An Application of the Umbral Calculus

Marko Razpet
Institute of Mechanical Engineering, E. K. University of Ljubljana, Murnikova 2, 61000 Ljubljana, Yugoslavia
Submitted by R. P. Boas

Received January 4, 1988

The partial difference equation

$$
r(i, j)=r(i, j-1)+r(i-1, j)+r(i-1, j+1),
$$

where $r(i, j)$ are defined for integer numbers i and $j, i \geqslant 0$, by the conditions $r(0, j)=1$ for all j and $r(i,-1)=0$ for $i \geqslant 1$ is solved. For $i \geqslant 0$ and $j \geqslant 0$ a combinatorial meaning of numbers $r(i, j)$ is given. The solution is obtained by the modern classical umbral calculus. 1990 Academic Press, Inc.

1. Introduction

Problem. Let $S=\{(i, j): i, j=0,1,2, \ldots$,$\} . Define in the set S$ the relation ρ by

$$
\begin{aligned}
& (i, j) \rho(p, q) \text { if and only if }(p=i, q=j-1) \text { or }(p=i-1, q=j) \text { or } \\
& (p=i-1, q=j+1) .
\end{aligned}
$$

The point $(i, j) \in S$ is said to be connected with the origin $(0,0) \in S$ if and only if there exist points $\left(i_{1}, j_{1}\right),\left(i_{2}, j_{2}\right), \ldots,\left(i_{n}, j_{n}\right)$ in S, where $\left(i_{1}, j_{1}\right) \rho(0,0),\left(i_{2}, j_{2}\right) \rho\left(i_{1}, j_{1}\right), \ldots,(i, j) \rho\left(i_{n}, j_{n}\right)$. Our aim is to compute the number $r(i, j)$ of different connections of the point $(i, j) \in S$ with the origin $(0,0)$. If we put it in the language of the graph theory, our problem is to determine the number of linearly connected graphs with vertices in the set S and with edges oriented parallel to the vectors $(1,0),(0,1)$, and $(1,-1)$. Figure 1 shows one of the possible connections of the point $(3,2)$ with the origin.

It is clear that $r(0, j)=1$ for $j \geqslant 1$. Define $r(0,0)=1$. By an easy combinatorial argument we get the partial difference equation

$$
\begin{align*}
& r(i, j)=r(i, j-1)+r(i-1, j)+r(i-1, j+1), \quad i \geqslant 1, j \geqslant 0 \tag{1}\\
& r(0, j)=1, j>0 ; \quad r(i,-1)=0, i>0
\end{align*}
$$

A simple computation gives us the numbers $r(i, j)$ in Table I.

Figure 1

In the sequel we shall derive the formula for our numbers $r(i, j)$, the generating functions for the rows $r(\cdot, j)$, and the columns $r(i, \cdot)$.

The umbral calculus. We repeat the basic facts following Niven and Roman (see [1,2]). Let F denote the algebra of formal power series in the variable t over the field \mathbb{C}. An element in F has the form

$$
\begin{equation*}
f(t)=\sum_{k=0}^{\infty} a_{k} t^{k}, \quad a_{k} \in \mathbb{C} \tag{2}
\end{equation*}
$$

The addition and multiplication are defined formally by

$$
\begin{aligned}
\sum_{k=0}^{\infty} a_{k} t^{k}+\sum_{k=0}^{\infty} b_{k} t^{k} & =\sum_{k=0}^{\infty}\left(a_{k}+b_{k}\right) t^{k} \\
\left(\sum_{k=0}^{\infty} a_{k} t^{k}\right)\left(\sum_{k=0}^{\infty} b_{k} t^{k}\right) & =\sum_{k=0}^{\infty}\left(\sum_{j=0}^{k} a_{j} b_{k-j}\right) t^{k}
\end{aligned}
$$

TABLE I
The Numbers $r(i, j)$ for $i \geqslant 0, j \geqslant 0$

7	1	16	160	\ldots	\ldots	\ldots	\ldots
6	1	14	126	938	\ldots	\ldots	\ldots
5	1	12	96	652	\ldots	\ldots	\ldots
4	1	10	70	430	\ldots	\ldots	\ldots
3	1	8	48	264	1408	\ldots	\ldots
2	1	6	30	146	714	3534	\ldots
1	1	4	16	68	304	1412	\ldots
0	1	2	6	22	90	394	1806
j					1	2	3
						4	5

Two formal power series are equal if and only if $a_{k}=b_{k}$ for all k. Let F_{0} denote the set of all formal power series (2) where $a_{0} \neq 0$ and F_{1} the set of all formal power series (2) where $a_{0}=0$ and $a_{1} \neq 0$. If $f(t) \in F_{0}$ then $f(t)$ is invertible, and the formal inverse will be denoted by $f(t)^{-1}$. The coefficients of the inverse can be computed solving a simple triangular system of equations. If f belong to the set F_{1}, then a compositional inverse $f(t)$ exists, such that $\bar{f}(f(t))=t$.

The formal derivative of the series (2) is defined as

$$
D_{t} f(t)=\sum_{k=1}^{\infty} k a_{k} t^{k-1}
$$

Let P denote the algebra of polynomials in the single variable x over the field \mathbb{C}. Let P^{*} be the vector space of all linear functionals on P. The action of the functional $L \in P^{*}$ on the polynomial $p(x) \in P$ will be denoted by

$$
\langle L \mid p(x)\rangle .
$$

Each formal power series

$$
\begin{equation*}
f(t)=\sum_{k=0}^{\infty} \frac{a_{k}}{k!} t^{k} \tag{3}
\end{equation*}
$$

defines a linear functional on P if we set

$$
\left\langle f(t) \mid x^{n}\right\rangle=a_{n} \quad \text { for } \quad n \geqslant 0 .
$$

For any linear functional $L \in P^{*}$ we have a formal power series

$$
f_{L}(t)=\sum_{k=0}^{\infty} \frac{\left\langle L \mid x^{k}\right\rangle}{k!} t^{k}
$$

which has the form (3) and satisfies the relation

$$
\left\langle f_{L}(t) \mid x^{n}\right\rangle=\left\langle L \mid x^{n}\right\rangle \quad \text { for } \quad n \geqslant 0
$$

The map $L \rightarrow f_{L}(t)$ is a vector space isomorphism from P^{*} to F. In the sequel we shall need the formulas

$$
\begin{align*}
\left\langle t^{k} \mid p(x)\right\rangle & =p^{(k)}(0), \quad k \geqslant 0, p(x) \in P \tag{4}\\
\left\langle f(t) g(t) \mid x^{n}\right\rangle & =\sum_{k=0}^{n}\binom{n}{k}\left\langle f(t) \mid x^{k}\right\rangle\left\langle g(t) \mid x^{n-k}\right\rangle \tag{5}\\
\langle f(t) \mid x p(x)\rangle & =\left\langle D_{t} f(t) \mid p(x)\right\rangle \tag{6}
\end{align*}
$$

Any power series defines a linear operator on P. If $f(t)$ has the form (3), then we define

$$
\begin{equation*}
f(t) x^{n}=\sum_{k=0}^{n}\binom{a}{k} a_{k} x^{n-k} \quad \text { for } \quad n \geqslant 0 . \tag{7}
\end{equation*}
$$

Especially, for $f(t)=t^{k}$ we get

$$
t^{k} x^{n}=k!\binom{n}{k} x^{n-k}
$$

the k th derivative of the power x^{n}. Using the relation (5) we obtain

$$
\begin{equation*}
\langle f(t) g(t) \mid p(x)\rangle=\langle g(t) \mid f(t) p(x)\rangle \tag{8}
\end{equation*}
$$

Sheffer sequences. For each series $f(t) \in F_{1}$ and each series $g(t) \in F_{0}$ there exists a unique sequence of polynomials $s_{n}(x)$ such that

$$
\left\langle g(t) f(t)^{k} \mid s_{n}(x)\right\rangle=n!\delta_{n, k},
$$

where $\delta_{n, k}$ denotes the Kronecker delta function and the polynomial $s_{n}(x)$ has degree n. We say that the sequence $s_{n}(x)$ is Sheffer for the pair $(g(t), f(t))$. If $s_{n}(x)$ is Sheffer for the pair ($1, f(t)$) then $s_{n}(x)$ is associated to $f(t)$. The Sheffer sequence $s_{n}(x)$ of the pair $(g(t), f(t))$ admits the generating function

$$
\begin{equation*}
g(f(t))^{-1} e^{v f^{(t)}}=\sum_{k=0}^{\infty} \frac{s_{k}(y)}{k!} t^{k}, \tag{9}
\end{equation*}
$$

where $y \in \mathbb{C}$.
From (8) it follows that the sequence $s_{n}(x)$ is Sheffer for $(g(t), f(t))$ if and only if the sequence $g(t) s_{n}(x)$ is associated to $f(t)$.

A sequence $s_{n}(x)$ is Sheffer for $(g(t), f(t))$ for some $g(t) \in F_{0}$ if and only if the relation

$$
\begin{equation*}
f(t) s_{n}(x)=n s_{n-1}(x) \tag{10}
\end{equation*}
$$

holds for all $n \geqslant 0$.
The sequence $s_{n}(x)$ is associated to $f(t)$ if and only if $\left\langle t^{0} \mid s_{n}(x)\right\rangle=\delta_{n, 0}$ and $f(t) s_{n}(x)=n s_{n-1}(x)$.

For the series $f(t)=a_{1} t+a_{2} t^{2}+\ldots, a_{1} \neq 0$, denote

$$
\frac{f(t)}{t}=a_{1}+a_{2} t+\ldots .
$$

It is clear that $f(t) \in F_{1}$ and $f(t) / t \in F_{0}$. The inverse of the series $f(t) / t$ will be denoted by $t / f(t)$.

We compute the associated sequence of the series $f(t) \in F_{1}$ by the transfer formula

$$
\begin{equation*}
s_{n}(x)=x\left(\frac{t}{f(t)}\right)^{n} x^{n-1} \tag{11}
\end{equation*}
$$

for $n \geqslant 1$. Note that $s_{0}(x)=1$.
These are the results of the excellent monograph [2]. We return now to our problem.

2. Main Results

Since the simple power series $1+t$ and $2+t$ are formally invertible the formal power series

$$
\begin{equation*}
f(t)=t(1+t)^{1}(2+t)^{1} \tag{12}
\end{equation*}
$$

belongs to the set F_{1}. For each series $g(t) \in F_{0}$ we have the unique sequence of polynomials $s_{n}(x)$ which are Sheffer for $(g(t), f(t))$. Denote $p_{n}(x)$ as the associated sequence for $f(t)$. It is clear that

$$
\begin{equation*}
s_{n}(x)=g(t)^{-1} p_{n}(x) \tag{13}
\end{equation*}
$$

for all $n \geqslant 0$.
Lemma 1. Let $s_{n}(x)$ be Sheffer for $(g(t), f(t))$, where $f(t)$ is given by (12) and $g(t)$ is an arbitrary invertible formal power series. Then the double sequence

$$
\begin{equation*}
q(i, j)=\frac{1}{i!}\left\langle(1+t)^{j} \mid s_{i}(x)\right\rangle, \quad i \geqslant 0, j \in \mathbb{Z} \tag{14}
\end{equation*}
$$

satisfies the partial difference equation

$$
\begin{equation*}
q(i, j)=q(i, j-1)+q(i-1, j)+q(i-1, j+1) \tag{15}
\end{equation*}
$$

for $i \geqslant 1$ and $j \in \mathbb{Z}$.

Proof. For every $j \in \mathbb{Z}$ and $i \geqslant 1$ we have

$$
\begin{aligned}
& q(i, j)-q(i, j-1)-q(i-1, j)-q(i-1, j+1) \\
&= \frac{1}{i!}\left\langle(1+t)^{j} \mid s_{i}(x)\right\rangle-\frac{1}{i!}\left\langle(1+t)^{j-1} \mid s_{i}(x)\right\rangle \\
&-\frac{1}{(i-1)!}\left\langle(1+t)^{j} \mid s_{i-1}(x)\right\rangle-\frac{1}{(i-1)!}\left\langle(1+t)^{j+1} \mid s_{i-1}(x)\right\rangle \\
&= \frac{1}{i!}\left\langle(1+t)^{j-1} t \mid s_{i}(x)\right\rangle-\frac{1}{(i-1)!}\left\langle(1+t)^{j}(2+t) \mid s_{i-1}(x)\right\rangle
\end{aligned}
$$

Using the relation (10) we obtain

$$
\begin{aligned}
& q(i, j)-q(i, j-1)-q(i-1, j)-q(i-1, j+1) \\
& \quad=\frac{1}{i!}\left(\left\langle(1+t)^{j-1}(t-(1+t)(2+t) f(t)) \mid s_{i}(x)\right\rangle=0\right.
\end{aligned}
$$

because of (12).
Lemma 2. If the invertible series $g(t)$ in Lemma 1 has the form

$$
g(t)=1+a_{1} t+a_{2} t^{2}+\cdots
$$

then the sequence $q(i, j)$ has the property

$$
q(0, j)=1
$$

for all $j \in \mathbb{Z}$.
Proof. By (13) we have

$$
\begin{aligned}
q(0, j) & =\left\langle(1+t)^{j} \mid s_{0}(x)\right\rangle=\left\langle(1+t)^{j} \mid g(t)^{-1} p_{0}(t)\right\rangle \\
& =\left\langle(1+t)^{j} g(t)^{-1} \mid 1\right\rangle=\langle h(t) \mid 1\rangle
\end{aligned}
$$

where the formal power series $h(t)$ has the form

$$
h(t)=1+b_{1} t+b_{2} t^{2}+\cdots
$$

By the definition of the power series as a linear functional on the vector space P we get $q(0, j)=1$.

Lemma 3. The unique invertible series $g(t)$, such that the double sequence $q(i, j)$ in Lemma 1 has properties
(i) $q(0, j)=1 \quad$ for all $j \in \mathbb{Z}$,
(ii) $q(i,-1)=0 \quad$ for all $i \in \mathbb{N}$
is the series $g(t)=(1+t)^{-1}$.
Proof. According to Lemma 2 we must prove only (ii). Let

$$
g(t)^{-1}=1+c_{1} t+c_{2} t^{2}+\cdots .
$$

We have

$$
\begin{aligned}
q(i,-1) & =\frac{1}{i!}\left\langle(1+t)^{-1} g(t)^{-1} \mid p_{i}(x)\right\rangle \\
& =\frac{1}{i!}\left\langle h(t) \mid p_{i}(x)\right\rangle
\end{aligned}
$$

where

$$
h(t)=1+b_{1} t+b_{2} t^{2}+\cdots
$$

with

$$
b_{n}=\sum_{k=0}^{n}(-1)^{k} c_{n-k}, \quad b_{0}=c_{0}=1
$$

For $i=1,2,3, \ldots$, we deduce, using the relation (4), that

$$
q(i,-1)=\frac{1}{i!} \sum_{k=0}^{i} b_{k} p_{i}^{(k)}(0)
$$

Note that $p_{i}(x)$ is a polynomial of degree i, thus $p_{i}^{(i)}(0) \neq 0$. The relation $\left\langle t^{0} \mid p_{i}(x)\right\rangle=p_{i}(0)=\delta_{i, 0}$ implies, according to (ii), the system of equations for b_{k} :

$$
\begin{aligned}
& b_{1} p_{1}^{\prime}(0)=0 \\
& b_{1} p_{2}^{\prime}(0)+b_{2} p_{2}^{\prime \prime}(0)=0 \\
& b_{1} p_{3}^{\prime}(0)+b_{2} p_{3}^{\prime \prime}(0)+b_{3} p_{3}^{\prime \prime \prime}(0)=0
\end{aligned}
$$

Step by step we conclude that $b_{1}=b_{2}=b_{3}=\cdots=0$. From the other system

$$
\begin{aligned}
& b_{1}=c_{1}-1 \\
& b_{2}=c_{2}-c_{1}+1 \\
& b_{3}=c_{3}-c_{2}+c_{1}-1
\end{aligned}
$$

we get $c_{1}=1, \quad c_{2}=c_{3}=c_{4}=\cdots=0$. Thus $g(t)^{-1}=1+t$ respectively $g(t)=(1+t)^{-1}$.

Lemmas 1,2 , and 3 imply the following result:
Theorem 1. The unique solution of the partial difference equation

$$
r(i, j)=r(i, j-1)+r(i-1, j)+r(i-1, j+1)
$$

with conditions

$$
r(0, j)=1 \quad \text { for all } j \quad \text { and } \quad r(i,-1)=0 \quad \text { for } \quad i \geqslant 1
$$

is given by the formula

$$
\begin{equation*}
r(i, j)=\frac{j+1}{i!}\left\langle(1+t)^{i+j}(2+t)^{i} \mid x^{i-1}\right\rangle \tag{16}
\end{equation*}
$$

for all j and $i \geqslant 1$.
Proof. It is clear that $r(i, j)=q(i, j)$ in Lemma 1 for $g(t)=(1+t)^{-1}$. For $i \geqslant 0$ and every $j \in \mathbb{Z}$ we have

$$
r(i, j)=\frac{1}{i!}\left\langle(1+t)^{j} \mid s_{i}(x)\right\rangle=\frac{1}{i!}\left\langle(1+t)^{j+1} \mid p_{i}(x)\right\rangle .
$$

By the transfer formula (11) we find an explicit form for the associated sequence $p_{n}(x)$ of the series (12):

$$
p_{n}(x)=x(1+t)^{n}(2+t)^{n} x^{n-1}, \quad n \geqslant 1
$$

Using formula (6) we obtain

$$
\begin{aligned}
r(i, j) & =\frac{1}{i!}\left\langle(1+t)^{j+1} \mid x(1+t)^{i}(2+t)^{i} x^{i-1}\right\rangle \\
& =\frac{j+1}{i!}\left\langle(1+t)^{j} \mid(1+t)^{i}(2+t)^{i} x^{i-1}\right\rangle \\
& =\frac{j+1}{i!}\left\langle(1+t)^{i+j}(2+t)^{i} \mid x^{i-1}\right\rangle
\end{aligned}
$$

for all $i \geqslant 1$ and j. This concludes the proof.
Theorem 2. The explicit form for the numbers $r(i, j)$ for $i \geqslant 1$ and $j \in \mathbb{Z}$ is

$$
r(i, j)=\frac{j+1}{i} \sum_{k=0}^{i-1}\binom{i+j}{k}\binom{i}{k+1} 2^{k+1}
$$

Proof. Formula (4) implies $\left\langle t^{k} \mid x^{n}\right\rangle=n!\delta_{k, n}$. Using formula (5) we get from (16)

$$
r(i, j)=\frac{j+1}{i!} \sum_{k=0}^{i-1}\binom{i-1}{k}\left\langle(1+t)^{i+1} \mid x^{k}\right\rangle\left\langle(2+t)^{i} \mid x^{i \cdots k}\right\rangle
$$

Since

$$
\begin{aligned}
\left\langle(1+t)^{i+j} \mid x^{k}\right\rangle & =\binom{i+j}{k} k!\quad \text { and } \quad\left\langle(2+t)^{i} \mid x^{i-1-k}\right\rangle \\
& =\binom{i}{k+1} 2^{k+1}(i-1-k)!
\end{aligned}
$$

the desired result follows from a simple computation.
In our case formula (10) gives the recurrence formula for the associated polynomials

$$
p_{n}^{\prime}(x)=n\left(p_{n-1}^{\prime \prime}(x)+3 p_{n-1}^{\prime}(x)+2 p_{n-1}(x)\right)
$$

for $n \geqslant 1$ and the initial conditions $p_{n}(0)=\delta_{n, 0}$. We find

$$
p_{0}(x)=1, p_{1}(x)=2 x, p_{2}(x)=4 x^{2}+12 x, p_{3}(x)=8 x^{3}+72 x^{2}+132 x
$$

3. Generating Functions

The generating function for the sequence of polynomials $p_{n}(x)$ follows immediately from the expansion (9)

$$
\begin{equation*}
e^{v f(t)}=\sum_{n=0}^{\infty} \frac{p_{n}(y)}{n!} t^{n} \tag{17}
\end{equation*}
$$

If we differentiate this relation with respect to y, we obtain after setting $y=0$

$$
\begin{equation*}
\bar{f}(t)=\sum_{n=1}^{\infty} \frac{p_{n}^{\prime}(0)}{n!} t^{n} . \tag{18}
\end{equation*}
$$

For $n>0$ we have from (14)

$$
r(n, 0)=\frac{1}{n!}\left\langle(1+t) \mid p_{n}(x)\right\rangle=\frac{1}{n!}\left(p_{n}(0)+p_{n}^{\prime}(0)\right)=\frac{1}{n!} p_{n}^{\prime}(0)
$$

and so

$$
\begin{equation*}
f(t)=\sum_{n=1}^{\infty} r(n, 0) t^{\prime \prime} \tag{19}
\end{equation*}
$$

Since $r(0,0)=1$ we have the generating function for the row $r(\cdot, 0)$:

$$
\begin{equation*}
1+\vec{f}(t)=\sum_{n=0}^{\infty} r(n, 0) t^{n} \tag{20}
\end{equation*}
$$

Recall that for every formal power series (see [1])

$$
h(t)=1+a_{1} t+a_{2} t^{2}+\cdots
$$

there is a unique formal power series $h(t)^{1 / 2}$ of the form

$$
h(t)^{1 / 2}=1+b_{1} t+b_{2} t^{2}+\cdots
$$

such that $\left(h(t)^{1 / 2}\right)^{2}=h(t)$. From (12) we obtain the candidate for the series $\bar{f}(t)$:

$$
\begin{equation*}
\bar{f}(t)=\frac{1-3 t-\left(1-6 t+t^{2}\right)^{1 / 2}}{2 t} \tag{21}
\end{equation*}
$$

We must show that the numerator in (21) has the correct form. Let

$$
\left(1-6 t+t^{2}\right)^{1 / 2}=1+b_{1} t+b_{2} t^{2}+\cdots
$$

We get the system of equations for the coefficients b_{n} :

$$
\begin{align*}
& 2 b_{1}=-6 \\
& 2 b_{2}+b_{1}^{2}=1 \\
& 2 b_{3}+2 b_{1} b_{2}=0 \tag{22}\\
& 2 b_{4}+2 b_{1} b_{3}+b_{2}^{2}=0
\end{align*}
$$

Successively we compute:
$b_{1}=-3, b_{2}=-4, b_{3}=-12, b_{4}=-44, \ldots$. The numerator in (21) is the formal power series

$$
4 t^{2}+12 t^{4}+44 t^{4}+\cdots
$$

and the compositional inverse $f(t)$ of the series $f(t)$ should be

$$
f(t)=2 t+6 t^{2}+22 t^{3}+\cdots
$$

A straightforward computation shows that the right side in (21) is really $\bar{f}(t)$ in the sense of the formal power series theory. We omit the proof.

The solution of the system (22) is connected with the numbers $r(i, 0)$, namely,

$$
r(0,0)=1, r(1,0)=-b_{2} / 2, r(2,0)=-b_{3} / 2, \ldots
$$

We can find the row $r(\cdot, 0)$ independently of the other rows and columns.
Denote by $G_{n}(t)$ the generating functions of the nth row in Table I

$$
\begin{equation*}
G_{n}(t)=\sum_{i=0}^{\infty} r(i, n) t^{i}, \quad n \in \mathbb{Z} \tag{23}
\end{equation*}
$$

We have the result

$$
\begin{equation*}
G_{0}(t)=1+\vec{f}(t)=\frac{1-t-\left(1-6 t+t^{2}\right)^{1 / 2}}{2 t} \tag{24}
\end{equation*}
$$

Theorem 3. The generating functions $G_{n}(t)$ of the nth row of the numbers $r(i, j)$ are given by

$$
\begin{equation*}
G_{n}(t)=(1+\bar{f}(t))^{n+1}=\left(\frac{1-t-\left(1-6 t+t^{2}\right)^{1 / 2}}{2 t}\right)^{n+1} \tag{25}
\end{equation*}
$$

Proof. If we differentiate the relation (17) k times with respect to y. we get

$$
\bar{f}(t)^{k}=\sum_{n=0}^{\infty} \frac{p_{n}^{(k)}(0)}{n!} t^{n}
$$

By the binomial formula we have

$$
\begin{aligned}
(1+\bar{f}(t))^{m+1} & =\sum_{k=0}^{m+1}\binom{m+1}{k} \bar{f}(t)^{k}=\sum_{k=0}^{m+1}\binom{m+1}{k} \sum_{n=0}^{\infty} \frac{p_{n}^{(k)}(0)}{n!} t^{n} \\
& =\sum_{n=0}^{\infty} \sum_{k=0}^{m+1}\binom{m+1}{k}\left\langle t^{k} \mid p_{n}(x)\right\rangle \frac{t^{n}}{n!} \\
& =\sum_{n=0}^{\infty}\left\langle(1+t)^{m+1} \mid p_{n}(x)\right\rangle \frac{t^{n}}{n!}=\sum_{n=0}^{\infty} r(n, m) t^{n} .
\end{aligned}
$$

Corollary. For every integer p the relation

$$
\begin{equation*}
r(n, m)=\sum_{k=0}^{n} r(k, p-1) r(n-k, m-p) \tag{26}
\end{equation*}
$$

holds. Especially

$$
r(n, m)=\sum_{k=0}^{n} r(k, m-1) r(n-k, 0)
$$

In other words, the convolution product of the p th and q th rows gives the $(p+q+1)$ th row in the table of the numbers $r(i, j)$.

Similarly, we define the generating functions for the columns. Let

$$
H_{i}(t)=\sum_{j=0}^{\infty} \frac{r(i, j)}{j!} t^{j}
$$

Note that only the numbers $r(i, j), i \geqslant 0, j \geqslant 0$, enter in this formal power series.

THEOREM 4. For every non-negative number ithe generating function for columns of the numbers $r(i, j)$ can be written in the form

$$
\begin{equation*}
H_{i}(t)=\frac{1}{i!} e^{t} s_{i}(t) \tag{27}
\end{equation*}
$$

Proof. The definition of a formal power series as a linear functional on P implies that

$$
\left\langle H_{i}(t) \mid x^{n}\right\rangle=r(i, n)
$$

for $i \geqslant 0$ and $n \geqslant 0$.
Define

$$
f_{i}(t)=\frac{1}{i!} e^{i} s_{i}(t) .
$$

We have

$$
\begin{aligned}
\left\langle f_{i}(t) \mid x^{n}\right\rangle & =\frac{1}{i!}\left\langle e^{i} s_{i}(t) \mid x^{n}\right\rangle=\frac{1}{i!}\left\langle s_{i}(t) \mid e^{t} x^{n}\right\rangle \\
& =\frac{1}{i!}\left\langle(t+1)^{n} \mid s_{i}(x)\right\rangle=r(i, n)
\end{aligned}
$$

It follows that $\left\langle H_{i}(t) \mid x^{n}\right\rangle=\left\langle f_{i}(t) \mid x^{n}\right\rangle$ which implies $H_{i}(t)=f_{i}(t)$. Note that the series

$$
e^{y t}=1+\frac{y t}{1!}+\frac{y^{2} t^{2}}{2!}+\cdots
$$

implies $\left\langle e^{y t} \mid p(x)\right\rangle=p(y)$ and $e^{y t} p(x)=p(x+y)$ for every $y \in \mathbb{C}$ and every polynomial $p(x) \in P$. It is also easy to see that $\langle p(t) \mid q(x)\rangle=\langle q(t) \mid p(x)\rangle$ for any two polynomials $p(x)$ and $q(x)$. The proof is complete.

We now go a step further. It is possible to construct a generating function for $H_{i}(t)$. For a fixed $s \in \mathbb{C}$ we define

$$
\mathscr{G}(s, t)=\sum_{i=0}^{\infty} H_{i}(s) t^{\prime} .
$$

The function $\mathscr{G}(s, t)$ can be written in the closed form. Recall that

$$
(1+\bar{f}(t)) e^{s f(t)}=\sum_{i=0}^{\infty} \frac{s_{i}(s)}{i!} t^{i}
$$

because of the expansion (9). We obtain

$$
\begin{aligned}
\mathscr{G}(s, t) & =\sum_{i=0}^{\infty} e^{s} \frac{s_{i}(s)}{i!} t^{i}=e^{s}(1+f(t)) e^{s f(t)} \\
& =e^{s} G_{0}(t) e^{s f(t)} .
\end{aligned}
$$

Note that the form $e^{s(1+f(t))}$ is not correct because the series $1+f(t)$ has the zeroth coefficient different from 0 .
Differentiating with respect to s we get

$$
\begin{aligned}
D_{s} \mathscr{G}(s, t) & =e^{s} G_{0}(t)^{2} e^{s f(t)}, \\
D_{s}^{2} \mathscr{G}(s, t) & =e^{s} G_{0}(t)^{3} e^{s f(t)} .
\end{aligned}
$$

Since $f(f(t))=t$ we have an equation for the function $G_{0}(t)$:

$$
t G_{0}(t)\left(1+G_{0}(t)\right)=G_{0}(t)-1 .
$$

Theorem 5. The function $\mathscr{G}(s, t)$ is a formal solution of the equation

$$
\left(t D_{s}^{2}+(t-1) D_{s}+1\right) \mathscr{G}(s, t)=0
$$

with the boundary condition

$$
D_{s}^{2} \mathscr{G}(0, t)=\mathscr{G}(0, t)^{2} \neq 0 .
$$

Proof. A simple verification.

4. The Group Structure

Table I contains the numbers $r(i, j)$ for $j \geqslant 0$ only. But we also can write these for $j<0$. One method is by using generating functions $G_{i}(t)$. The other, simplest, way to compute $r(i, j)$ is with the recurrence relation

$$
r(i, j-1)=r(i, j)-r(i-1, j)-r(i-1, j+1)
$$

Table II the central part of the extended table for numbers $r(i, j)$. Denote $r(\cdot, j)=a_{j+1}$. Define the convolution product $x * y$ of sequences $x=$ $\left(x_{0}, x_{1}, x_{2}, \ldots,\right)$ and $y=\left(y_{0}, y_{1}, y_{2}, \ldots,\right)$:

$$
(x * y)_{n}=\sum_{k=0}^{n} x_{k} y_{n-k}
$$

It is easy to see that $(x * y) * z=x *(y * z)$ for all sequences x, y, and z. For our sequences a_{k} we find the following properties:

$$
\begin{aligned}
& a_{i} * a_{j}=a_{i+j} \\
& a_{i} * a_{0}=a_{i}, \quad a_{i} * a_{-i}=a_{0} .
\end{aligned}
$$

We have

THEOREM 6. The set $\left\{\cdots, a_{-2}, a_{-1}, a_{0}, a_{1}, a_{2}, \ldots,\right\}$ with the convolution product is a infinite cyclic group. The unit in this group is the sequence $a_{0}=(1,0,0, \ldots$,$) . The convolutional inverse of the sequence a_{i}$ is the sequence a_{-i}. For any sequence y the equation $a_{i} * x=y$ has the unique solution $x=a_{-i} * y$. The group generator is the sequence a_{1}.

TABLE II

$r(\cdot, 2)$	1	6	30	146	714	\cdots	a_{3}
$r(\cdot, 1)$	1	4	16	68	304	\cdots	a_{2}
$r(\cdot, 0)$	1	2	6	22	90	\ldots	a_{1}
$r(\cdot,-1)$	1	0	0	0	0	\cdots	a_{0}
$r(\cdot,-2)$	1	-2	-2	-2	-22	\ldots	a_{-1}
$r(\cdot,-3)$	1	-4	0	-4	-16	\ldots	a_{-2}
$r(\cdot,-4)$	1	-6	6	-2	-6	\ldots	a_{-3}

The generating function of numbers in a_{1} is given by (24) and (20). From the relation

$$
\begin{equation*}
1-t-\left(1-6 t+t^{2}\right)^{1 / 2}=2 \sum_{n=1}^{\infty} r(n-1,0) t^{n} \tag{28}
\end{equation*}
$$

we obtain after formal derivation

$$
\begin{equation*}
-1-(t-3)\left(1-6 t+t^{2}\right)^{-1 / 2}=2 \sum_{n=0}^{\infty}(n+1) r(n, 0) t^{n} \tag{29}
\end{equation*}
$$

Multiply (29) by $1-6 t+t^{2}$. We get, again using (28), the relation

$$
\begin{aligned}
1+t & +(t-3) \sum_{n=1}^{\infty} r(n-1,0) t^{n} \\
& =\left(1-6 t+t^{2}\right) \sum_{n=0}^{\infty}(n+1) r(n, 0) t^{n}
\end{aligned}
$$

The equality principle of formal power series gives a new result:
Theorem 7. The numbers $r(n, 0)$ admit a three-term recurrent formula $(n+1) r(n, 0)-3(2 n-1) r(n-1,0)+(n-2) r(n-2,0)=0, \quad n \geqslant 2$
with the initial conditions $r(0,0)=1$ and $r(1,0)=2$.
We can now get the numbers $r(n, 0)$ very quickly using (30): $r(6,0)=1806, r(7,0)=8558, r(8,0)=41586, r(9,0)=206098, r(10,0)=$ $1037718, r(11,0)=5293446, r(12,0)=27297738$.

We also can express the numbers $r(n, 0)$ by Legendre polynomials $P_{k}(x)$. The formal power series

$$
\left(1-2 x t+t^{2}\right)^{-1 / 2}=\sum_{k=0}^{\infty} P_{k}(x) t^{k}
$$

gives us the numbers $r(n, 0)$ in a closed form. It is easy to see that

$$
\begin{aligned}
2 \sum_{n=0}^{\infty} r(n, 0) t^{n+1}= & 1-t-\sum_{n=0}^{\infty} P_{n}(3) t^{n+2} \\
& +6 \sum_{n=0}^{\infty} P_{n}(3) t^{n+1}-\sum_{n=1}^{\infty} P_{n}(3) t^{n}
\end{aligned}
$$

It follows that

$$
2 r(n, 0)=-P_{n-1}(3)+6 P_{n}(3)-P_{n+1}(3) \quad \text { for } \quad n \geqslant 1
$$

THEOREM 8. The numbers $r(n, 0)$ can be written in the form

$$
r(n, 0)=-\frac{1}{2}\left(P_{n-1}(3)-6 P_{n}(3)+P_{n+1}(3)\right)
$$

for every $n \geqslant 1$, where $P_{k}(x)$ denote the Legendre polynomials.

References

1. I. Niven,Formal power series, Amer. Math. Monthly 76 (1969), 871-889.
2. S. Roman, "The Umbral Calculus," Academic Press, Orlando, FL, 1984.
