenσ ∈ Sn−1 and we are done by induction. Hence
assumewn−1 �= 1, so thatwn−1 = sn−1 · · · sk for some 1≤ k ≤ n − 1, and therefore
σ = [b1, . . . , bk−1, n, bk, . . . , bn−1].
Case1. 1≤ k ≤ q, in which case

�q(wn−1) = n − q and σ = [b1, . . . , bk−1, n, bk, . . . , bq, . . . , bn−1].
Then forq ≤ i ≤ n − 1,

#{ j < i + 1 | σ( j ) > σ(i + 1)} = #{ j < i | bj > bi } + 1

(the ‘+1’ comes fromn > bi ). Thereforemq(i + 1, σ ) = mq(i , π) + 1, since

mq(i + 1, σ ) = min{i + 1 − q; #{ j < i + 1 | σ( j ) > σ(i + 1)}}
= min{i + 1 − q; #{ j < i | bj > bi } + 1}
= min{i − q; #{ j < i | bj > bi }} + 1 = mq(i , π) + 1.

Thus

invq(σ ) =
n∑

i=q+1

mq(i , σ ) =
n−1∑
i=q

mq(i + 1, σ ) =
n−1∑
i=q

mq(i , π) + (n − q)

(by induction)

= �q(π) + n − q = �q(π) + �q(wn−1) = �q(σ ).

Case 2. q + 1 ≤ k, hence �q(wn−1) = �1(wn−1) = n − k, σ =
[b1, . . . , bq, . . . , bk−1, n, bk, . . . , bn−1]. Here
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1. mq(i , σ ) = mq(i , π) if q + 1 ≤ i ≤ k − 1,

2. mq(k, σ ) = 0 (i = k), and, as in Case 1,

3. mq(i + 1, σ ) = mq(i , π) + 1 if k ≤ i ≤ n − 1.

It follows that

invq(σ ) =
n∑

i=q+1

mq(i , σ ) =
k−1∑

i=q+1

mq(i , π) +
n−1∑
i=k

mq(i , π) + n − k

=
n−1∑
i=q

mq(i , π) + (n − k) (by induction)

= �q(π) + n − k = �q(π) + �q(wn−1) = �q(σ ). �

The following lemma was proved in [12].

Lemma 4.3 ([12, Lemma 3.7]). Let w = si1 · · · si p be the canonical presentation of
w ∈ Sn. Then the canonical presentation ofw−1 is obtained from the presentation
w−1 = si p · · · si1 by commuting moves only—without any braid moves. Similarly for
v, v−1 ∈ An+1.

Proposition 4.4. For everyσ ∈ Sn,

�q(σ−1) = �q(σ ), hence alsoinvq(σ−1) = invq(σ ).

Proof. Lemma 4.3easily implies that�q(σ−1) = �q(σ ), while this, together with
Proposition 4.2implies the equality invq(σ−1) = invq(σ ). �

5. Basic concepts II

A natural q-analogue of the del statistics from [12] is introduced inthis section. This
allows us to introduce below a (less intuitive)q-analogue of the descent statistics.

5.1. The delstatistics

Recall the definitions of Del and del (of typesS andA) from [12]: given a permutation
w in Sn, DelS(w) is the set of indices which areleft-to-right-minima(l.t.r.min) in w, and
DelA(w) is the set of indices which arealmost left-to-right-minima(a.l.t.r.min) inw. Let
si = (i , i + 1), i = 1, . . . , n − 1, denote the Coxeter generators ofSn. The following
classical fact is of fundamental importance in this paper.

Let Rj = {1, sj , sj sj −1, . . . , sj sj −1 · · · s1} and letw ∈ Sn, then there exist unique
elementsw j ∈ Rj , 1 ≤ j ≤ n − 1, such thatw = w1 · · · wn−1; this is the (unique)
canonical presentation ofw, see Theorem 3.1 in [12].

Similarly ai = s1si+1, i = 1, . . . , n − 1, are the corresponding generators for the
alternating groupAn+1, and there is a corresponding unique canonical presentation for
the elements ofAn+1, see Section 3 in [12]. The following was observed in [12]:
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1. The number of timess1 appears in the canonical presentation ofw (i.e. delS(w))
equals the number of l.t.r.min inw (hence #DelS(w) = delS(w)), see [12,
Proposition 7.2].

2. The number of timess2 appears inw equals the number of a.l.t.r.min inw. Moreover,
if w ∈ An+1, thatnumber equals the number of timesa±1

1 appears in theA-canonical
presentation of w, which by definition is delA(w), anddelA(w) = #DelA(w), see
[12, Proposition 7.6].

In this paper, ‘sub S’ is replaced by ‘sub 1’: DelS = Del1 and delS = del1, etc. Similarly
(in An) ‘sub A’ i s replaced by ‘sub 2’. We shall also encounter ‘subq’ for every positive
integerq.

Definition 5.1. Let π ∈ Sn and let 1≤ q ≤ n − 1.

1. Define delq(π) to be thenumber of timessq appears in the canonical presentation
of π .

2. For 0≤ k ≤ n−1 define thekth almost-left-to-right-minimain a permutationπ ∈ Sn

(denotedak.l.t.r.min) as the set of indices

Delk+1(π) := {i | k + 2 ≤ i ≤ n, #{ j < i | π( j ) < π(i )} ≤ k}.
Thus Delq(π) is the set ofaq−1.l.t.r.min inπ .

SeeExample 5.10below.

Notethat if i ≤ k + 1 then, trivially, #{ j < i | π( j ) < π(i )} ≤ k, however these indices
are not counted asak.l.t.r.min. Also note thata0.l.t.r.min is simply l.t.r.min.

Proposition 5.2. Let w ∈ Sn. Then for every nonnegative integer k, the number of
occurrences of sk+1 in the canonical presentation ofw, delk+1(w), equals the number
of ak.l.t.r.min inw. Writing k + 1 = q wehave

#Delq(w) = delq(w).

Proof. (Generalizes the Proof of Proposition 7.6 in [12]). We first need the following two
lemmas.

Lemma 5.3. Let 1 ≤ k + 1 ≤ n, letw ∈ Sn and letπ ∈ Sk+1. Also let i ≤ n. Then i is
ak.l.t.r.min ofw if and only if i is ak.l.t.r.min ofπw. In particular, the number of ak.l.t.r.min
of w equals the number of ak.l.t.r.min ofπw.

Proof. Denote w = [b1, . . . , bn] (namelyw(r ) = br ), and comparew with πw: π

permutes only thebr ’s in {1, . . . , k + 1}. If bi ∈ {1, . . . , k + 1}, the total number of
bj ’s smaller thanbi is ≤ k; in particular suchi is ak.l.t.r.min in bothw andπw, provided
i ≥ k + 2. If on the other handbi /∈ {1, . . . , k + 1} thenbi is greater than all the elements
in that subset; thus suchi is ak.l.t.r.min of w if and only if i is ak.l.t.r.min of πw. This
implies the proof. �
Lemma 5.4. Let 1 ≤ k ≤ n − 1 and denote s[k,n−1] = sksk+1 · · · sn−1. Let σ ∈ Sn−1
and writeσ = [b1, . . . , bn−1, n]. Then s[k,n−1]σ = [c1, . . . , cn−1, k], and the two tuples
(b1, . . . , bn−1) and (c1, . . . , cn−1) are order-isomorphic, namely for all i, j , bi < bj if
and only if ci < cj .
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Proof. Comparingσ with s[k,n−1]σ , we seethat

1. the (position with)n in σ is replaced ins[k,n−1]σ by k;

2. eachj in σ , k ≤ j ≤ n − 1, is replaced byj + 1 in s[k,n−1]σ ;

3. eachj , 1 ≤ j ≤ k − 1 isunchanged.

This implies the proof. �

The Proof ofProposition5.2 is by induction onn. If n ≤ k + 1, the number ofak.l.t.r.min
of any permutation in Sn is zero, and alsosk+1 /∈ Sn, hence5.2holds in that case.

Next assume5.2holds forn− 1 andprove forn. Letw = w1 · · ·wn−1 be the canonical
presentation of w ∈ Sn and denoteσ = w1 · · · wn−2, thenσ ∈ Sn−1. If wn−1 = 1
thenw ∈ Sn−1 and the proof follows by induction. So letwn−1 �= 1, then we can write
wn−1 = sn−1sn−2 · · · sdv, whered ≥ k+1 andv ∈ {1, sk, sksk−1, . . . , sksk−1 · · · s1} hence
v ∈ Sk+1. If d ≥ k + 2 then necessarilyv = 1 and inthat case the number of timessk+1
appears inw and inσ is the same. Ifd = k + 1, that number inw is one more than in
σ . We show that the same holds for the number ofak.l.t.r.min for these two permutations
σ andw.

By Lemma 3.4 of [12], it suffices to prove that statement for the inverse permutations
w−1 andσ−1. Now,w−1 = πs[d,n−1]σ−1, whereπ = v−1 ∈ Sk+1, hence byLemma 5.3
it suffices to compare the number ofak.l.t.r.min in σ−1 with that in s[d,n−1]σ−1. By
Lemma 5.4σ−1 = [b1, . . . , bn−1, n] ands[d,n−1]σ−1 = [c1, . . . , cn−1, d] where theb’s
and thec’s are order isomorphic.

The case d≥ k + 2. Here the two last positions—n in σ−1 andd in s[d,n−1]σ−1—are
notak.l.t.r.min, and the above order isomorphism implies the proof in that case.

The case d= k + 1.By a similar argument, now the last position ins[d,n−1]σ−1 (which
is k + 1) is one additionalak.l.t.r.min.

The proof now follows. �

Proposition 5.5. For every positive integer q and every permutationπ ∈ Sn+q−1

delq(π) = delq(π−1).

Proof. This is a straightforward consequence of Lemma 3.7 of [12], which says the
following: let π ∈ Sn and let π = si1 · · · sir be its canonical presentation. Then
the canonical presentation ofπ−1 is obtained from the equationπ−1 = sir · · · si1 by
commuting moves only, without any braid moves. Thus, the number of times a particular
sj appears inπ and inπ−1 is the same. This clearly implies the proof.�

Corollary 5.6. For every positive integer q and every permutationπ ∈ Sn+q−1 the
number of aq−1.l.t.r.min inπ equals the number of aq−1.l.t.r.min inπ−1.

Proof. CombiningProposition 5.2with Proposition 5.5. �

Remark 5.7. Settingq = k + 1 in Lemma 5.3, deduce that for any two permutationsσ
andη in Sn+q−1, if σ andη belong to the same right coset ofSq, i.e.η ∈ Sqσ , then

Delq(η) = Delq(σ ) (and therefore delq(η) = delq(σ )).
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The same is also true for the left cosets: letη ∈ σ Sq then again

Delq(η) = Delq(σ ) (and therefore delq(η) = delq(σ )).

This easily follows fromDefinition 5.1, since if σ = [b1, . . . , bq, . . . , bn], τ ∈ Sq and
η = στ , thenη = [bτ (1), . . . , bτ (q), bq+1, . . . , bn].

Let nowσ andη belong to the same left coset or right coset ofSq, then by the same
reasoning, for anyq ≤ d, deld(η) = deld(σ ) sinceSq ⊆ Sd. Since

�q(η) =
n−1∑
d=q

deld(η), and �q(σ ) =
n−1∑
d=q

deld(σ ),

deduce that in that case�q(η) = �q(σ ).

5.2. The q-descent set

Recall thati is adescentof π if π(i ) > π(i +1), and let Des(π) denote the (‘classical’)
descent-set ofπ . The following definition seems to be the appropriateq-analogue for
descents.

Definition 5.8. i is aq-descentin π ∈ Sn+q−1 if i ≥ q and at least one of the following
two conditions holds:

(1) i ∈ Des(π);
(2) i + 1 is anaq−1.l.t.r.min inπ .

Thus Desq(π) = (Des(π) ∩ {q, q + 1, . . . , n − 1}) ∪ (Delq(π) − 1), hence for all q,
Delq(π) − 1 ⊆ Desq(π) where Delq(π) − 1 = {i − 1 | i ∈ Delq(π)}.
Note that whenq = 1, condition (2) says thati + 1 is l.t.r.min, which implies thati is a
descent. Thus, a 1-descent is just a descent in the classical sense.

Definition 5.9. 1. Theq-descent setof π ∈ Sn+q−1 is defined as

Desq(π) := {i | i is aq-descent inπ}.
2. Theq-descent numberof π is defined as desq(π) := #Desq(π).
3. Theq-major indexand theq-reverse major indexof π ∈ Sn+q−1 are defined as

majq(π) :=
∑

i∈Desq(π)

i and rmajq,m(π) :=
∑

i∈Desq(π)

(m − i ),

wherem = n + q − 1.

Example 5.10. Let σ = [7, 8, 6, 5, 2, 9, 4, 1, 3].
Whenq = 2, Del2(σ ) = {3, 4, 5, 7, 8} and Des2(σ ) = Del2(σ ) − 1 = {2, 3, 4, 6, 7}.
Whenq = 3, Del3(σ ) = {4, 5, 7, 8, 9}, hence Des3(σ ) = {3, 4, 6, 7} ∪ {3, 4, 6, 7, 8} =
{3, 4, 6, 7, 8}.

Also, Des4(σ ) = {4, 6, 7, 8}, etc.
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6. Motivating examples

Whenq = 1, the corresponding statistics areclassical. By definition, for everyπ ∈ Sn,
�1(π) = �S(π), Des1(π) = DesS(π), and Del1(π) = DelS(π). It follows that for
everyπ ∈ Sn, des1(π) = desS(π), maj1(π) = majS(π), ramj1,n(π) = rmajSn

(π), and
del1(π) = delS(π). Thedelent statistics, delS, were introduced in [12].

The correspondingA-statistics were also studied in [12]; theseA-statistics correspond
to the caseq = 2 and are restricted to the alternating groups. This is the following
proposition.

Proposition 6.1. For every even permutationπ ∈ Sn+1

(1) �2(π) = �A(π),
(2) Des2(π) = DesA(π), and
(3) Del2(π) = DelA(π).

Proof. (1) follows from [12, Proposition 4.5]. (2) follows fromLemma A.1 in the
Appendix. For (3) see [12, Proposition 7.5]. �

An alternative and more conceptual proof is given below (seeRemark 8.9).

Corollary 6.2. For every even permutationπ ∈ Sn+1, des2(π) = desA(π), maj2(π) =
majA(π), ramj2,n(π) = rmajAn

(π), anddel2(π) = delA(π).

7. The double cosets of Sq ⊆ Sn+q−1

Let Sq be the subgroup ofSn+q−1 generated by{s1, . . . , sq−1}. It is shown here that the
previousq-statistics are invariant on the double cosets ofSq in Sn+q−1.

Proposition 7.1. For any two permutationsπ andσ in Sn+q−1, if π andσ belong to the
samedouble coset of Sq (namely,π ∈ Sqσ Sq), then

(1) Delq(π) = Delq(σ ), hence delq(π) = delq;
(2) Desq(π) = Desq(σ ), hence desq(π) = desq;
(3) invq(π) = invq(σ ) = �q(π) = �q(σ ).

Proof. It suffices to prove thatif there existsτ ∈ Sq, such thatπ = τσ or π = στ , then
equalities 1–3 hold.

(1) Part 1 was proved inRemark 5.7.

(2) Denoteσ = [b1, . . . , bn+q−1] andπ = [b′
1, . . . , b′

n+q−1]. Since Desq(π) = (Des(π)∩
{q, q + 1, . . . , n}) ∪ (Delq(π) − 1), and the same for Desq(σ ), it suffices to prove the
following: let i ≥ q andi ∈ Des(σ ), then either i ∈ Des(π) or i + 1 ∈ Delq(π).

We prove first the case of the right cosets:π = τσ . It is given thatbi > bi+1.

Case1. bi , bi+1 /∈ {1, . . . , q}. Thenbi = b′
i andbi+1 = b′

i+1 and we are done.

Case2. bi /∈ {1, . . . , q} andbi+1 ∈ {1, . . . , q}. Thenbi = b′
i > q while b′

i+1 ∈ {1, . . . , q}
and we are done.
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Case3. bi , bi+1 ∈ {1, . . . , q}. Then at mostq − 1 bj s in σ are left and smaller thanbi+1.
Thus (by 1)i + 1 ∈ Delq(σ ) = Delq(π).

We prove next the case of theleft cosets:π = στ .

By the argument inRemark 5.7, the claim holds if i > q. Therefore examine the case
i = q. If q ∈ Des(π), then we are done. Recall thatbq > bq+1 and assumeq /∈ Des(π)

(i.e.bτ (q) < bq+1). It follows that

#{ j < q + 1 | bτ ( j ) < bq+1} < q,

henceq + 1 ∈ Delq(π), whichcompletes the proof of part 2.

(3) This follows fromRemark 5.7and fromProposition 4.2, sinceinvq(π) = �q(π) and
similarly for σ . �

8. The covering map fq

Motivated byProposition 8.5below, we introduce the mapfq from Sn+q−1 onto Sn,
which sends all the elements in the same double coset ofSq to the same element inSn. The
function fq is applied later to ‘pull-back’ the equi-distribution results from the (classical)
caseq = 1 to thegeneralq-case.

Definition 8.1. Let π ∈ Sn+q−1 and letπ = si1 · · · sir be its canonical presentation, then
define fq: Sn+q−1 → Sn as follows:

fq(π) = fq(si1) · · · fq(sir ),

where fq(s1) = · · · = fq(sq−1) = 1, and fq(sj ) = sj −q+1 if j ≥ q.

Remark 8.2. It is easy to verify that for anyq1, q2, fq1 ◦ fq2 = fq1+q2−1. Thus, for every

naturalq, fq = f q−1
2 .

Proposition 8.3. The map fq is invariant on the double cosets of Sq: Let σ ∈ Sn+q−1 and
π ∈ Sqσ Sq, then fq(σ ) = fq(π).

Proof. It suffices toprove that if σ ∈ Sn+q−1 andτ ∈ Sq then fq(στ) = fq(τσ ) = fq(σ ).
By Remark 8.2, it suffices to prove whenq = 2 andhence whenτ = s1. As usual, let
σ = w1 · · ·wn ∈ Sn+1 be the canonical presentation ofσ . By analysing the two cases
w1 = 1 andw1 = s1, it easily follows thatf2(s1σ) = f2(σ ).

We now show that f2(σs1) = f2(σ ). Theproof in that case follows from the definition
of f2 and by induction onn, by analysing the following cases:

wn = 1;
wn = snsn−1 · · · sk with k ≥ 3;
wn = snsn−1 · · · s2, and
wn = snsn−1 · · · s2s1.

We verify, for example, the casek ≥ 3. Denoteπ = w1 · · · wn−1, soσ = πwn. Now
f2(σs1) = f2(πs1 · wn) = f2(πs1) f2(wn) = (by induction)= f2(π) f2(wn) = f2(σ ).

The proof in the last two cases followssimilarly, and from the fact that
f2(snsn−1 · · · s2) = f2(snsn−1 · · · s2s1) = sn−1 · · · s2s1. �
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Note that fq is not a group homomorphism. For example, letq = 2, g = s2 and
h = s1s2. Then f2(g) = f2(h) = s1 so f2(g) f2(h) = 1, but gh = s1s2s1, hence
f2(gh) = s1. Nevertheless we do have the following

Proposition 8.4. For any permutationπ , fq(π−1) = ( fq(π))−1.

Proof. Again by Remark 8.2, it suffices to prove forq = 2. The proof is based on
Lemma 4.3. Denotes0 := 1, then note that ifsi sj = sj si then alsosi−1sj −1 = sj −1si−1
(the converse is false, ass1s2 �= s2s1).

Let π = si1 · · · sir be the canonical presentation ofπ . By commuting moves,π−1 =
sir · · · si1 = · · · = sp1 · · · spr where the right hand side is the canonical presentation
of π−1. By definition, f2(π−1) = sp1−1 · · · spr −1. Now by the same commuting moves
sir −1 · · · si1−1 = · · · = sp1−1 · · · spr −1 and the left hand side equals( fq(π))−1, which
completes the proof. �
Proposition 8.5. Recall from [12] andSection 3.2 the map f : An+1 → Sn. Then f is the
restriction f = f2|An+1 of f2 to An+1.

Proof. Let π ∈ An+1, and letπ = aε1
i1

· · · aεr
ir

be its A-canonical presentation, where all
ε j = ±1. By definition, f (π) = si1 · · · sir . Replace eachaj in the above presentation
by aj = s1sj +1 then, by commuting moves ‘push’ eachs1 as much as possible to the
left. After some cancellations, ans1 cannot move any more to the left if it is already the
left-most factor, or if it is preceded by ans2 on its left. It follows that

π = bsi1+1 · · · s2s1 · · · s2s1 · · · sir +1 · · ·
whereb ∈ {1, s1}, and this is anS-canonical presentation. Thenf2(π) = si1 · · · sir and the
proof follows. �

Restricting the maps fq to An+q−1 we get more ‘ f -pairs’ (see [12, Section 5])
with corresponding statistics, equi-distributions and generating-functions-identities for the
alternating groups.

The main result here is

Proposition 8.6. For everyπ ∈ Sn+q−1

(1) Delq(π) − q + 1 = Del1( fq(π)), and in particular,delq(π) = del1( fq(π)).
(2) Desq(π) − q + 1 = Des1( fq(π)) and in particular,desq(π) = des1( fq(π)).
(3) invq(π) = inv1( fq(π)) = �q(π) = �1( fq(π)).

HereDelq(π) − r = {i − r | i ∈ Delq(π)} and similarly forDesq(π) − r .

The proof is given below.

Remark 8.7. Recall thatRj = {1, sj , sj sj −1, . . . , sj sj −1 · · · s1}.
(1) Let w = w1 · · · wn+q−2 where all w j ∈ Rj be the canonical presentation of

w ∈ Sn+q−1. Then fq(w) = fq(w1) · · · fq(wn+q−2) is thecanonical presentation of
fq(w). Note that fq(w1) = · · · = fq(wq−1) = 1.

(2) In addition, let alsow′ = w′
1 · · · w′

n+q−2, where alsow′
j ∈ Rj . It is obvious that

fq(w) = fq(w′) if andonly if fq(w j ) = fq(w′
j ) for all j .
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(3) Thedefinition of ak.l.t.r.min in σ = [b1, . . . , bn]—and therefore also the definition
of the set Delq(σ )—applies whenever the integersb1, . . . , bn are distinct.

(4) Let b1, . . . , bn andc1, . . . , cn be two sets of distinct integers, letM be an integer
satisfyingbj , cj < M for all j , let 1≤ k ≤ n and denote

σ = [b1, . . . , bn], σ ∗ = [b1, . . . , bk−1, M, bk, . . . , bn]
and

η = [c1, . . . , cn], η∗ = [c1, . . . , ck−1, M, ck, . . . , cn].
Then it is rather easy to verify that Delq(σ ) = Delq(η) if and only if Delq(σ ∗) =
Delq(η∗).

Lemma 8.8. Letw,w′ ∈ Sn+q−1 satisfy fq(w) = fq(w′), then

1. Delq(w) = Delq(w′).
2. Desq(w) = Desq(w′).

Proof. Since f1(w) = w, we assume thatq ≥ 2.

(1) By thedefinition of fq and byRemark 8.7it suffices to prove the following claim:
Let w j , w

′
j ∈ Rj satisfy fq(w j ) = fq(w′

j ), q ≤ j ≤ n + q − 2, and letw =
wq · · · wn+q−2 andw′ = w′

q · · ·w′
n+q−2. Then Delq(w) = Delq(w′).

The proof is by induction onn ≥ 1. If n = 1, w = w′ = 1.

The induction step:
Denotem = n + q − 1, sow = wq · · · wm−1 andw′ = w′

q · · · w′
m−1, then denoteσ =

wq · · · wm−2 andσ ′ = w′
q · · · w′

m−2. Sinceboth permutations are inSm−1 ⊆ Sm, we have

σ = [b1, . . . , bm−1, m] and σ ′ = [c1, . . . , cm−1, m].
By induction, Delq(σ ) = Delq(σ ′). If wm−1 = 1 then alsow′

m−1 = 1 and we are done.
Thus, assume both are�= 1. Recall that fq(wm−1) = fq(w′

m−1) and letwm−1 =
sm−1 · · · sk andw′

m−1 = sm−1 · · · sk′ . If k > q, it follows thatwm−1 = w′
m−1 and we

are done. So letk, k′ ≤ q. By comparing both cases with the casek = q we may assume
thatk = q andk′ ≤ q, hencew′

m−1 = wm−1sq−1 · · · sk′ .
Compare firstσwm−1 with σ ′wm−1:

σwm−1 = [b1, . . . , bq−1, m, bq, . . . , bm−1],
σ ′wm−1 = [c1, . . . , cq−1, m, cq, . . . , cm−1],

and by induction andRemark 8.7(4), Delq(σwm−1) = Delq(σ ′wm−1). Compare now
σ ′wm−1 with σ ′w′

m−1 = (σ ′wm−1)sq−1 · · · sk′ :

σ ′wm−1 = [c1, . . . . . . . . . . . . . . . , cq−1, m, cq, . . . , cm−1] and

σ ′w′
m−1 = [c1, . . . , ck′−1, m, ck′ , . . . , cq−1, . . . . . . , cm−1].

A simple argument now shows thatq < i is aq−1.l.t.r.min Delq(σ ′wm−1) =
Delq(σ ′w′

m−1) and the proof of part 1 is complete.

(2) The proof is similar to that of part 1. Denotem= n + q − 1, thenwrite w = w1 · · ·
wm−1 = σwm−1 where σ = w1 · · · wm−2, and similarly w′ = w′

1 · · · w′
m−1 = σ ′w′

n−1.
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We assume thatfq(w j ) = fq(w′
j ) for all j . Thus fq(σ ) = fq(σ ′) and by induction,

Desq(σ ) = Desq(σ ′). By an argument similar to that in theproof of part 1, it follows
that Desq(σwm−1) = Desq(σ ′wm−1) and it remains to show that Desq(σ ′wm−1) =
Desq(σ ′w′

m−1). Again asin the proof of part 1, we may assume thatwm−1 = sm−1 · · · sq

andw′
m−1 = sm−1 · · · st wheret < q. We prove the caset = q − 1, the other cases being

proved similarly.
Write σ ′ = [a1, . . . , am−1, m]. Now σ ′w′

m−1 = σ ′wm−1sq−1, hence

σ ′wm−1 = [a1, . . . , aq−2, aq−1, m, aq, . . . , am−1],
σ ′w′

m−1 = [a1, . . . , aq−2, m, aq−1, aq, . . . , am−1].
Clearly, q ∈ Des(σ ′wm−1) (thereforeq ∈ Desq(σ ′wm−1)), but it is possible thatq /∈
Des(σ ′w′

m−1). However, at most all the q − 1 integersa1, . . . , aq−1 are smaller thanaq

(butm > aq), henceq + 1 ∈ Delq(σ ′w′
m−1), whichimplies thatq ∈ Desq(σ ′w′

m−1).
For all other indicesi �= q it is easy to check thati ∈ Desq(σ ′wm−1) if and only if

i ∈ Desq(σ ′w′
m−1), and the proof is complete. �

The Proof of Proposition 8.6. (1) Let π ∈ Sn+q−1 and letπ ′ denote the permutation
obtained fromπ by erasing—in the canonical presentation ofπ—all the appearances of
the Coxetergeneratorss1, . . . , sq−1. Clearly, fq(π) = fq(π ′), hence suffices to prove
that

(a) Delq(π) = Delq(π ′), and

(b) Delq(π ′) − q + 1 = Del( fq(π ′)), i.e. Delq(π ′) = Del( fq(π ′)) + q − 1.

Let π = w1 · · · wq−1wq · · ·wm−1(m = n + q − 1) be the canonical presentation of
π : w j ∈ Rj . Denoteτ = w1 · · ·wq−1 andσ = wq · · · wm−1, thenboth are given in their
canonical presentations. Clearly,f (τ ) = 1 andπ ′ = σ ′ = w′

q · · · w′
m−1, where for each

j w′
j is obtained fromw j by erasing all the appearances ofs1, . . . , sq−1, and therefore

fq(w j ) = fq(w′
j ). By Lemma 8.8, Delq(σ ) = Delq(σ ′) = Delq(π ′). Sinceπ = τσ and

τ ∈ Sq, by Remark 5.7Delq(π) = Delq(σ )—and (a) is proved.
Part(b) follows from the following fact:

Let π ′ = si1 · · · sir be the canonical presentation of the aboveπ ′ (therefore alli j ≥ q),
then fq(π ′) = si1−q+1 · · · sir −q+1. If fq(π ′) = [a1, . . . , an], it follows that π ′ =
[1, . . . , q − 1, a1 + q − 1, . . . , an + q − 1]. If 2 ≤ i , it then follows thati is a l.t.r.min of
fq(π ′) if andonly if i + q − 1 isaq−1.l.t.r.min ofπ ′, whichproves (b). �
(2) Recall that

Desq(π) = (Des(π) ∩ {q, q + 1, . . . , n}) ∪ (Delq(π) − 1).

Special Case: Assumeπ does not involve any ofs1, . . . , sq−1. As above, if fq(π) =
[a1, . . . , an] thenπ = [1, . . . , q − 1, a1 + q − 1, . . . , an + q − 1], hence

Des(π) ∩ {q, q + 1, . . . , n + q − 1} = Des( fq(π)) + q − 1.

By part 1

Desq(π) = ([Des( fq(π))] ∪ [Del( fq(π)) − 1]) + q − 1.
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Since for anyσ ∈ SnDes(σ ) ⊇ Del(σ ) − 1, it follows that the right hand side equals
Des( fq(π)) + q − 1, and this completes the proof of this case.

The general case. Let π ∈ Sn+q−1 be arbitrary. Letπ ′ be the permutation obtained
from π by deleting all the appearances ofs1, . . . , sq−1 from its canonical presentation.
Then fq(π) = fq(π ′) and the proof easily follows from the above special case and from
Lemma 8.8(2).

(3) By Proposition 4.2, invq(π) = �q(π). By the definitions of�q and fq, �q(π) =
�( fq(π)), and finally, �(σ ) = inv(σ ) for any permutationσ . �

Remark 8.9. Proposition 6.1 now follows from Proposition 8.6, combined with
Propositions 3.7and8.5.

Lemma 8.10. For everyπ ∈ Sn

# f −1
q (π) = q! · qdel1(π) = (q − 1)! · qdel1(π)+1.

Moreover, let gq: An+q−1 → Sn be the restriction gq = fq |An+q−1 of fq to An+q−1.
Then

#g−1
q (π) = 1

2# f −1
q (π).

Proof. Denotem = n + q − 1, so fq: Sm → Sn. Consider the canonical presentation of
π ∈ Sn and write it asπ = π(n−1) · vn−1, whereπ(n−1) ∈ Sn−1 andvn−1 ∈ Rn−1 =
{1, sn−1, sn−1sn−2, . . . , sn−1sn−2 · · · s1}. Thus

# f −1
q (π) = # f −1

q (π(n−1)) · # f −1
q (vn−1) = q! · qdel1(π

(n−1))# f −1
q (vn−1)

(by induction). If del1(vn−1) = 0 then #f −1
q (vn−1) = 1. If del1(vn−1) = 1 then

# f −1
q (vn−1) = q, sincein that casevn−1 = sn−1 · · · s1 and

f −1
q (vn−1) = {wm−1, wm−1sq−1, . . . , wm−1sq−1 · · · s1},

wherewm−1 = sm−1sm−2 · · · sq. Theproof now follows.
The argument forgq is similar. The factor 1/2 comesfrom the fact that #f −1

q (1) = #Sq

while #g−1
q (1) = #Aq. �

Following [12], we introduce

Definition 8.11. Let m1 andmq be two statistics on the symmetric groups. We say that
(m1, mq) is an fq-pair if for all n andπ ∈ Sn+q−1, mq(π) = m1( fq(π)).

As a corollary of Proposition 8.6andRemark11.1, we have

Corollary 8.12. The followingare fq-pairs:

(inv1, invq), (�1, �q), (del1, delq), (des1, desq), and(rmaj1,n, rmajq,n+q−1).

The same argument as in the proof of Proposition 5.6 in [12], together with Lemma 8.10,
now proves
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Proposition 8.13. Let (m1, mq) be an fq-pair of statistics on the symmetric groups. Then∑
π∈Sn+q−1

t
mq(π)

1 t
delq(π)

2 = q!
∑
σ∈Sn

tm1(σ )
1 tdel1(σ )

2 .

Restricting fq to An+q−1 weobtain similarly, that∑
π∈An+q−1

t
mq(π)

1 t
delq(π)

2 = 1
2q!

∑
σ∈Sn

tm1(σ )
1 tdel1(σ )

2 .

Remark 8.14. As in [12], Proposition 8.13allows us to lift equi-distribution theorems
from Sn to Sn+q−1, as well as toAn+q−1. This is demonstrated inTheorem 11.3. We leave
the formulation and the proof of the correspondingAn+q−1 statement for the reader.

9. Dashed patterns

Dashed patterns in permutations were introduced in [2]. For example, the permutation
σ contains the pattern(1−32) if σ = [. . . , a, . . . , c, b, . . .] for somea < b < c; if no such
a, b, c exist thenσ is said to avoid(1−32). In [3] the author shows connections between the
number of permutations avoiding(1− 32) and various combinatorial objects, like the Bell
and the Stirling numbers, as well as the number of left-to-right-minima in permutations.
In this and in the next sections we obtain theq-analogues for these connections and
results.

In Section 5.2it was observed that, always, Delq(π) − 1 ⊆ Desq(π). It is proved
in Proposition 9.3that equality holds exactly for permutations avoiding a certain set of
dashed-patterns.

Definition 9.1. 1. Givenq, denote by

Pat(q) = {(σ1 − σ2 − · · · − σq − (q + 2)(q + 1)) | σ ∈ Sq}
the set with theseq! dashed patterns.

For example, Pat(2) = {(1 − 2 − 43), (2 − 1 − 43)}.
2. Denote by Avoidq(m), m = n + q − 1, the set of permutations inSm avoiding all

the q! patterns in Pat(q), and lethq(m) denote the number of the permutations in
Sm avoiding Pat(q). Thushq(m) = #Avoidq(m) is the number of the permutations
in Sn+q−1 avoiding Pat(q). Note that hq(m) = n! if m ≤ q + 1. As usual, define
hq(0) = 1.

Connections betweenhq(n) and theq-Bell andq-Stirling numbers are given inSection 10.

Remark 9.2. A permutationπ ∈ Sn+q−1 does satisfy one of the patterns in Pat(q) if and
only if there exists a subsequence

1 ≤ i1 < i2 < · · · < i q+1 < n + q − 1,

suchthatπ(i q+1) > π(i q+1 + 1) and for every 1≤ j ≤ q, π(i j ) < π(i q+1 + 1). In such
a case,i q+1 + 1 (namely,π(i q+1 + 1)) is not anaq−1.l.t.r.min inπ .
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Proposition 9.3. A permutationπ ∈ Sn+q−1 avoidsPat(q) exactly whenDelq(π) − 1 =
Desq(π):

Avoidq(n + q − 1) = {π ∈ Sn+q−1|Delq(π) − 1 = Desq(π)}.
In particular,

hq(n + q − 1) = #{π ∈ Sn+q−1|Delq(π) − 1 = Desq(π)}.
Proof. (1) Recall fromSection 5.2that, always, Delq(π) − 1 ⊆ Desq(π). Let π =
[b1, . . . , bn+q−1] ∈ Sn+q−1 satisfy Delq(π) − 1 = Desq(π), which implies that Des(π) ∩
{q, . . . , n + q − 1} ⊆ Delq(π) − 1, and show thatπ avoids Pat(q). If not, byRemark 9.2
we obtain a descent inπ at i q+1, while i q+1 + 1 is not aq−1.l.t.r.min in π ; thusi q+1 is in
Des(π) ∩ {q, . . . , n + q − 1} but not in Delq(π) − 1, a contradiction.

(2) Denoteπ = [b1, . . . , bn+q−1]. Assume now that π ∈ Avoidq(n), let k ∈
Des(π) ∩ {q, . . . , n + q − 1} (so bk > bk+1) and show thatk + 1 ∈ Delq(π), that is,
k + 1 (namelybk+1) is aq−1.l.t.r.min inπ . If not, there existq (or more)bj ’s in π , smaller
than and left ofbk+1—hence also left ofbk. Togetherwith bk > bk+1 this shows that
π /∈ Avoidq(n + q − 1), a contradiction. �
Corollary 9.4. The covering map fq mapsAvoidq(Sn+q−1) to Avoid1(Sn):

fq: Avoidq(Sn+q−1) → Avoid1(Sn).

Similarly,

f2 : Avoidq(Sn+q−1) → Avoidq−1(Sn+q−2).

Proof. This follows straightforwardly fromPropositions 8.6and9.3. �

10. q-Bell and q-Stirling numbers

10.1. The q-Bell numbers

Recall thatS(n, k) are the Stirling numbers of the second kind, i.e. the numbers ofk-
partitions of the set[n] = {1, . . . , n}. Recall also that the Bell numberb(n) is the total
number of thepartitions of [n]: b(n) = ∑

k S(n, k).

Definition 10.1. Define theq-Bell numbers bq(n) by

bq(n) =
∑

k

qkS(n, k).

Remark 10.2. Let q ≥ 1 be an integer and consider partitions of[n] into k subsets, where
each subset is coloured by one ofq colours. The number of suchq-colouredk-partitions is
obviouslyqkS(n, k). It follows that the total number of suchq-coloured partitions of[n] is
thenth q-Bell numberbq(n).

Proposition 10.8below shows that

#{σ ∈ Sn+q−1 | Delq(σ ) − 1 = Desq(σ ) and delq(σ ) = k − 1}
= (q − 1)!qkS(n, k),
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and therefore

(q − 1)!bq(n) = #{π ∈ Sn+q−1|Delq(π) − 1 = Desq(π)}.
Theq-Bell numbers are studied first.

Whenq = 1, by considering the subset in ak-partition of [n] which containsn, one
easily deduces the well-known recurrence relation

b1(n) =
∑

k

(
n − 1

k

)
b1(n − k − 1).

In the generalq colours case, apply the same argument, now taking into account that each
subset—and in particular the one containingn—can be coloured byq colours. This proves:

Lemma 10.3. For each integer q≥ 1 we have the following recurrence relation

bq(n) = q
∑

k

(
n − 1

k

)
bq(n − k − 1).

Remark 10.4. 1. Let Bq(x) = ∑∞
n=0 bq(n) xn

n! denote the exponential generating
function of {bq(n)}. As in page 42 in [15], Lemma 10.3implies that B′(x) =
qex Bq(x). Togetherwith B(0) = 1 (since, by definition,bq(0) = 1), this implies
that

Bq(x) = exp(qex − q).

2. The classical formula

b1(n) = 1

e

∞∑
r=0

r n

r !
generalizes as follows:

bq(n) = 1

eq

∞∑
r=0

qr r n

r ! .

The proof follows, essentially unchanged, the argument on page 21 in [15].

10.2. Connections with pattern-avoiding permutations

Recall that Pat(q) = {(σ1 − σ2 − · · · − σq − (q + 2)(q + 1)) | σ ∈ Sq} and thathq(n)

denotes the number of the permutations inSn avoiding all theseq! patterns in Pat(q).

Proposition 10.5. The q-Bell numbers bq(n) and the numbers hq(n + q − 1) of
permutations in Sn+q−1 that avoidPat(q), satisfy

hq(n + q − 1) = (q − 1)! · bq(n).

ByProposition9.3 this implies that

(q − 1)!bq(n) = #{π ∈ Sn+q−1 | Delq(π) − 1 = Desq(π)}.
The proof requires the following recurrence.
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Lemma 10.6. If n ≥ q then

hq(n) = q
n−q∑
k=0

(
n − q

k

)
hq(n − k − 1).

Proof. The proof is by a rather standard argument.

Let K ⊆ {q + 1, q + 2, . . . , n} be a subset, with|K | = k, hence 0≤ k ≤ n − q. Let κ

bethe word obtained by writing the numbers ofK in an increasing order. Note that there
are

(n−q
k

)
suchK ’s—hence

(n−q
k

)
suchκ ’s. Let 1 ≤ i ≤ q and letσ (i ) be a permutation

of the set{1, . . . , i − 1, i + 1, . . . , n}\K , which avoids Pat(q). By definition, since there
aren − 1 − k elements in that set, there arehq(n − k − 1) suchσ (i )’s. Now construct (the
word) η(i ) = σ (i )i κ , thenη(i ) ∈ Sn and it avoids Pat(q) since there is no descent in the
parti κ of η(i ) (seeRemark 9.2). For each 1≤ i ≤ q, thenumber ofη(i )’s thus constructed
is

∑n−q
k=0

(n−q
k

)
hq(n − k − 1), hence

hq(n) ≤ q
n−q∑
k=0

(
n − q

k

)
hq(n − k − 1).

Conversely, assumeη ∈ Sn avoids Pat(q). Among 1, . . . , q, let i appear the rightmost
in η and write the wordη asη = σ i κ , then none of 1, . . . , q appears inκ . Thenumbers
in κ are increasing since otherwise, if there is a descent inκ , Remark 9.2would imply that
η does satisfy one of the dashed patterns in Pat(q), a contradiction. Sinceη avoids Pat(q),
obviously the partσ of η also avoids Pat(q). It follows thatη is the above permutation
η = η(i ). This proves thereverse inequality and completes the proof.�
The proof of Proposition 10.5 now follows by induction onn ≥ 0. The casen = 0 is
clear. Assumen ≥ 1, then byLemma 10.6

hq(n + q − 1) = q
n−1∑
k=0

(
n − 1

k

)
hq(n − 1 − k + q − 1)

(by induction)

= q
n−1∑
k=0

(
n − 1

k

)
· (q − 1)! · bq(n − k − 1)

= (q − 1)! ·
[

q
n−1∑
k=0

(
n − 1

k

)
bq(n − k − 1)

]

(by Lemma 10.3)

= (q − 1)! · bq(n).

This proves the first equation of the proposition. Together withDefinition 9.1 and
Proposition 9.3, this implies thathq(n+q−1) = #{π ∈ Sn+q−1 | Delq(π)−1 = Desq(π)},
hence

(q − 1)!bq(n) = #{π ∈ Sn+q−1 | Delq(π) − 1 = Desq(π)}. �
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In the caseq = 1,

b1(n) = b(n) = #Avoid1(n) = #{σ ∈ Sn | Del1(σ ) − 1 = Des1(σ )},
which appears in [3].

Let

Hq(x) =
∞∑

n=0

hq(n + q − 1)
xn

n!
be the exponential generating function of thehq(n + q − 1)’s. By Remark10.4(1) and
Proposition 10.5we have

Corollary 10.7.

Hq(x) = (q − 1)! · exp(qex − q).

10.3. Stirling numbers of the second kind

The following refinement of the second equation ofProposition 10.5is proved in this
subsection.

Proposition 10.8.

#{σ ∈ Sn+q−1 | Delq(σ ) − 1 = Desq(σ ) and delq(σ ) = k − 1}
= (q − 1)!qkS(n, k).

Deduce that ∑
{π∈Sn|Del1(π)−1=Des1(π)}

qdel1(π) = 1

q
· bq(n),

and more generally,

∑
{σ∈Sn+q−1|Delq(σ )−1=Desq(σ )}

qdelq(σ ) = (q − 1)!
q

·
∑

k

q2kS(n, k)

= (q − 1)!
q

· bq2(n).

Proof. We firstprove the caseq = 1 namely, that

#{σ ∈ Sn | Del1(σ ) − 1 = Des1(σ ) and del1(σ ) = k − 1} = S(n, k).

Recall thatS(n, k) is the number of partitions of[n] into k non-empty subsets. Given such a
partition D1 ∪ · · · ∪ Dk = [n], assume w.l.o.g. that the numbers in eachDi are increasing:
Di is {di,1 < di,2 < · · ·}, and also, the minimal elementsd1,1, d2,1, . . . are decreasing:
d1,1 > d2,1 > · · · > dk,1. Corresponding to that partition we construct the permutation
σ = [D1, D2, . . .], namely σ = [d1,1, d1,2, . . . , d2,1, d2,2, . . . , dk,1, dk,2 . . .].
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Now Del1(σ ), the l.t.r.min of σ , are exactly at the (k − 1) positions of
d2,1, d3,1, . . . , dk,1, andobviously the descents occur at Del1(σ ) − 1. This establishes an
injection of the set of thek partitions of [n] into the above set, which implies that

card{σ ∈ Sn | Del1(σ ) − 1 = Des1(σ ) and del1(σ ) = k − 1} ≥ S(n, k).

Since the sum on allk’s of both sides equalsb(n), this implies the caseq = 1.
The generalq case follows fromProposition 8.6, andfrom Lemma 8.10:

Let π ∈ Sn. By Proposition 8.6,

Del1(π) − 1 = Des1(π) if and only if Delq( f −1
q (π)) − 1 = Desq( f −1

q (π)),

and also, del1(π) = k − 1 if andonly if delq( f −1
q (π)) = k − 1. DenoteDq(n, k) = {σ ∈

Sn+q−1 | Delq(σ ) − 1 = Desq(σ ) and delq(σ ) = k − 1}, so thatD1(n, k) = {π ∈ Sn |
Delq(π) − 1 = Des1(π) and del1(π) = k − 1}. It follows that

Dq(n, k) =
⋃

π∈D1(n,k)

f −1
q (π),

a disjoint union. ByLemma 8.10, # f −1
q (π) = (q − 1)! · qk for all π ∈ D1(n, k), and the

proof now follows easily from the caseq = 1. �

10.4. Stirling numbers of the first kind

Let c(n, k) be the signless Stirling numbers of the first kind.

Proposition 10.9. c(n, k) = #{π ∈ Sn | delS(π) = del1(π) = k − 1}, namely, c(n, k)

equals the number of permutations in Sn with k − 1 l.t.r.min.

For the proof, see Proposition 5.8 in [12].
The following is aq-analogue ofProposition 10.9.

Proposition 10.10.

#{π ∈ Sn+q−1 | delq(π) = k − 1} = cq(n, k),

where cq(n, k) = qk(q − 1)!c(n, k).

Proof. The proof is essentially identical to the proof ofProposition 10.8, with the set
Dq(n, k) being replaced here by the setHq(n, k) = {π ∈ Sn+q−1 | delq(π) = k − 1}.
ThenH1(n, k) = {π ∈ Sn | del1(π) = k−1}, and by Proposition 5.8 in [12], #H1(n, k) =
c(n, k), thesignless Stirling number of the first kind. Theproof now follows. �

11. Equi-distribution

11.1. MacMahon type theorems for q-statistics

Recall the definition of rmajq,n+q−1 from Definition 5.9.
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Remark 11.1. Note that forπ ∈ Sn+q−1,

rmajq,n+q−1(π) = rmaj1,n( fq(π)) = rmajSn
( fq(π)).

This follows since byProposition 8.6(2), i ∈ Desq(π) if and only if i − q + 1 ∈
Des1( fq(π)).

The following is aq-analogue of MacMahon’s equi-distribution theorem.

Theorem 11.2. For every positive integer n and q

∑
π∈Sn+q−1

t rmajq,n+q−1(π) =
∑

π∈Sn+q−1

t invq(π)

= q!(1 + tq)(1 + t + t2q) · · · (1 + t + · · · + tn−2 + tn−1q).

This theorem is obtained from the next one by substitutingt2 = 1.

Theorem 11.3. For every positive integer n and q

∑
π∈Sn+q−1

t
rmajq,n+q−1(π)

1 t
delq(π)

2 =
∑

π∈Sn+q−1

t
invq(π)

1 t
delq(π)

2

= q!(1 + t1t2q)(1 + t1 + t2
1 t2q) · · ·

× (1 + t1 + · · · + tn−2
1 + tn−1

1 t2q).

Proof. By Proposition 8.6and Remark11.1, (rmajSn
, rmajq,n+q−1) and (inv, invq) are

fq-pairs. The proof now follows fromProposition 8.13andTheorem 3.3. �

The following is aq-analogue of Foata–Sch¨utzenberger’s equi-distribution theorem [7,
Theorem 1].

Theorem 11.4. For every positive integer n and q and every subset B⊆ [q, n + q − 1]∑
{π∈Sn+q−1|Desq(π−1)=B}

t invq(π) =
∑

{π∈Sn+q−1|Desq(π−1)=B}
t rmajq,n+q−1(π).

This theorem is obtained from the next one by substitutingB2 = [q, n + q − 1].
Theorem 11.5. For every positive integer n and q and every subsets B1 ⊆ [q, n + q − 1]
and B2 ⊆ [q, n + q − 1]

∑
{π∈Sn+q−1|Desq(π−1)=B1,Delq(π−1)=B2}

t invq(π)

=
∑

{π∈Sn+q−1|Desq(π−1)=B1,Delq(π−1)=B2}
t rmajq,n+q−1(π).
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Proof. By Proposition 8.6and Remark11.1, it suffices to prove that for every subset
B1 ⊆ [n − 1] andB2 ⊆ [n − 1]∑

{π∈Sn+q−1|Des1( fq(π−1))=B1,Del1( fq(π−1))=B2}
t inv1( fq(π))

=
∑

{π∈Sn+q−1|Des1( fq(π−1))=B1,Del1( fq(π−1))=B2}
t rmaj1,n( fq(π)).

By Proposition 8.4fq(π−1) = fq(π)−1. Thus, denoting σ = fq(π), it suffices to prove
that ∑

{σ∈Sn|Des1(σ−1)=B1,Del1(σ−1)=B2}
# f −1

q (σ ) · t inv1(σ )

=
∑

{σ∈Sn|Des1(σ−1)=B1,Del1(σ−1)=B2}
# f −1

q (σ ) · t rmaj1,n(σ ).

By Propositions 5.2and5.5, for everyσ ∈ Sn with Del1(σ−1) = B2, del1(σ ) = #B2.
Thus, byLemma 8.10, # f −1

q (σ ) = (q − 1)! · q#B2+1 for all permutations in the sums.
Hence, the theorem is reduced to

(q − 1)! · q#B2+1 ·
∑

{σ∈Sn|Des1(σ−1)=B1,Del1(σ−1)=B2}
t inv1(σ )

= (q − 1)! · q#B2+1 ·
∑

{σ∈Sn|Des1(σ−1)=B1,Del1(σ−1)=B2}
t rmaj1,n(σ ).

Theorem 3.2completes the proof. �

Theorem 11.4impliesq-analogues of two classical identities, due to [7, 14].

Corollary 11.6. For every positive integer n and q

(1)
∑

π∈Sn+q−1
t
invq(π)

1 t
desq(π−1)

2 = ∑
π∈Sn+q−1

t
rmajq,n+q−1(π)

1 t
desq(π−1)

2 , and

(2)
∑

π∈Sn+q−1
t
invq(π)

1 t
rmajq,n+q−1(π−1)

2 = ∑
π∈Sn+q−1

t
rmajq,n+q−1(π)

1 t
rmajq,n+q−1(π−1)

2 .

11.2. Equi-distribution on Avoidq(n)

The main theorem on equi-distribution on permutations avoiding patterns is the
following.

Theorem 11.7. For every positive integer n and q and every subset B⊆ [q, . . . , n+q−2]∑
{π−1∈Avoidq(n+q−1)|Desq(π−1)=B}

t rmajq,n+q−1(π)

=
∑

{π−1∈Avoidq(n+q−1)|Desq(π−1)=B}
t invq(π)
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Proof. SubstitutingB1 = B2 − 1 = B in Theorem 11.5we obtain, for every subset
B ⊆ [q, n + q − 1] ∑

{π∈Sn+q−1|Desq(π−1)=Delq(π−1)−1=B}
t invq(π)

=
∑

{π∈Sn+q−1|Desq(π−1)=Delq(π−1)−1=B}
t rmajq,n+q−1(π).

By Proposition 9.3

{π ∈ Sn+q−1|Desq(π−1) = Delq(π−1) − 1 = B}
= {π−1 ∈ Avoidq(n + q − 1)|Desq(π−1) = B}.

This completes the proof.�
Theorem 11.7implies

Corollary 11.8. For every positive integer n and q∑
π−1∈Avoidq(n+q−1)

t
rmajq,n+q−1(π)

1 t
desq(π)

2 =
∑

π−1∈Avoidq(n+q−1)

t
invq(π)

1 t
desq(π)

2

The following is an extension of MacMahon’s theorem to permutations avoiding
patterns.

Theorem 11.9. For every positive integer n and q∑
π−1∈Avoidq(n+q−1)

t rmajq,n+q−1(π) =
∑

π−1∈Avoidq(n+q−1)

t invq(π)

Proof. Substitutet2 = 1 in Corollary 11.8. �
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Appendix. Des2 = DesA: the proof

Lemma A.1. Letw = [b1, . . . , bn+1] ∈ An+1. Let1 ≤ i ≤ n − 1, then i ∈ DesA(w) if
and only if one of the following two conditions hold.

1. bi+1 > bi+2, or
2. bi+1 < bi+2 and b1, b2, . . . , bi > bi+2.

In particular, 1 ∈ DesA(w) if and only if b1 > b3 (and/) or b2 > b3.
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Proof. The basic tool is the formula

�A(w) = �S(w) − delS(w).

Assume first that 2≤ i ≤ n − 1, thenv = wai = [b2, b1, . . . , bi+2, bi+1, . . .]. Now
compare�S(w) with �S(v), anddelS(w) with delS(v), then apply the above formula, and
the proof follows. Here are the details.

The case2 ≤ i ≤ n − 1 andbi+1 > bi+2.

If b1 < b2 then�S(w) = �S(v). Now, del(σ ) is the number of l.t.r.min inσ . Interchanging
b1 < b2 in w adds one such l.t.r.min, while interchangingbi+1 > bi+2 reduces that (delS)
number by one, or leaves it unchanged. In particular, delS(w) ≤ delS(v). It follows that
�A(w) = �S(w) − delS(w) ≥ �S(v) − delS(v) = �A(v), i.e. �A(wai ) ≤ �A(w), hence
i ∈ DesA(w).

Similarly for the other cases. Ifb1 > b2 (and bi+1 > bi+2), verify that �S(w) =
�S(v) + 2, while delS(w) ≤ delS(v) + 2, and againthis implies thati ∈ DesA(w). This
completes the proof of 2.a.

The case2 ≤ i ≤ n − 1 andbi+1 < bi+2.

First, assumeb1 < b2, then�S(v) = �S(w) + 2. If b1, b2, . . . , bi > bi+2 then also
delS(v) = delS(w)+2, hence�A(wai ) = �A(v) = �A(w), andi ∈ DesA(w). If bj < bi+2
for some 1≤ j ≤ i then delS(v) = delS(w) + 1 and it follows thati /∈ DesA(w).

If b1 > b2 then�S(v) = �S(w). Assuming thatb1, b2, . . . , bi > bi+2, deduce that
also delS(v) = delS(w), hence i ∈ DesA(w). If bj < bi+2 for some 1≤ j ≤ i then
delS(v) = delS(w) − 1, so�A(wai ) = �A(v) = �A(w) − 1 andi /∈ DesA(w).

Finally assume thati = 1, thenv = wa1 = ws1s2 = [b2, b3, b1, b4, b5, . . .]. Obviously,
�S(w) − �S(v) depends only on the order relations amongb1, b2, b3, and similarly for
delS(w) − delS(v). We can therefore assume that{b1, b2, b3} = {1, 2, 3}, then check the
3! = 6 possible cases ofw = [b1, b2, b3, . . .]. For example, assumew = [1, 3, 2, . . .],
thenwa1 = [3, 2, 1, . . .] = v, so�S(v) = �S(w) + 2 while delS(v) = delS(w) + 2, hence
1 ∈ DesA(w).

Similarly for the remaining five cases.�
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