1 Hacettepe Journal of Mathematics and Statistics
† Volume 44 (2) (2015), 369-379

Incomplete generalized Fibonacci and Lucas polynomials

José L. Ramírez*

Abstract

In this paper, we define the incomplete $h(x)$-Fibonacci and $h(x)$-Lucas polynomials, we study the recurrence relations, some properties of these polynomials and the generating function of the incomplete Fibonacci and Lucas polynomials.

2000 AMS Classification: 11B39, 11B83.
Keywords: Incomplete $h(x)$-Fibonacci polynomials, Incomplete $h(x)$-Lucas polynomials, $h(x)$-Fibonacci polynomials, $h(x)$-Lucas polynomials.

Received 26 /07 /2013 : Accepted 27 /11 /2013 Doi : 10.15672/HJMS. 2015449414

1. Introduction

Fibonacci numbers and their generalizations have many interesting properties and applications in many fields of science and art (see, e.g., [7]). The Fibonacci numbers F_{n} are defined by the recurrence relation

$$
F_{0}=0, \quad F_{1}=1, \quad F_{n}=F_{n-1}+F_{n-2}, \quad n \geqslant 1 .
$$

The incomplete Fibonacci and Lucas numbers were introduced by Filipponi [6]. The incomplete Fibonacci numbers $F_{n}(k)$ and the incomplete Lucas numbers $L_{n}(k)$ are defined by

$$
F_{n}(k)=\sum_{j=0}^{k}\binom{n-1-j}{j} \quad\left(n=1,2,3, \ldots ; 0 \leq k \leq\left\lfloor\frac{n-1}{2}\right\rfloor\right)
$$

and

$$
L_{n}(k)=\sum_{j=0}^{k} \frac{n}{n-j}\binom{n-j}{j} \quad\left(n=1,2,3, \ldots ; 0 \leq k \leq\left\lfloor\frac{n}{2}\right\rfloor\right) .
$$

[^0]Is is easily seen that [7]

$$
F_{n}\left(\left\lfloor\frac{n-1}{2}\right\rfloor\right)=F_{n} \quad \text { and } \quad L_{n}\left(\left\lfloor\frac{n}{2}\right\rfloor\right)=L_{n} .
$$

Pintér and Srivastava [9] determined the generating functions of the incomplete Fibonacci and Lucas numbers. Djordjević [1] introduced the incomplete generalized Fibonacci and Lucas numbers. Djordjević and Srivastava [2] defined incomplete generalized Jacobsthal and Jacobsthal-Lucas numbers. Tasci and Cetin Firengiz [14] defined the incomplete Fibonacci and Lucas p-numbers. Tasci et al. [15] defined the incomplete bivariate Fibonacci and Lucas p-polynomials. Ramírez [11] introduced the incomplete k-Fibonacci and k-Lucas numbers, the bi-periodic incomplete Fibonacci sequences [10]. Ramírez and Sirvent introduced the incomplete tribonacci numbers and polynomials [12].

A large classes of polynomials can also be defined by Fibonacci-like recurrence relations such yield Fibonacci numbers. Such polynomials are called Fibonacci polynomials [7]. They were studied in 1883 by Catalan and Jacobsthal. The polynomials $F_{n}(x)$ studied by Catalan are defined by the recurrence relation

$$
F_{0}(x)=0, \quad F_{1}(x)=1, \quad F_{n+1}(x)=x F_{n}(x)+F_{n-1}(x), n \geqslant 1 .
$$

The Fibonacci polynomials studied by Jacobsthal are defined by

$$
J_{0}(x)=1, \quad J_{1}(x)=1, \quad J_{n+1}(x)=J_{n}(x)+x J_{n-1}(x), n \geqslant 1 .
$$

The Lucas polynomials $L_{n}(x)$, originally studied in 1970 by Bicknell, are defined by

$$
L_{0}(x)=2, \quad L_{1}(x)=x, \quad L_{n+1}(x)=x L_{n}(x)+L_{n-1}(x), n \geqslant 1 .
$$

Nalli and Haukkanen [8] introduced the $h(x)$-Fibonacci polynomials that generalize Catalan's Fibonacci polynomials $F_{n}(x)$ and the k-Fibonacci numbers $F_{k, n}$ [5]. Let $h(x)$ be a polynomial with real coefficients. The $h(x)$-Fibonacci polynomials $\left\{F_{h, n}(x)\right\}_{n \in \mathbb{N}}$ are defined by the recurrence relation

$$
\begin{equation*}
F_{h, 0}(x)=0, F_{h, 1}(x)=1, F_{h, n+1}(x)=h(x) F_{h, n}(x)+F_{h, n-1}(x), n \geqslant 1 . \tag{1.1}
\end{equation*}
$$

For $h(x)=x$ we obtain Catalan's Fibonacci polynomials, and for $h(x)=k$ we obtain k-Fibonacci numbers. For $k=1$ and $k=2$ we obtain the usual Fibonacci numbers and the Pell numbers.

Let $h(x)$ be a polynomial with real coefficients. The $h(x)$-Lucas polynomials $\left\{L_{h, n}(x)\right\}_{n \in \mathbb{N}}$ are defined by the recurrence relation

$$
L_{h, 0}(x)=2, L_{h, 1}(x)=h(x), L_{h, n+1}(x)=h(x) L_{h, n}(x)+L_{h, n-1}(x), n \geqslant 1 .
$$

For $h(x)=x$ we obtain the Lucas polynomials, and for $h(x)=k$ we have the k-Lucas numbers [3]. For $k=1$ we obtain the usual Lucas numbers. Nalli and Haukkanen [8] obtained some relations for these polynomials sequences. In particular, they found an explicit formula to $h(x)$-Fibonacci polynomials and $h(x)$-Lucas polynomials respectively

$$
\begin{align*}
F_{h, n}(x) & =\sum_{i=0}^{\left\lfloor\frac{n-1}{2}\right\rfloor}\binom{n-i-1}{i} h^{n-2 i-1}(x), \tag{1.2}\\
L_{h, n}(x) & =\sum_{i=0}^{\left\lfloor\frac{n}{2}\right\rfloor} \frac{n}{n-i}\binom{n-i}{i} h^{n-2 i}(x) . \tag{1.3}
\end{align*}
$$

From Equations (1.2) and (1.3), we introduce the incomplete $h(x)$-Fibonacci and $h(x)$ Lucas polynomials and we obtain new recurrence relations, new identities and the generating function of the incomplete $h(x)$-Fibonacci and $h(x)$-Lucas polynomials.

2. Some Properties of $h(x)$-Fibonacci and $h(x)$-Lucas Polynomials

The characteristic equation associated with the recurrence relation (1.1) is $v^{2}=$ $h(x) v+1$. The roots of this equation are

$$
\alpha(x)=\frac{h(x)+\sqrt{h(x)^{2}+4}}{2}, \quad \beta(x)=\frac{h(x)-\sqrt{h(x)^{2}+4}}{2} .
$$

Then we have the following basic identities:

$$
\alpha(x)+\beta(x)=h(x), \quad \alpha(x)-\beta(x)=\sqrt{h(x)^{2}+4}, \quad \alpha(x) \beta(x)=-1 .
$$

The $h(x)$-Fibonacci polynomials and the $h(x)$-Lucas numbers verify the following properties (see [8] for the proofs).

- Binet formula: $F_{h, n}(x)=\left(\alpha(x)^{n}-\beta(x)^{n}\right) /(\alpha(x)-\beta(x)), L_{h, n}(x)=\alpha(x)^{n}+$ $\beta(x)^{n}$.
- Generating function: $g_{f}(t)=t /\left(1-h(x) t-t^{2}\right)$.
- Relation with $h(x)$-Fibonacci polynomials:

$$
L_{h, n}(x)=F_{h, n-1}(x)+F_{h, n+1}(x), n \geqslant 1 .
$$

3. The incomplete $h(x)$-Fibonacci Polynomials

3.1. Definition. The incomplete $h(x)$-Fibonacci polynomials are defined by

$$
\begin{equation*}
F_{h, n}^{l}(x)=\sum_{i=0}^{l}\binom{n-1-i}{i} h^{n-2 i-1}(x), \quad 0 \leq l \leq\left\lfloor\frac{n-1}{2}\right\rfloor . \tag{3.1}
\end{equation*}
$$

In Table 1, some polynomials of incomplete $h(x)$-Fibonacci polynomials are provided.

$n \backslash l$	0	1	2	3
1	1			
2	h			
3	h^{2}	$h^{2}+1$		
4	h^{3}	$h^{3}+2 h$		
5	h^{4}	$h^{4}+3 h^{2}$	$h^{4}+3 h^{2}+1$	
6	h^{5}	$h^{5}+4 h^{3}$	$h^{5}+4 h^{3}+3 h$	
7	h^{6}	$h^{6}+5 h^{4}$	$h^{6}+5 h^{4}+6 h^{2}$	$h^{6}+5 h^{4}+6 h^{2}+1$

Table 1. The polynomials $F_{h, n}^{l}(x)$, for $1 \leqslant n \leqslant 7$.

Note that

$$
F_{1, n}^{\left\lfloor\frac{n-1}{2}\right\rfloor}(x)=F_{n} .
$$

For $h(x)=1$, we get incomplete Fibonacci numbers [6]. If $h(x)=k$ we obtained incomplete k-Fibonacci numbers [11].

Some special cases of (3.1) are

$$
\begin{aligned}
& F_{h, n}^{0}(x)=h^{n-1}(x),(n \geq 1) ; \\
& F_{h, n}^{1}(x)=h^{n-1}(x)+(n-2) h^{n-3}(x),(n \geq 3) ; \\
& F_{h, n}^{2}(x)=h^{n-1}(x)+(n-2) h^{n-3}(x)+\frac{(n-4)(n-3)}{2} h^{n-5}(x),(n \geq 5) ; \\
& F_{h, n}^{\left\lfloor\frac{n-1}{2}\right\rfloor}(x)=F_{h, n}(x),(n \geq 1) ; \\
& F_{h, n}^{\left\lfloor\frac{n-3}{2}\right\rfloor}(x)= \begin{cases}F_{h, n}(x)-\frac{n h(x)}{2}, & \text { if } n \geq 3 \text { and even; } \\
F_{h, n}(x)-1, & \text { if } n \geq 3 \text { and odd. }\end{cases}
\end{aligned}
$$

3.2. Proposition. The recurrence relation of the incomplete $h(x)$-Fibonacci polynomials $F_{h, n}^{l}(x)$ is

$$
\begin{equation*}
F_{h, n+2}^{l+1}(x)=h(x) F_{h, n+1}^{l+1}(x)+F_{h, n}^{l}(x), \quad 0 \leq l \leq\left\lfloor\frac{n-2}{2}\right\rfloor . \tag{3.2}
\end{equation*}
$$

The relation (3.2) can be transformed into the non-homogeneous recurrence relation

$$
\begin{equation*}
F_{h, n+2}^{l}(x)=h(x) F_{h, n+1}^{l}(x)+F_{h, n}^{l}(x)-\binom{n-1-l}{l} h^{n-1-2 l}(x) . \tag{3.3}
\end{equation*}
$$

Proof. From Definition 3.1 we get

$$
\begin{aligned}
h(x) F_{h, n+1}^{l+1}(x)+ & F_{h, n}^{l}(x) \\
& =h(x) \sum_{i=0}^{l+1}\binom{n-i}{i} h^{n-2 i}(x)+\sum_{i=0}^{l}\binom{n-i-1}{i} h^{n-2 i-1}(x) \\
& =\sum_{i=0}^{l+1}\binom{n-i}{i} h^{n-2 i+1}(x)+\sum_{i=1}^{l+1}\binom{n-i}{i-1} h^{n-2 i+1}(x) \\
& =h^{n-2 i+1}(x)\left(\sum_{i=0}^{l+1}\left[\binom{n-i}{i}+\binom{n-i}{i-1}\right]\right)-h^{n+1}(x)\binom{n}{-1} \\
& =\sum_{i=0}^{l+1}\binom{n-i+1}{i} h^{n-2 i+1}(x)-0 \\
& =F_{h, n+2}^{l}(x) .
\end{aligned}
$$

3.3. Proposition. The following equality holds:

$$
\begin{equation*}
\sum_{i=0}^{s}\binom{s}{i} F_{h, n+i}^{l+i}(x) h^{i}(x)=F_{h, n+2 s}^{l+s}(x), \quad 0 \leq l \leq \frac{n-s-1}{2} . \tag{3.4}
\end{equation*}
$$

Proof. We proceed by induction on s. The sum (3.4) clearly holds for $s=0$ and $s=1$; see (3.2). Now suppose that the result is true for all $j<s+1$. We prove it for $s+1$:

$$
\begin{aligned}
& \sum_{i=0}^{s+1}\binom{s+1}{i} F_{h, n+i}^{l+i}(x) h^{i}(x)=\sum_{i=0}^{s+1}\left[\binom{s}{i}+\binom{s}{i-1}\right] F_{h, n+i}^{l+i}(x) h^{i}(x) \\
& =\sum_{i=0}^{s+1}\binom{s}{i} F_{h, n+i}^{l+i}(x) h^{i}(x)+\sum_{i=0}^{s+1}\binom{s}{i-1} F_{h, n+i}^{l+i}(x) h^{i}(x) \\
& =F_{h, n+2 s}^{l+s}(x)+\binom{s}{s+1} F_{h, n+s+1}^{l+s+1}(x) h^{s+1}(x)+\sum_{i=-1}^{s}\binom{s}{i} F_{h, n+i+1}^{l+i+1}(x) h^{i+1}(x) \\
& =F_{h, n+2 s}^{l+s}(x)+0+\sum_{i=0}^{s}\binom{s}{i} F_{h, n+i+1}^{l+i+1}(x) h^{i+1}(x)+\binom{s}{-1} F_{h, n}^{l}(x) \\
& =F_{h, n+2 s}^{l+s}(x)+h(x) \sum_{i=0}^{s}\binom{s}{i} F_{h, n+i+1}^{l+i+1}(x) h^{i}(x)+0 \\
& =F_{h, n+2 s}^{l+s}(x)+h(x) F_{h, n+2 s+1}^{l+s+1}(x)=F_{h, n+2 s+2}^{l+s+1}(x) .
\end{aligned}
$$

3.4. Proposition. For $n \geq 2 l+2$,

$$
\begin{equation*}
\sum_{i=0}^{s-1} F_{h, n+i}^{l}(x) h^{s-1-i}(x)=F_{h, n+s+1}^{l+1}(x)-h^{s}(x) F_{h, n+1}^{l+1}(x) . \tag{3.5}
\end{equation*}
$$

Proof. We proceed by induction on s. The sum (3.5) clearly holds for $s=1$; see (3.2). Now suppose that the result is true for all $j<s$. We prove it for s :

$$
\begin{aligned}
& \sum_{i=0}^{s} F_{h, n+i}^{l}(x) h^{s-i}(x)=h(x) \sum_{i=0}^{s-1} F_{h, n+i}^{l}(x) h^{s-i-1}(x)+F_{h, n+s}^{l}(x) \\
& =h(x)\left(F_{h, n+s+1}^{l+1}(x)-h^{s}(x) F_{h, n+1}^{l+1}(x)\right)+F_{h, n+s}^{l}(x) \\
& =\left(h(x) F_{h, n+s+1}^{l+1}(x)+F_{h, n+s}^{l}(x)\right)-h^{s+1}(x) F_{h, n+1}^{l+1}(x) \\
& \quad=F_{h, n+s+2}^{l+1}(x)-h^{s+1}(x) F_{h, n+1}^{l+1}(x)
\end{aligned}
$$

3.5. Lemma. The following equality holds:

$$
\begin{equation*}
F_{h, n}^{\prime}(x)=h^{\prime}(x)\left(\frac{n L_{h, n}(x)-h(x) F_{h, n}(x)}{h^{2}(x)+4}\right) . \tag{3.6}
\end{equation*}
$$

Proof. By deriving into the Binet's formula it is obtained:

$$
\begin{aligned}
& F_{h, n}^{\prime}(x)=\frac{n\left[\alpha^{n-1}(x)-(-\alpha(x))^{-n-1}\right] \alpha^{\prime}(x)}{\alpha(x)+\alpha(x)^{-1}} \\
&-\frac{\left[\alpha^{n}(x)-(-\alpha(x))^{-n}\right]\left(1-\alpha^{-2}(x)\right) \alpha^{\prime}(x)}{\left[\alpha(x)+\alpha^{-1}(x)\right]^{2}}
\end{aligned}
$$

where $\alpha(x)=\left(h(x)+\sqrt{h^{2}(x)+4}\right) / 2$. Then $\alpha^{\prime}(x)=\left(h^{\prime}(x) \alpha(x)\right) /\left(\alpha(x)+\alpha^{-1}(x)\right), 1-$ $\alpha^{-2}(x)=h(x) / \alpha(x)$. Therefore

$$
\begin{aligned}
F_{h, n}^{\prime}(x)=\frac{n\left[\alpha^{n}(x)+(-\alpha(x))^{-n}\right]}{\left[\alpha(x)+\alpha^{\prime}(x)\right.} & \\
& -\frac{\left[\alpha^{n}(x)-(-\alpha(x))^{-n}\right]}{\alpha(x)+\alpha^{-1}(x)} \cdot \frac{h(x) h^{\prime}(x)}{\left[\alpha(x)+\alpha^{-1}(x)\right]^{2}} .
\end{aligned}
$$

On the other hand, $F_{h, n+1}(x)+F_{h, n-1}(x)=\alpha^{n}(x)+\beta^{n}(x)=\alpha^{n}(x)+(-\alpha(x))^{-n}=$ $L_{h, n}(x)$.
From where, after some algebra Equation (3.6) is obtained.
Lemma 3.5 generalizes Proposition 13 of [4].
3.6. Lemma. The following equality holds:

$$
\begin{align*}
\sum_{i=0}^{\left\lfloor\frac{n-1}{2}\right\rfloor} i\binom{n-1-i}{i} h^{n-1-2 i}(x) & \tag{3.7}\\
& =\frac{\left(\left(h(x)^{2}+4\right) n-4\right) F_{h, n}(x)-n h(x) L_{h, n}(x)}{2\left(h^{2}(x)+4\right)} .
\end{align*}
$$

Proof. From Equation (1.2) we have

$$
h(x) F_{h, n}(x)=\sum_{i=0}^{\left\lfloor\frac{n-1}{2}\right\rfloor}\binom{n-1-i}{i} h^{n-2 i}(x) .
$$

By deriving into the above equation:

$$
\begin{aligned}
h^{\prime}(x) F_{h, n}(x)+h(x) F_{h, n}^{\prime}(x)=\sum_{i=0}^{\left\lfloor\frac{n-1}{2}\right\rfloor}(n-2 i)\binom{n-1-i}{i} h^{n-2 i-1}(x) h^{\prime}(x) \\
=n F_{h, n}(x) h^{\prime}(x)-2 \sum_{i=0}^{\left\lfloor\frac{n-1}{2}\right\rfloor} i\binom{n-1-i}{i} h^{n-2 i-1}(x) h^{\prime}(x)
\end{aligned}
$$

From Lemma 3.5

$$
\begin{aligned}
h^{\prime}(x) F_{h, n}(x)+h(x) & h^{\prime}(x)\left(\frac{n L_{h, n}(x)-h(x) F_{h, n}(x)}{h^{2}(x)+4}\right) \\
& =n F_{h, n}(x) h^{\prime}(x)-2 \sum_{i=0}^{\left\lfloor\frac{n-1}{2}\right\rfloor} i\binom{n-1-i}{i} h^{n-2 i-1}(x) h^{\prime}(x)
\end{aligned}
$$

From where, after some algebra Equation (3.7) is obtained.
3.7. Proposition. The following equality holds:

$$
\sum_{l=0}^{\left\lfloor\frac{n-1}{2}\right\rfloor} F_{h, n}^{l}(x)= \begin{cases}\frac{4 F_{h, n}(x)+n h(x) L_{h, n}(x)}{2\left(h^{2}(x)+4\right)}, & \text { if } n \text { is even } \tag{3.8}\\ \frac{\left(h^{2}(x)+8\right) F_{h, n}(x)+n h(x) L_{h, n}(x)}{2\left(h^{2}(x)+4\right)}, & \text { if } n \text { is odd }\end{cases}
$$

Proof. We have

$$
\begin{aligned}
& \sum_{l=0}^{\left\lfloor\frac{n-1}{2}\right\rfloor} F_{h, n}^{l}(x) \\
& =\binom{n-1-0}{0} h^{n-1}(x)+\left[\binom{n-1-0}{0} h^{n-1}(x)+\binom{n-1-1}{1} h^{n-3}(x)\right] \\
& +\cdots+\left[\binom{n-1-0}{0} h^{n-1}(x)+\binom{n-1-1}{1} h^{n-3}(x)\right. \\
& \left.+\cdots+\binom{n-1-\left\lfloor\frac{n-1}{2}\right\rfloor}{\left\lfloor\frac{n-1}{2}\right\rfloor} h^{n-1-2\left\lfloor\frac{n-1}{2}\right\rfloor}(x)\right] \\
& =\left(\begin{array}{c}
\left\lfloor\frac{n-1}{2}\right\rfloor+1
\end{array}\right)\binom{n-1-0}{0} h^{n-1}(x)+\left\lfloor\frac{n-1}{2}\right\rfloor\binom{ n-1-1}{1} h^{n-3}(x) \\
& +\cdots+\binom{n-1-\left\lfloor\frac{n-1}{2}\right\rfloor}{\left\lfloor\frac{n-1}{2}\right\rfloor} h^{n-1-2\left\lfloor\frac{n-1}{2}\right\rfloor}(x) \\
& =\sum_{i=0}^{\left\lfloor\frac{n-1}{2}\right\rfloor}\left(\left\lfloor\frac{n-1}{2}\right\rfloor+1-i\right)\binom{n-1-i}{i} h^{n-1-2 i}(x) \\
& =\sum_{i=0}^{\left.\frac{n-1}{2}\right\rfloor}\left(\left\lfloor\frac{n-1}{2}\right\rfloor+1\right)\binom{n-1-i}{i} h^{n-1-2 i}(x) \\
& \\
& \left.+\frac{n-1}{2}\right\rfloor \\
& -\sum_{i=0}^{n} i\binom{n-1-i}{i} h^{n-1-2 i}(x) \\
& =\left(\left\lfloor\frac{n-1}{2}\right\rfloor+1\right) F_{h, n}(x)-\sum_{i=0}^{2} i\binom{n-1-i}{i} h^{n-1-2 i}(x) .
\end{aligned}
$$

From Lemma 3.6 the Equation (3.8) is obtained.

4. The incomplete $h(x)$-Lucas Polynomials

4.1. Definition. The incomplete $h(x)$-Lucas polynomials are defined by

$$
\begin{equation*}
L_{h, n}^{l}(x)=\sum_{i=0}^{l} \frac{n}{n-i}\binom{n-i}{i} h^{n-2 i}(x), \quad 0 \leq l \leq\left\lfloor\frac{n}{2}\right\rfloor . \tag{4.1}
\end{equation*}
$$

In Table 2, some polynomials of incomplete $h(x)$-Lucas polynomials are provided. Note that

$$
L_{1, n}^{\left\lfloor\frac{n}{2}\right\rfloor}(x)=L_{n}
$$

$n \backslash l$	0	1	2	3
1	h			
2	h^{2}	$h^{2}+2$		
3	h^{3}	$h^{3}+3 h$		
4	h^{4}	$h^{4}+4 h^{2}$	$h^{4}+4 h^{2}+2$	
5	h^{5}	$h^{5}+5 h^{3}$	$h^{5}+5 h^{3}+5 h$	
6	h^{6}	$h^{6}+6 h^{4}$	$h^{6}+6 h^{4}+9 h^{2}$	$h^{6}+6 h^{4}+9 h^{2}+2$
7	h^{7}	$h^{7}+7 h^{5}$	$h^{7}+7 h^{5}+14 h^{3}$	$h^{7}+7 h^{5}+14 h^{3}+7 h$
Table 2. The polynomials $L_{h, n}^{l}(x)$, for $1 \leqslant n \leqslant 7$				

Some special cases of (4.1) are

$$
\begin{aligned}
& L_{h, n}^{0}(x)=h^{n}(x), \quad(n \geq 1) ; \\
& L_{h, n}^{1}(x)=h^{n}(x)+n h^{n-2}(x), \quad(n \geq 2) ; \\
& L_{h, n}^{2}(x)=h^{n}(x)+n h^{n-2}(x)+\frac{n(n-3)}{2} h^{n-4}(x), \quad(n \geq 4) ; \\
& L_{h, n}^{\left\lfloor\frac{n}{2}\right\rfloor}(x)=L_{h, n}(x),(n \geq 1) ; \\
& L_{h, n}^{\left\lfloor\frac{n-2}{2}\right\rfloor}(x)= \begin{cases}L_{h, n}(x)-2, & \text { if } n \geq 2 \text { and even; } \\
L_{h, n}(x)-n h(x), & \text { if } n \geq 2 \text { and odd. }\end{cases}
\end{aligned}
$$

4.2. Proposition. The following equality holds:

$$
\begin{equation*}
L_{h, n}^{l}(x)=F_{h, n-1}^{l-1}(x)+F_{h, n+1}^{l}(x) ; \quad 0 \leq l \leq\left\lfloor\frac{n}{2}\right\rfloor . \tag{4.2}
\end{equation*}
$$

Proof. Applying Definition 3.1 to the right-hand side (RHS) of (4.2) results

$$
\begin{aligned}
(R H S) & =\sum_{i=0}^{l-1}\binom{n-2-i}{i} h^{n-2-2 i}(x)+\sum_{i=0}^{l}\binom{n-i}{i} h^{n-2 i}(x) \\
& =\sum_{i=1}^{l}\binom{n-1-i}{i-1} h^{n-2 i}(x)+\sum_{i=0}^{l}\binom{n-i}{i} h^{n-2 i}(x) \\
& =\sum_{i=0}^{l}\left[\binom{n-1-i}{i-1}+\binom{n-i}{i}\right] h^{n-2 i}(x)-\binom{n-1}{-1} \\
& =\sum_{i=0}^{l} \frac{n}{n-i}\binom{n-i}{i} h^{n-2 i}(x)+0=L_{h, n}^{l}(x) .
\end{aligned}
$$

4.3. Proposition. The recurrence relation of the incomplete $h(x)$-Lucas polynomials $L_{h, n}^{l}(x)$ is

$$
\begin{equation*}
L_{h, n+2}^{l+1}(x)=h(x) L_{h, n+1}^{l+1}(x)+L_{h, n}^{l}(x), \quad 0 \leq l \leq\left\lfloor\frac{n}{2}\right\rfloor . \tag{4.3}
\end{equation*}
$$

The relation (4.3) can be transformed into the non-homogeneous recurrence relation

$$
\begin{equation*}
L_{h, n+2}^{l}(x)=h(x) L_{h, n+1}^{l}(x)+L_{h, n}^{l}(x)-\frac{n}{n-l}\binom{n-l}{l} h^{n-2 l}(x) . \tag{4.4}
\end{equation*}
$$

Proof. It is clear from (4.2) and (3.2).
4.4. Proposition. The following equality holds:

$$
h(x) L_{h, n}^{l}(x)=F_{h, n+2}^{l}(x)-F_{h, n-2}^{l-2}(x), \quad 0 \leq l \leq\left\lfloor\frac{n-1}{2}\right\rfloor .
$$

Proof. By (4.2),

$$
F_{h, n+2}^{l}(x)=L_{h, n+1}^{l}(x)-F_{h, n}^{l-1}(x) \quad \text { and } \quad F_{h, n-2}^{l-2}(x)=L_{h, n-1}^{l-1}(x)-F_{h, n}^{l-1}(x),
$$

whence, from (4.3)

$$
F_{h, n+2}^{l}(x)-F_{h, n-2}^{l-2}(x)=L_{h, n+1}^{l}(x)-L_{h, n-1}^{l-1}(x)=h(x) L_{h, n}^{l}(x) .
$$

4.5. Proposition. The following equality holds:

$$
\sum_{i=0}^{s}\binom{s}{i} L_{h, n+i}^{l+i}(x) h^{i}(x)=L_{h, n+2 s}^{l+s}(x), \quad 0 \leq l \leq \frac{n-s}{2}
$$

Proof. Using (4.2) and (3.4), we get

$$
\begin{aligned}
& \sum_{i=0}^{s}\binom{s}{i} L_{h, n+i}^{l+i}(x) h^{i}(x)=\sum_{i=0}^{s}\binom{s}{i} {\left[F_{h, n+i-1}^{l+i-1}(x)+F_{h, n+i+1}^{l+i}(x)\right] h^{i}(x) } \\
&=\sum_{i=0}^{s}\binom{s}{i} F_{h, n+i-1}^{l+i-1}(x) h^{i}(x)+\sum_{i=0}^{s}\binom{s}{i} F_{h, n+i+1}^{l+i}(x) h^{i}(x) \\
&=F_{h, n-1+2 s}^{l-1+s}(x)+F_{h, n+1+2 s}^{l+s}(x)=L_{h, n+2 s}^{l+s}(x)
\end{aligned}
$$

4.6. Proposition. For $n \geq 2 l+1$,

$$
\sum_{i=0}^{s-1} L_{h, n+i}^{l}(x) h^{s-1-i}(x)=L_{h, n+s+1}^{l+1}(x)-h^{s}(x) L_{h, n+1}^{l+1}(x) .
$$

The proof can be done by using (4.3) and induction on s.
4.7. Lemma. The following equality holds:

$$
\sum_{i=0}^{\left\lfloor\frac{n}{2}\right\rfloor} i \frac{n}{n-i}\binom{n-i}{i} h^{n-2 i}(x)=\frac{n}{2}\left[L_{h, n}(x)-h(x) F_{h, n}(x)\right] .
$$

The proof is similar to Lemma 3.6.
4.8. Proposition. The following equality holds:

$$
\sum_{l=0}^{\left\lfloor\frac{n}{2}\right\rfloor} L_{h, n}^{l}(x)= \begin{cases}L_{h, n}(x)+\frac{n h(x)}{2} F_{h, n}(x), & \text { if } n \text { is even } \tag{4.5}\\ \frac{1}{2}\left(L_{h, n}(x)+n h(x) F_{h, n}(x)\right), & \text { if } n \text { is odd }\end{cases}
$$

Proof. An argument analogous to that of the proof of Proposition 3.7 yields

$$
\sum_{l=0}^{\left\lfloor\frac{n}{2}\right\rfloor} L_{h, n}^{l}(x)=\left(\left\lfloor\frac{n}{2}\right\rfloor+1\right) L_{h, n}(x)-\sum_{i=0}^{\left\lfloor\frac{n}{2}\right\rfloor} i \frac{n}{n-i}\binom{n-i}{i} h^{n-2 i}(x)
$$

From Lemma 4.7 the Equation (4.5) is obtained.

5. Generating functions of the incomplete $h(x)$-Fibonacci and $h(x)$ Lucas polynomials

In this section, we give the generating functions of incomplete $h(x)$-Fibonacci and $h(x)$-Lucas polynomials.
5.1. Lemma. (See [9], p. 592). Let $\left\{s_{n}\right\}_{n=0}^{\infty}$ be a complex sequence satisfying the followin non-homogeneous recurrence relation:

$$
s_{n}=a s_{n-1}+b s_{n-2}+r_{n}, \quad n>1
$$

where a and b are complex numbers and $\left\{r_{n}\right\}$ is a given complex sequence. Then the generating function $U(t)$ of the sequence $\left\{s_{n}\right\}$ is

$$
U(t)=\frac{G(t)+s_{0}-r_{0}+\left(s_{1}-s_{0} a-r_{1}\right) t}{1-a t-b t^{2}}
$$

where $G(t)$ denotes the generating function of $\left\{r_{n}\right\}$.
5.2. Theorem. The generating function of the incomplete $h(x)$-Fibonacci polynomials $F_{h, n}^{l}(x)$ is given by

$$
\begin{aligned}
& R_{h, l}(x)=\sum_{i=0}^{\infty} F_{h, i}^{l}(x) t^{i} \\
& =t^{2 l+1}\left[F_{h, 2 l+1}(x)+\left(F_{h, 2 l+2}(x)-h(x) F_{h, 2 l+1}(x)\right) t\right. \\
& \left.\quad-\frac{t^{2}}{(1-h(x) t)^{l+1}}\right]\left[1-h(x) t-t^{2}\right]^{-1}
\end{aligned}
$$

Proof. Let l be a fixed positive integer. From (3.1) and (3.3), $F_{h, n}^{l}(x)=0$ for $0 \leq n<$ $2 l+1, F_{h, 2 l+1}^{l}(x)=F_{h, 2 l+1}(x)$, and $F_{h, 2 l+2}^{l}(x)=F_{h, 2 l+2}(x)$, and that

$$
F_{h, n}^{l}(x)=h(x) F_{h, n-1}^{l}(x)+F_{h, n-2}^{l}(x)-\binom{n-3-l}{l} h^{n-3-2 l}(x) .
$$

Now let

$$
s_{0}=F_{h, 2 l+1}^{l}(x), s_{1}=F_{h, 2 l+2}^{l}(x), \quad \text { and } \quad s_{n}=F_{h, n+2 l+1}^{l}(x) .
$$

Also let $r_{0}=r_{1}=0$, and

$$
r_{n}=\binom{n+l-1}{n-2} h^{n-2}(x)
$$

The generating function of the sequence $\left\{r_{n}\right\}$ is $G(t)=t^{2} /(1-h(x) t)^{l+1}$; see [13, p. 355]. Thus, from Lemma 5.1, we get the generating function $R_{h, l}(x)$ of sequence $\left\{s_{n}\right\}$.
5.3. Theorem. The generating function of the incomplete $h(x)$-Lucas polynomials $L_{h, n}^{l}(x)$ is given by

$$
\begin{aligned}
& S_{h, l}(x)=\sum_{i=0}^{\infty} L_{h, i}^{l}(x) t^{i} \\
& =t^{2 l}\left[L_{h, 2 l}(x)+\left(L_{h, 2 l+1}(x)-h(x) L_{h, 2 l}(x)\right) t\right. \\
& \left.\qquad-\frac{t^{2}(2-t)}{(1-h(x) t)^{l+1}}\right]\left[1-h(x) t-t^{2}\right]^{-1}
\end{aligned}
$$

Proof. The proof is similar to the proof of Theorem 5.2. Let l be a fixed positive integer. From (4.1) and (4.4), $L_{h, n}^{l}(x)=0$ for $0 \leq n<2 l, L_{h, 2 l}^{l}(x)=L_{h, 2 l}(x)$, and $L_{h, 2 l+1}^{l}(x)=$ $L_{h, 2 l+1}(x)$, and that

$$
L_{h, n}^{l}(x)=h(x) L_{h, n-1}^{l}(x)+L_{h, n-2}^{l}(x)-\frac{n-2}{n-2-l}\binom{n-2-l}{n-2-2 l} h^{n-2-2 l}(x) .
$$

Now let

$$
s_{0}=L_{h, 2 l}^{l}(x), \quad s_{1}=L_{h, 2 l+1}^{l}(x), \quad \text { and } \quad s_{n}=L_{h, n+2 l}^{l}(x) .
$$

Also let $r_{0}=r_{1}=0$, and

$$
r_{n}=\binom{n+2 l-2}{n+l-2} h^{n+2 l-2}(x)
$$

The generating function of the sequence $\left\{r_{n}\right\}$ is $G(t)=t^{2}(2-t) /(1-h(x) t)^{l+1}$; see [13, p. 355]. Thus, from Lemma 5.1, we get the generating function $S_{h, l}(x)$ of sequence $\left\{s_{n}\right\}$.

6. Acknowledgments

The author would like to thank the anonymous referees for their helpful comments. The author was partially supported by Universidad Sergio Arboleda.

References

[1] Djordjević, G. B. Generating functions of the incomplete generalized Fibonacci and generalized Lucas numbers, Fibonacci Quart. 42(2), 106-113, 2004.
[2] Djordjević, G. B. and Srivastava, H. M. Incomplete generalized Jacobsthal and JacobsthalLucas numbers, Math. Comput. Modelling 42(9-10), 1049-1056, 2005.
[3] Falcón, S. On the k-Lucas Numbers, Int. J. Contemp. Math. Sci. 21(6), 1039-1050, 2011.
[4] Falcón, S. and Plaza, A. On k-Fibonacci sequences and polynomials and their derivatives, Chaos Solitons Fractals 39(3), 1005-1019, 2009.
[5] Falcón, S. and Plaza, A. On the Fibonacci k-numbers, Chaos Solitons Fractals 32(5), 16151624, 2007.
[6] Filipponi, P. Incomplete Fibonacci and Lucas numbers, Rend. Circ. Mat. Palermo 45(2), 37-56, 1996.
[7] Koshy, T. Fibonacci and Lucas Numbers with Applications, A Wiley-Interscience, New York, 2001.
[8] Nalli, A. and Haukkanen, P. On generalized Fibonacci and Lucas polynomials, Chaos Solitons Fractals 42(5), 3179-3186, 2009.
[9] Pintér, Á. and Srivastava, H. M. Generating functions of the incomplete Fibonacci and Lucas numbers, Rend. Circ. Mat. Palermo 48(2), 591-596, 1999.
[10] Ramírez, J. Bi-periodic incomplete Fibonacci sequence Ann. Math. Inform. 42, 83-92, 2013.
[11] Ramírez, J. Incomplete k-Fibonacci and k-Lucas numbers, Chinese J. of Math. Article ID 107145, 2013.
[12] Ramírez, J. and Sirvent, V. Incomplete tribonacci numbers and polynomials, J. Integer Seq. 17, 2014.
[13] Srivastava, H. M. and Manocha, H. L. A Treatise on Generating Functions, Halsted Pres (Ellis Horwood Limited, Chichester), John Wiley and Sons, New York, 1984.
[14] Tasci, D. and Cetin Firengiz, M. Incomplete Fibonacci and Lucas p-numbers, Math. Comput. Modelling 52(9-10), 1763-1770, 2010.
[15] Tasci, D., Cetin Firengiz, M. and Tuglu, N. Incomplete bivariate Fibonacci and Lucas ppolynomials, Discrete Dyn. Nat. Soc., 2012.

[^0]: *Departamento de Matemáticas, Universidad Sergio Arboleda, Bogotá, Colombia. Email: josel.ramirez@ima.usergioarboleda.edu.co Corresponding Author.

