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ABSTRACT 

The degenerate Bernoulli numbers )(m  can be defined by means of the exponential generating function 
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 tt L.Carlitz proved an analogue of the Staudt- clausen theorem for these numbers and he 

showed that )(m    is polynomials in λ of degree ≤ m. As further applications we derive several 

identities, recurrences, and congruences involving the Bernoulli numbers, degenerate Bernoulli numbers 

and polynomials. 
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INTRODUCTION 

Carlitz (1956) defined the degenerate Bernoulli numbers  )(m  by means of the generating function 
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(1.1) 

We have mm  )0( , the ordinary Bernoulli number In (Carlitz, 1956, 1979) Carlitz proved many 

properties of ),(m including an analogue of the staudt-clausentheorem. He also pointed out that 

)(m  is a polynomials in λ with degree ≤ m. we have 

0 ( ) 1    

22

1
)(1


 


  

66

1
)(

2

2


   

44
)(

3

3


 


  

42

4
30

19

3

2

30

1
)(  


  

53

5
4

9

2

5

4

1
)(   And so on. 

Carlitz (1956, 1979) also defined the degenerate Bernoulli polynomials  0for ),(  xm  by means 
of the generating function. 
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(1.2) 

Where λµ=1.These are polynomials in λ and x with rational coefficients. We often write

)0,()(  mm for
, and refer to the polynomial 

)(m  as a degenerate Bernoulli number. The first few 

are 
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And so on. 

One combinatorial significance these polynomials have found is in expressing sums of generalized falling 

factorials 
:
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 specifically, we have 
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For all integers a>0 and m≥0 [2 Eq. (5.4)], where 

).)1()......(2)(( 
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The Bernoulli polynomials
)(xm  may be defined by the generating function,
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(1.4) 

And their values at x=0 are called the Bernoulli numbers and denoted m .Since 

0)1(    aset t

 it is evident that 
),0( xm )(xm  letting 

0
 in (1.3) yields the 

familiar identity 
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Expressing power sums in terms of Bernoulli polynomials. 

A Recurrence Relation of m  

In (Howard, 1996), For any positive integer m and any positive integer n ≥1,we have 
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(2.1) 

Proof: Let n be any positive integer greater than 1.Noticing that )1(

)1(
x

nx

e

e





 is the sum of finite geometric 

series, we have 
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Multiplying both sides by )1( nxe

x

 , we obtain 
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From the definition of the Bernoulli numbers, we now have 
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By the Cauchy product rule, we get 
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Because a power series expansion is unique, we have 
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 For all m≥1 

A Recurrence Relation of ),( xm 
 

In this section, we derive the following recurrence relation for ),( xm   
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Proof:-We know that the degenerate Bernoulli polynomial 
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By (1.1) we get
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By the Binomial expansion 
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By the Cauchy product rule 
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This is new recurrence relation. 

Properties of Degenerate Bernoulli Polynomial 
In this section, some of well-known properties of Degenerate Bernoulli polynomials are derived from the 

generating function (1.2) 

Property 1: 

),( yxm  
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Proof: Now put yxx   in (1.2) 
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By the equation (1.2) 
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By the help of Binomial expansion 
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By the Cauchy product rule 
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Here y=1 then, 
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Property 2:

 ),(),( 1' xx mm  
               (4.3)

 Proof: By the generating function of degenerate Bernoulli polynomials 
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Differentiate above equation with respect to x 
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Equating the coefficients 
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  Where µλ=1 
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Property 3:        
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Proof:- By equation (1.2) 
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Put

xx 1   in above equation
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Equating the coefficients 
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Property 4:
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Proof: By equation (1.2)
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Put 
1 xx  in above equation 
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Subtracting (4.7)-(4.6) 
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By the Binomial expansion 
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Multiply and divide by n! 
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Equating the coefficients 
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Property 4:
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Proof: By equation (4.2)
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But we know that by (4.5) 
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Now put
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Now put x=0 in equation (4.9), then 
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By definition 
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