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The partial difference equation 

r(i,j)=r(i,j-l)+r(i-l,j)+r(i-l,j+l), 

where r(i, j) are defined for integer numbers i and j, i>O, by the conditions 
r(O,j)=l for alljand r(i, -l)=O for i>l is solved. For i>O and j>O a com- 
binatorial meaning of numbers r(i,j) is given. The solution is obtained by the 
modern classical umbra1 calculus. lf3 1990 Academic Press. Inc 

1. INTRODUCTION 

PROBLEM. Let S= {(i,j): i,j=O, 1, 2, . . . . }. Define in the set S the 
relation p by 

(i,j)p(p,q) ifandonIyif(p=i,q=j-l)or (p=i-l,q=j)or 
(p=i-l,q=j+l). 

The point (i, j) E S is said to be connected with the origin (0,O) E S if and 
only if there exist points (iI, jl), (iz,jz), . . . . (i,,j,) in S, where 
(i,, j,) ~(0, 0), (iz, j,) p(i,, jl), . . . . (i, j) p(i,, j,). Our aim is to compute the 
number r(i, j) of different connections of the point (i, j) E S with the origin 
(0,O). If we put it in the language of the graph theory, our problem is to 
determine the number of linearly connected graphs with vertices in the set 
S and with edges oriented parallel to the vectors (LO), (0, l), and (1, - 1). 
Figure 1 shows one of the possible connections of the point (3,2) with the 
origin. 

It is clear that r(O,j) = 1 for j2 1. Deline r(0, 0) = 1. By an easy com- 
binatorial argument we get the partial difference equation 

r(i,j)=r(i,j-l)+r(i-l,j)+r(i-l,j+l), i> 1,jZO; 
(1) 

r(O,j)=l,j>O; 44 -l)=O, i>O. 

A simple computation gives us the numbers r(i, j) in Table I. 
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FIGURE 1 

In the sequel we shall derive the formula for our numbers r(i, j), the 
generating functions for the rows r( ., j), and the columns r(i, . ). 

The umbra1 calculus. We repeat the basic facts following Niven and 
Roman (see [ 1,2]). Let F denote the algebra of formal power series in the 
variable t over the field @. An element in F has the form 

f(t)= f aktk, a,EC. (2) 
k=O 

The addition and multiplication are defined formally by 

f akfk+ 5 bktk= fj (ak+bk)tk 
k=O k=O k=O 

(~oaktk)(~ob*f*)=~o(~oajbk-j) tk. 

TABLE I 

The Numbers r(i, j) for i> 0, ja 0 

I 1 16 160 . . . 

6 1 14 126 938 . . 

5 1 12 96 652 . 
4 1 10 70 430 ..’ 

3 1 8 48 264 1408 
2 1 6 30 146 714 3534 ..’ 

1 1 4 16 68 304 1412 . . . 
0 1 2 6 22 90 394 1806 
i 

i 0 1 2 3 4 5 6 



APPLJCATJON OF LJMBRAL CALCULUS 3 

Two formal power series are equal if and only if uk = bk for all k. Let F, 
denote the set of all formal power series (2) where a,, # 0 and F, the set of 
all formal power series (2) where a, = 0 and a, # 0. Tff(t) E F, then f(t) is 
invertible, and the formal inverse will be denoted byf(t)-‘. The coefficients 
of the inverse can be computed solving a simple triangular system of equa- 
tions. If f belong to the set F,, then a compositional inverse f(t) exists, 
such that f( f (t )) = t. 

The formal derivative of the series (2) is defined as 

D,f(t)= f ka,tkdl. 
k=l 

Let P denote the algebra of polynomials in the single variable x over the 
field C. Let P* be the vector space of all linear functionals on P. The action 
of the functional L E P* on the polynomial p(x) E P will be denoted by 

<LIP(X)). 

Each formal power series 

(3) 

defines a linear functional on P if we set 

(f(t)lx"> =a, for na0. 

For any linear functional L E P* we have a formal power series 

fL(l)Z f y&k 
k=Q ’ 

which has the form (3) and satisfies the relation 

(fdt)lx">= (Llx") for n>O. 

The map L + fL(t) is a vector space isomorphism from P* to F. 
In the sequel we shall need the formulas 

(tkl P(X)> =P’k’w~ kaO,p(x)eP (4) 

(f(t)g(t)lx")= f: 5 <f(t)l"k)<dt)lXn-k) (5) 
k=O 0 

<f(t)lv(x)) = (~,f(t)ldx)>. (6) 
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Any power series defines a linear operator on P. Iff(t) has the form (3) 
then we define 

for n>O. 

Especially, for f(t) = tk we get 

tkxn = k! 
n 0 n-k 

kX ’ 

the kth derivative of the power x”. Using the relation (5) we obtain 

(f(t) g(t)1 P(X)> = (s(t)1 f(t)dx)). (8) 

Sheffer sequences. For each series f(t) E-F, and each series g(t) E F, 
there exists a unique sequence of polynomials s,(x) such that 

where 6,k denotes the Kronecker delta function and the polynomial s,(x) 
has degree n. We say that the sequence s,(x) is Sheffeer for the pair 
(g(t), f (t)). If s,(x) is Sheffer for the pair (1, f(t)) then s,(x) is associated 
to f(t). The Sheffer sequence s,(x) of the pair (g(t), f (t)) admits the 
generating function 

g(f(t))-’ eyAr)=~~o$$ tk, (9) 

where y E C. 
From (8) it follows that the sequence s,(x) is Sheffer for (g(t),f(t)) if 

and only if the sequence g(t) s,(x) is associated to f(t). 
A sequence s,(x) is Sheffer for (g(t), f (t)) for some g(t) E F. if and only 

if the relation 

f(t) s,(x) = ns,- ,(x) (10) 

holds for all n 2 0. 
The sequence s,(x) is associated to f(t) if and only if (to) s,(x)) = 6,,, 

and f(t) s,(x) = ns,- ,(x). 



APPLICATION OF LJMBRAL CAL('ULIJS 

For the series f(t) = a, t + a, t2 -t . . . . a, # 0, denote 

f(t) t=a, +a,t+... 

It is clear that f(t) E F, and f(t)/t E F,. The inverse of the series ,f( t)/t will 
be denoted by t/f(t). 

We compute the associated sequence of the seriesf( t) E F, by the transfer 
formula 

( > 

n 

s,(x)=x & x”-’ 

J(t) 

(II) 

for n 3 1. Note that so(x) = 1. 
These are the results of the excellent monograph [2]. We return now to 

our problem. 

2. MAIN RESULTS 

Since the simple power series 1 + t and 2 + t are formally invertible the 
formal power series 

f(t)=t(l+t)-‘(2+t)-~’ (12) 

belongs to the set F, . For each series g(t) E F, we have the unique sequence 
of polynomials s,(x) which are Sheffer for (g(t),f(t)). Denote P,,(X) as the 
associated sequence forf(t). It is clear that 

for all n 3 0. 

s,(x) = g(t)- ’ P,(X) (13) 

LEMMA 1. Let s,(x) be Sheffer for (g(t), f(t)), where f(t) is given h,, 
(12) and g(t) is an arbitrary invertible formal power series. Then the double 
sequence 

q(i,i)=~ ((l + t)'lsi(x)), i>O,jEZ, 

satisfies the partial difference equation 

(14) 

q(i,j)=q(i,j-l)+q(i- l,j)+q(i- l,j+ 1) 

for ia 1 andjEZ. 

(15) 
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ProoJ: For every je E and i B 1 we have 

q(i,j)-q(i, j- 1)-q(i- l,j)-q(i- l,j+ 1) 

=f <(I + r)‘lSj(X))-f ((l + t)‘-l ISi( 

-1 ((1 +t)+&D-$q (i-l)! ((1 +t)i+‘lsj-1(X)) 

=f ((l +t)‘-’ tlsi(x))-& ((l+t)‘(2+t)[SS-,(x)). 

Using the relation (10) we obtain 

q(i,j)-q(i,j-l)-q(i-l,j)-q(i-l,j+l) 

=i(((l+f)j-I (t-(l+t)(2+t)f(t))l Si(X))=O 

because of (12). 

LEMMA 2. If the invertible series g(t) in Lemma 1 has the form 

g(t)= 1 +a,t+a,t2+... 

then the sequence q(i, j) has the property 

4W) = 1 

for all jC Z. 

Proof. By (13) we have 

dOJ)= ((1 + t)‘l%dx)> = <(I+ t)‘l g(t)-‘PO(t)) 

= ((l+ t)‘g(t)-‘11) = <h(t)1 l), 

where the formal power series h(t) has the form 

h(t)=1+blt+b2t2+..x 

By the definition of the power series as a linear functional on the vector 
space P we get q(O,j) = 1. 

LEMMA 3. The unique invertible series g(t), such that the double sequence 
q(i, j) in Lemma 1 has properties 
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(i) s(O,j) = 1 for all j E 22, 

(ii) q(i, -l)=O ,for all i e N 

is theseriesg(t)=(l+t)-‘. 

Proof: According to Lemma 2 we must prove only (ii). Let 

g(t)-‘= 1 +c,t+cztZ+ .“. 

We have 

4(4 -l)=~~(l+t)-‘g(~)-‘l~,(x)) 

=f (h(f)l PiCx)>Y 

where 

with 

h(t)= 1 +blt+b*r2+ ..’ 

b,= i (-1)%,-k, 6, = c0 = 1. 
k=O 

For i = I, 2, 3, . . . . we deduce, using the relation (4), that 

q(i, -l)=f i b,pjk’(0). 
’ k=O 

Note that p,(x) is a polynomial of degree i, thus pj”(0) # 0. The relation 
( toI p,(x)) =pi(O) = 6i,0 implies, according to (ii), the system of equations 
for b,: 

b,&(O)=0 

b, P;(O) + bz A(O) = 0 

6, p;(O) + bz p;‘(O) + b, p’;‘(O) = 0 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Step by step we conclude that b, = b2 = 6, = . . = 0. From the other system 

b, = c, - 1 

b,=c,-c, + 1 

b, = c3 - c2 + c, - 1 
. . . . . . . . . . . . . . . . . . . 
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we get c,=l, c2 = c, = Cd = . . . = 0. Thus g(t) - ’ = 1 + t respectively 
g(t) = (1 + t))1. 

Lemmas 1,2, and 3 imply the following result: 

THEOREM 1. The unique solution of the partial difference equation 

r(i,j)=r(i,j- l)+r(i- l,j)+r(i- l,j+ 1) 

with conditions 

r(O,j) = 1 for all j and r(i, - 1) = 0 for i>l 

is given by the formula 

r(i,j) = j+ ((l+ t)i+j (2+ t)‘,x’-1) (16) 

for all j and i 2 1. 

Proof: It is clear that r(i, j) = q(i, j) in Lemma 1 for g(t) = (1 + t)-‘. 
For i 3 0 and every j E Z we have 

r(Lj)=$((l+t)i~Si(X))=~((l+f)i+l~Pi(X)). 

By the transfer formula (11) we find an explicit form for the associated 
sequence p,(x) of the series (12): 

p,(x)=x(l+t)“(2+t)“x”-1, n> 1. 

Using formula (6) we obtain 

r(i,j)=~((l+t)~+‘Jx(l+t)‘(2+t)ixi~1) 

for all i >, 1 and j. This concludes the proof. 

THEOREM 2. The explicit form for the numbers r(i, j) for i > 1 and j E H 
is 

r( i, j) =I T l'il I*-, (i;j)(k: 1) 2k+i. 
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Prooj Formula (4) implies (tk IX”) =n!6,,,. Using formula (5) we get 
from (16) 

((1 + t)‘+‘I.?)((2+ t)‘)X ’ k>. 

Since 

and ((2+r)‘lXm ’ “) 

2k+‘(i- 1 -k)! 

the desired result follows from a simple computation. 

In our case formula (10) gives the recurrence formula for the associated 
polynomials 

PXX) = a:- l(X) + 3p; ,(x) + 2p,, _ ,(x)) 

for n 2 1 and the initial conditions p,(O) = d,,, ,,. We find 

p,(x) = 1, pi(x) = 2x, pz(.x) =4x2 + 12x, p3(x) = 8x’ + 72x2 + 132x. 

3. GENERATING FUNCTIONS 

The generating function for the sequence of polynomials p,(x) follows 
immediately from the expansion (9) 

(17) 

If we differentiate this relation with respect to y, we obtain after setting 
I’ = 0 

(18) 

For n > 0 we have from (14) 

rh O)=$ ((1 +t)l p,(x)> =i (p,,(O)+A(O))=-$p20) 
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and so 

f(t) = f r(n, 0) t”. 
?l=l 

(19) 

Since r(0, 0) = 1 we have the generating function for the row r( ., 0): 

1 +f(t) = f r(n, 0) t”. 
n=O 

(20) 

Recall that for every formal power series (see [ 11) 

h(t)= 1 +a,t+a,P+ ... 

there is a unique formal power series h(t)l12 of the form 

i~(t)“~= 1 +blt+ bzt2+ ... 

such that (!~(t)“~)~ = h(t). From (12) we obtain the candidate for the series 
f(t): 

f(t) = 
1-33t-(1-6t+t2)1’2 

2t (21) 

We must show that the numerator in (21) has the correct form. Let 

(1 - 6t + t2)“’ = 1 + b, t + b, t2 + . . . . 

We get the system of equations for the coeffkients b,: 

2b1 = -6 

2b,+b;= 1 

2b3+2b1b2=0 

2b,+2blb,+b;=0 
. . . . . . . . . . . . . . . . . . . 

(22) 

Successively we compute: 
b, = -3, b2 = -4, b, = - 12, b4 = -44, . . . . The numerator in (21) is the 

formal power series 

4t2 + 12t4 + 44t4 + . . . 

and the compositional inverse f(t) of the series f(t) should be 

3(t)=2t+6t2+22t3+... . 
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A straightforward computation shows that the right side in (21) is really 
f(t) in the sense of the formal power series theory. We omit the proof. 

The solution of the system (22) is connected with the numbers r(i, O), 
namely, 

r(0, 0) = 1, r( 1, 0) = - bJ2, r(2, 0) = - bJ2, 

We can find the row r( ., 0) independently of the other rows and columns. 
Denote by G,(t) the generating functions of the nth row in Table I 

G,(t) = f r(i, n) t’, n E (2. (23) 
i=O 

We have the result 

G,(t) = 1 +f(t) = 
l-t-(1-6t+t*)“‘* 

2t 
(24) 

THEOREM 3. The generating functions G,(t) of the n th row of the 
numbers r(i, j) are given by 

G,(t)=(l +f(t))“+‘= 
l-t-(l-&+t*)“* n+l 

2t ! 
(25 1 

Proof: If we differentiate the relation (17) k times with respect to ~3. 
we get 

f(Qk = f P?jO) p, 
n=O n. 

By the binomial formula we have 

(1 +f(t))“+‘= y’ (m k’ l)&)k = y (“: 1) =f d?i”’ t” 
k=O k=O II=0 

=$o;$: (“: l)(tklP~w 2 

= f ((l+t)“+’ 
II=0 

I P,(X)> s= i r(n, m) t”. 
?I=0 

COROLLARY. For every integer p the relation 

r(n, m) = i r(k, p - 1) r(n - k, m -p) 
k=O 

(26) 
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holds. Especially 

r(n, m) = i r(k, m - 1) r(n -k, 0). 
k=O 

In other words, the convolution product of the pth and qth rows gives the 
(p + q + 1) th row in the table of the numbers r( i, j). 

Similarly, we define the generating functions for the columns. Let 

Note that only the numbers r(i,j), i>,O,j>O, enter in this formal power 
series, 

THEOREM 4. For every non-negative number i the generating function for 
columns of the numbers r(i, j) can be written in the form 

Hi(t) = f e’s,(t). (271 

Proof. The definition of a formal power series as a linear functional on 
P implies that 

(Hi(t)\ x”) = r(i, n) 

for i>,O and n>O. 
Define 

fAtI = f e's,(t). 

We have 

It follows that ( Hi( t)l x”) = (fi( t)l x”) which implies Hi(t) =fi( t). Note 
that the series 

eY’-l+E+y2t2+.. - 
. l! 2! 
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implies (e”‘\p(x))=p(y) and e”p(x)=p(x+y) for every yEQ= and every 
polynomial P(X)E P. It is also easy to see that (p(t)Jq(x)) = (q(t)1 p(x)) 
for any two polynomials p(x) and q(x). The proof is complete. 

We now go a step further. It is possible to construct a generating 
function for Hi(t). For a fixed s E C we define 

qs, t) = f Hi(S) t’. 
i=O 

The function 3(s, t) can be written in the closed form. Recall that 

because of the expansion (9). We obtain 

%(s, 2) = f es ‘9 t’ = es( 1 +f( t)) e*l(‘) 
r=O . 

= e”Go( t) esf(‘). 

Note that the form eS(‘+f(c)) is not correct because the series 1 +j”(t) has 
the zeroth coefficient different from 0. 

Differentiating with respect to s we get 

D Y(s t) = esGo(t)2 esi(“, s ) 

Df 9(s, t) = e”GO( t)3 ejf(‘). 

Since f(f(t)) = t we have an equation for the function G,(t): 

rG,(t)(l + G,(t)) = G,(r) - 1. 

THEOREM 5. The function Y(s, t) is a formal solution of the equation 

(tD;t(f-l)Ds+l)g(~,f)=O 

with the boundary condition 

D;S(O, t) = Y(0, r)’ # 0. 

Proof A simple verification. 

4OY~l4’, I-? 
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4. THE GROUP STRUCTURE 

Table I contains the numbers r( i, j) for j 2 0 only. But we also can write 
these for j < 0. One method is by using generating functions Gi(t). The 
other, simplest, way to compute r(i,j) is with the recurrence relation 

r(i,j- l)=r(i,j)-r(i- l,j)-r(i- l,j+ 1). 

Table II the central part of the extended table for numbers r(i,j). Denote 
r( .,j) = uj+ i. Define the convolution product x *y of sequences x = 
(x0, Xl, x2, ..-, 1 and Y = (voy Y,, Y,, . . . . ): 

tX*Y)n= i Xkyn-k. 
k=O 

It is easy to see that (x * y) * z =x * (y * z) for all sequences x, y, and z. 
For our sequences ak we find the following properties: 

ai * aj= ai+j 

a, * a, = ai, ai*a-i=a,. 

We have 

THEOREM 6. The set { ... , a_,, a-,, a,, a,, a2, . . . . } with the convolution 
product is a infinite cyclic group. The unit in this group is the sequence 
a, = (1, 0, 0, . ...). The convolutional inverse of the sequence ai is the sequence 
aPi. For any sequence y the equation ai * x= y has the unique solution 
x = a _ i * y. The group generator is the sequence a I. 

TABLE II 

..*.......*. . . . . . . . . . . . . . . . . . . . . . . . . ...*...*. 
r(., 2) 1 6 30 146 
r(., 1) 1 4 16 68 
4.70) 1 2 6 22 
4.3 -1) 1 0 0 0 
4.3 -2) 1 -2 -2 -2 
r(., -3) 1 -4 0 -4 
r(., -4) 1 -6 6 -2 

..*...*.... 
714 “’ 
304 .” 
go . 
0 

-22 . 
-16 . . . 
-6 . . . 

a3 
a2 
aI 
a0 
a-1 
a-2 
a-3 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
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The generating function of numbers in a, is given by (24) and (20). 
From the relation 

l---(1-66t+t2)“*=2 2 r(n-1,O)t” (28 1 
n=l 

we obtain after formal derivation 

-1-(t-3)(1-6t+t2)-“2=2 f (n+l)r(n,O)t”. (29 1 
n=O 

Multiply (29) by 1 - 62 + t2. We get, again using (28) the relation 

l+t+(r-3) f r(n-1,O)t” 
n=l 

The equality principle of formal power series gives a new result: 

THEOREM 7. The numbers r(n, 0) admit a three-term recurrent formula 

(n+l)r(n,O)-3(2n-l)r(n-l,O)+(n-2)r(n-2,0)=0, n>2 (30) 

with the initial conditions r(0, 0) = 1 and r( 1, 0) = 2. 

We can now get the numbers r(n, 0) very quickly using (30): 
r(6,O) = 1806, r(7,O) = 8558, r(8,O) = 41586, r(9,O) = 206098, r(lO, 0) = 
1037718, r( 11,O) = 5293446, r( 12,0) = 27297738. 

We also can express the numbers r(n, 0) by Legendre polynomials Pk(x). 
The formal power series 

(1-2xt+t*)-“*= CC ,go Pkb) tk 

gives us the numbers r(n, 0) in a closed form. It is easy to see that 

2 T r(n,O)t”+‘=l--r- f ~,(3)~“+* 
n=O PI=0 

It follows that 

+6 f P,(3)t”+’ - f P,(3) t”. 
II=0 n==l 

2r(n,O)= -P,-,(3)+6P,(3)-P,+,(3) for n> 1. 
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THEOREM 8. The numbers r(n, 0) can be written in the forni 

rho)= -t(p,-,(3)-6P,(3)+P,+,(3)) 

for every n > 1, where PJx) denote the Legendre polynomials. 
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