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Instituto de Matemáticas y sus Aplicaciones, Universidad Sergio Arboleda, Colombia
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We define the incomplete k-Fibonacci and k-Lucas numbers; we study the recurrence relations and some properties of these
numbers.

1. Introduction

Fibonacci numbers and their generalizations have many
interesting properties and applications to almost every field
of science and art (e.g., see [1]). Fibonacci numbers 𝐹

𝑛
are

defined by the recurrence relation

𝐹
0
= 0, 𝐹

1
= 1, 𝐹

𝑛+1
= 𝐹
𝑛
+ 𝐹
𝑛−1
, 𝑛 ⩾ 1. (1)

There exist a lot of properties about Fibonacci numbers.
In particular, there is a beautiful combinatorial identity to
Fibonacci numbers [1]

𝐹
𝑛
=

⌊(𝑛−1)/2⌋

∑

𝑖=0

(
𝑛 − 𝑖 − 1

𝑖
) . (2)

From (2), Filipponi [2] introduced the incomplete Fibonacci
numbers𝐹

𝑛
(𝑠) and the incomplete Lucas numbers𝐿

𝑛
(𝑠).They

are defined by

𝐹
𝑛
(𝑠) =

𝑠

∑

𝑗=0

(
𝑛 − 1 − 𝑗

𝑗
) (𝑛 = 1, 2, 3, . . . ; 0 ≤ 𝑠 ≤ ⌊

𝑛 − 1

2
⌋) ,

𝐿
𝑛
(𝑠) =

𝑠

∑

𝑗=0

𝑛

𝑛 − 𝑗
(
𝑛 − 𝑗

𝑗
) (𝑛 = 1, 2, 3, . . . ; 0 ≤ 𝑠 ≤ ⌊

𝑛

2
⌋) .

(3)

Further in [3], generating functions of the incomplete
Fibonacci and Lucas numbers are determined. In [4], Djord-
jević gave the incomplete generalized Fibonacci and Lucas
numbers. In [5], Djordjević and Srivastava defined incom-
plete generalized Jacobsthal and Jacobsthal-Lucas numbers.

In [6], the authors define the incomplete Fibonacci and Lucas
𝑝-numbers. Also the authors define the incomplete bivariate
Fibonacci and Lucas 𝑝-polynomials in [7].

On the other hand, many kinds of generalizations of
Fibonacci numbers have been presented in the literature. In
particular, a generalization is the 𝑘-Fibonacci Numbers.

For any positive real number 𝑘, the 𝑘-Fibonacci sequence,
say {𝐹

𝑘,𝑛
}
𝑛∈N, is defined recurrently by

𝐹
𝑘,0
= 0, 𝐹

𝑘,1
= 1, 𝐹

𝑘,𝑛+1
= 𝑘𝐹
𝑘,𝑛
+ 𝐹
𝑘,𝑛−1

, 𝑛 ⩾ 1.

(4)

In [8], 𝑘-Fibonacci numbers were found by studying
the recursive application of two geometrical transformations
used in the four-triangle longest-edge (4TLE) partition.
These numbers have been studied in several papers; see [8–
14].

For any positive real number 𝑘, the 𝑘-Lucas sequence, say
{𝐿
𝑘,𝑛
}
𝑛∈N

, is defined recurrently by

𝐿
𝑘,0
= 2, 𝐿

𝑘,1
= 𝑘, 𝐿

𝑘,𝑛+1
= 𝑘𝐿
𝑘,𝑛
+ 𝐿
𝑘,𝑛−1

. (5)

If 𝑘 = 1, we have the classical Lucas numbers. Moreover,
𝐿
𝑘,𝑛
= 𝐹
𝑘,𝑛−1

+ 𝐹
𝑘,𝑛+1

, 𝑛 ⩾ 1; see [15].
In [12], the explicit formula to 𝑘-Fibonacci numbers is

𝐹
𝑘,𝑛
=

⌊(𝑛−1)/2⌋

∑

𝑖=0

(
𝑛 − 𝑖 − 1

𝑖
) 𝑘
𝑛−2𝑖−1

, (6)

and the explicit formula of 𝑘-Lucas numbers is

𝐿
𝑘,𝑛
(𝑥) =

⌊𝑛/2⌋

∑

𝑖=0

𝑛

𝑛 − 𝑖
(
𝑛 − 𝑖

𝑖
) 𝑘
𝑛−2i
. (7)
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From (6) and (7), we introduce the incomplete 𝑘-
Fibonacci and 𝑘-Lucas numbers and we obtain new recurrent
relations, new identities, and their generating functions.

2. The Incomplete 𝑘-Fibonacci Numbers

Definition 1. The incomplete 𝑘-Fibonacci numbers are
defined by

𝐹
𝑙

𝑘,𝑛
=

𝑙

∑

𝑖=0

(
𝑛 − 1 − 𝑖

𝑖
) 𝑘
𝑛−2𝑖−1

, 0 ≤ 𝑙 ≤ ⌊
𝑛 − 1

2
⌋ . (8)

In Table 1, some values of incomplete 𝑘-Fibonacci num-
bers are provided.

We note that

𝐹
⌊(𝑛−1)/2⌋

1,𝑛
= 𝐹
𝑛
. (9)

For 𝑘 = 1, we get incomplete Fibonacci numbers [2].
Some special cases of (8) are

𝐹
0

𝑘,𝑛
= 𝑘
𝑛−1

; (𝑛 ≥ 1) ,

𝐹
1

𝑘,𝑛
= 𝑘
𝑛−1

+ (𝑛 − 2) 𝑘
𝑛−3

; (𝑛 ≥ 3)

𝐹
2

𝑘,𝑛
= 𝑘
𝑛−1

+ (𝑛 − 2) 𝑘
𝑛−3

+
(𝑛 − 4) (𝑛 − 3)

2
𝑘
𝑛−5

; (𝑛 ≥ 5)

𝐹
⌊(𝑛−1)/2⌋

𝑘,𝑛
= 𝐹
𝑘,𝑛
; (𝑛 ≥ 1)

𝐹
⌊(𝑛−3)/2⌋

𝑘,𝑛
=

{

{

{

𝐹
𝑘,𝑛
−
𝑛𝑘

2
(𝑛 even)

𝐹
𝑘,𝑛
− 1 (𝑛 odd)

(𝑛 ≥ 3) .

(10)

2.1. Some Recurrence Properties of the Numbers 𝐹𝑙
𝑘,𝑛

Proposition 2. The recurrence relation of the incomplete 𝑘-
Fibonacci numbers 𝐹𝑙

𝑘,𝑛
is

𝐹
𝑙+1

𝑘,𝑛+2
= 𝑘𝐹
𝑙+1

𝑘,𝑛+1
+ 𝐹
𝑙

𝑘,𝑛
, 0 ≤ 𝑙 ≤

𝑛 − 2

2
. (11)

The relation (11) can be transformed into the nonhomoge-
neous recurrence relation

𝐹
𝑙

𝑘,𝑛+2
= 𝑘𝐹
𝑙

𝑘,𝑛+1
+ 𝐹
𝑙

𝑘,𝑛
− (
𝑛 − 1 − 𝑙

𝑙
) 𝑘
𝑛−1−2𝑙

. (12)

Proof. Use Definition 1 to rewrite the right-hand side of (11)
as

𝑘

𝑙+1

∑

𝑖=0

(
𝑛 − 𝑖

𝑖
) 𝑘
𝑛−2𝑖

+

𝑙

∑

𝑖=0

(
𝑛 − 𝑖 − 1

𝑖
) 𝑘
𝑛−2𝑖−1

=

𝑙+1

∑

𝑖=0

(
𝑛 − 𝑖

𝑖
) 𝑘
𝑛−2𝑖+1

+

𝑙+1

∑

𝑖=1

(
𝑛 − 𝑖

𝑖 − 1
) 𝑘
𝑛−2𝑖+1

= 𝑘
𝑛−2𝑖+1

(

𝑙+1

∑

𝑖=0

[(
𝑛 − 𝑖

𝑖
) + (

𝑛 − 𝑖

𝑖 − 1
)]) − 𝑘

𝑛+1

(
𝑛

−1
)

=

𝑙+1

∑

𝑖=0

(
𝑛 − 𝑖 + 1

𝑖
) 𝑘
𝑛−2𝑖+1

− 0

= 𝐹
𝑙

𝑘,𝑛+2
.

(13)

Proposition 3. One has
𝑠

∑

𝑖=0

(
𝑠

𝑖
) 𝐹
𝑙+𝑖

𝑘,𝑛+𝑖
𝑘
𝑖

= 𝐹
𝑙+𝑠

𝑘,𝑛+2𝑠
, 0 ≤ 𝑙 ≤

𝑛 − 𝑠 − 1

2
. (14)

Proof (by induction on 𝑠). Sum (14) clearly holds for 𝑠 = 0 and
𝑠 = 1 (see (11)). Now suppose that the result is true for all
𝑗 < 𝑠 + 1; we prove it for 𝑠 + 1:

𝑠+1

∑

𝑖=0

(
𝑠 + 1

𝑖
)𝐹
𝑙+𝑖

𝑘,𝑛+𝑖
𝑘
𝑖

=

𝑠+1

∑

𝑖=0

[(
𝑠

𝑖
) + (

𝑠

𝑖 − 1
)]𝐹
𝑙+𝑖

𝑘,𝑛+𝑖
𝑘
𝑖

=

𝑠+1

∑

𝑖=0

(
𝑠

𝑖
) 𝐹
𝑙+𝑖

𝑘,𝑛+𝑖
𝑘
𝑖

+

𝑠+1

∑

𝑖=0

(
𝑠

𝑖 − 1
)𝐹
𝑙+𝑖

𝑘,𝑛+𝑖
𝑘
𝑖

= 𝐹
𝑙+𝑠

𝑘,𝑛+2𝑠
+ (

𝑠

𝑠 + 1
)𝐹
𝑙+𝑠+1

𝑘,𝑛+𝑠+1
𝑘
𝑠+1

+

𝑠

∑

𝑖=−1

(
𝑠

𝑖
) 𝐹
𝑙+𝑖+1

𝑘,𝑛+𝑖+1
𝑘
𝑖+1

= 𝐹
𝑙+𝑠

𝑘,𝑛+2𝑠
+ 0 +

𝑠

∑

𝑖=0

(
𝑠

𝑖
) 𝐹
𝑙+𝑖+1

𝑘,𝑛+𝑖+1
𝑘
𝑖+1

+ (
𝑠

−1
)𝐹
𝑙

𝑘,𝑛

= 𝐹
𝑙+𝑠

𝑘,𝑛+2𝑠
+ 𝑘

𝑠

∑

𝑖=0

(
𝑠

𝑖
) 𝐹
𝑙+𝑖+1

𝑘,𝑛+𝑖+1
𝑘
𝑖

+ 0

= 𝐹
𝑙+𝑠

𝑘,𝑛+2𝑠
+ 𝑘𝐹
𝑙+𝑠+1

𝑘,𝑛+2𝑠+1

= 𝐹
𝑙+𝑠+1

𝑘,𝑛+2𝑠+2
.

(15)

Proposition 4. For 𝑛 ≥ 2𝑙 + 2,
𝑠−1

∑

𝑖=0

𝐹
𝑙

𝑘,𝑛+𝑖
𝑘
𝑠−1−𝑖

= 𝐹
𝑙+1

𝑘,𝑛+𝑠+1
− 𝑘
𝑠

𝐹
𝑙+1

𝑘,𝑛+1
. (16)
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Table 1: The numbers 𝐹𝑙
𝑘,𝑛
, for 1 ⩽ 𝑛 ⩽ 10.

n\l 0 1 2 3 4
1 1
2 k
3 k2 𝑘

2

+ 1

4 k3 𝑘
3

+ 2𝑘

5 k4 𝑘
4

+ 3𝑘
2

𝑘
4

+ 3𝑘
2

+ 1

6 k5 𝑘
5

+ 4𝑘
3

𝑘
5

+ 4𝑘
3

+ 3𝑘

7 k6 𝑘
6

+ 5𝑘
4

𝑘
6

+ 5𝑘
4

+ 6𝑘
2

𝑘
6

+ 5𝑘
4

+ 6𝑘
2

+ 1

8 k7 𝑘
7

+ 6𝑘
5

𝑘
7

+ 6𝑘
5

+ 10𝑘
3

𝑘
7

+ 6𝑘
5

+ 10𝑘
3

+ 4𝑘

9 k8 𝑘
8

+ 7𝑘
6

𝑘
8

+ 7𝑘
6

+ 15𝑘
4

𝑘
8

+ 7𝑘
6

+ 15𝑘
4

+ 10𝑘
2

𝑘
8

+ 7𝑘
6

+ 15𝑘
4

+ 10𝑘
2

+ 1

10 k9 𝑘
9

+ 8𝑘
7

𝑘
9

+ 8𝑘
7

+ 21𝑘
5

𝑘
9

+ 8𝑘
7

+ 21𝑘
5

+ 20𝑘
3

𝑘
9

+ 8𝑘
7

+ 21𝑘
5

+ 20𝑘
3

+ 5𝑘

Proof (by induction on 𝑠). Sum (16) clearly holds for 𝑠 = 1
(see (11)). Now suppose that the result is true for all 𝑗 < 𝑠.
We prove it for 𝑠:

𝑠

∑

𝑖=0

𝐹
𝑙

𝑘,𝑛+𝑖
𝑘
𝑠−𝑖

= 𝑘

𝑠−1

∑

𝑖=0

𝐹
𝑙

𝑘,𝑛+𝑖
𝑘
𝑠−𝑖−1

+ 𝐹
𝑙

𝑘,𝑛+𝑠

= 𝑘 (𝐹
𝑙+1

𝑘,𝑛+𝑠+1
− 𝑘
𝑠

𝐹
𝑙+1

𝑘,𝑛+1
) + 𝐹
𝑙

𝑘,𝑛+𝑠

= (𝑘𝐹
𝑙+1

𝑘,𝑛+𝑠+1
+ 𝐹
𝑙

𝑘,𝑛+𝑠
) − 𝑘
𝑠+1

𝐹
𝑙+1

𝑘,𝑛+1

= 𝐹
𝑙+1

𝑘,𝑛+𝑠+2
− 𝑘
𝑠+1

𝐹
𝑙+1

𝑘,𝑛+1
.

(17)

Note that if 𝑘, in (4), is a real variable, then 𝐹
𝑘,𝑛
= 𝐹
𝑥,𝑛

and
they correspond to the Fibonacci polynomials defined by

𝐹
𝑛+1
(𝑥) =

{{

{{

{

1 if 𝑛 = 0
𝑥 if 𝑛 = 1
𝑥𝐹
𝑛
(𝑥) + 𝐹

𝑛−1
(𝑥) if 𝑛 > 1.

(18)

Lemma 5. One has

𝐹


𝑛
(𝑥) =

𝑛𝐹
𝑛+1
(𝑥) − 𝑥𝐹

𝑛
(𝑥) + 𝑛𝐹

𝑛−1
(𝑥)

𝑥2 + 4

=
𝑛𝐿
𝑛
(𝑥) − 𝑥𝐹

𝑛
(𝑥)

𝑥2 + 4
.

(19)

See Proposition 13 of [12].

Lemma 6. One has
⌊(𝑛−1)/2⌋

∑

𝑖=0

𝑖 (
𝑛 − 1 − 𝑖

𝑖
) 𝑘
𝑛−1−2𝑖

=

((𝑘
2

+ 4) 𝑛 − 4) 𝐹
𝑘,𝑛
− 𝑛𝑘𝐿

𝑘,𝑛

2 (𝑘2 + 4)
.

(20)

Proof. From (6) we have that

𝑘𝐹
𝑘,𝑛
=

⌊(𝑛−1)/2⌋

∑

𝑖=0

(
𝑛 − 1 − 𝑖

𝑖
) 𝑘
𝑛−2𝑖

. (21)

By deriving into the previous equation (respect to 𝑘), it is
obtained

𝐹
𝑘,𝑛
+ 𝑘𝐹


𝑘,𝑛
=

⌊(𝑛−1)/2⌋

∑

𝑖=0

(𝑛 − 2𝑖) (
𝑛 − 1 − 𝑖

𝑖
) 𝑘
𝑛−2𝑖−1

= 𝑛𝐹
𝑘,𝑛
− 2

⌊(𝑛−1)/2⌋

∑

𝑖=0

𝑖 (
𝑛 − 1 − 𝑖

𝑖
) 𝑘
𝑛−2𝑖−1

.

(22)

From Lemma 5,

𝐹
𝑘,𝑛
+ 𝑘(

𝑛𝐿
𝑘,𝑛
− 𝑘𝐹
𝑘,𝑛

𝑘2 + 4
)

= 𝑛𝐹
𝑘,𝑛
− 2

⌊(𝑛−1)/2⌋

∑

𝑖=0

𝑖 (
𝑛 − 1 − 𝑖

𝑖
) 𝑘
𝑛−2𝑖−1

.

(23)

From where, after some algebra (20) is obtained.

Proposition 7. One has

⌊(𝑛−1)/2⌋

∑

𝑙=0

𝐹
𝑙

𝑘,𝑛
=

{{{{{

{{{{{

{

4𝐹
𝑘,𝑛
+ 𝑛𝑘𝐿

𝑘,𝑛

2 (𝑘2 + 4)
(𝑛 even)

(𝑘
2

+ 8) 𝐹
𝑘,𝑛
+ 𝑛𝑘𝐿

𝑘,𝑛

2 (𝑘2 + 4)
(𝑛 odd) .

(24)
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Table 2: The numbers 𝐿𝑙
𝑘,𝑛
, for 1 ⩽ 𝑛 ⩽ 9.

n\l 0 1 2 3 4
1 k
2 𝑘

2

𝑘
2

+ 2

3 𝑘
3

𝑘
3

+ 3𝑘

4 𝑘
4

𝑘
4

+ 4𝑘
2

𝑘
4

+ 4𝑘
2

+ 2

5 𝑘
5

𝑘
5

+ 5𝑘
3

𝑘
5

+ 5𝑘
3

+ 5𝑘

6 𝑘
6

𝑘
6

+ 6𝑘
4

𝑘
6

+ 6𝑘
4

+ 9𝑘
2

𝑘
6

+ 6𝑘
4

+ 9𝑘
2

+ 2

7 𝑘
7

𝑘
7

+ 7𝑘
5

𝑘
7

+ 7𝑘
5

+ 14𝑘
3

𝑘
7

+ 7𝑘
5

+ 14𝑘
3

+ 7𝑘

8 𝑘
8

𝑘
8

+ 8𝑘
6

𝑘
8

+ 8𝑘
6

+ 20𝑘
4

𝑘
8

+ 8𝑘
6

+ 20𝑘
4

+ 16𝑘
2

𝑘
8

+ 8𝑘
6

+ 20𝑘
4

+ 16𝑘
2

+ 2

9 𝑘
9

𝑘
9

+ 9𝑘
7

𝑘
9

+ 9𝑘
7

+ 27𝑘
5

𝑘
9

+ 9𝑘
7

+ 27𝑘
5

+ 30𝑘
3

𝑘
9

+ 9𝑘
7

+ 27𝑘
5

+ 30𝑘
3

+ 9𝑘

Proof
⌊(𝑛−1)/2⌋

∑

𝑙=0

𝐹
𝑙

𝑘,𝑛

= 𝐹
0

𝑘,𝑛
+ 𝐹
1

𝑘,𝑛
+ ⋅ ⋅ ⋅ + 𝐹

⌊(𝑛−1)/2⌋

𝑘,𝑛

= (
𝑛 − 1 − 0

0
) 𝑘
𝑛−1

+ [(
𝑛 − 1 − 0

0
) 𝑘
𝑛−1

+ (
𝑛 − 1 − 1

1
) 𝑘
𝑛−3

]

+ ⋅ ⋅ ⋅ +

[
[
[
[

[

(
𝑛 − 1 − 0

0
) 𝑘
𝑛−1

+ (
𝑛 − 1 − 1

1
) 𝑘
𝑛−3

+ ⋅ ⋅ ⋅ +(

𝑛 − 1 − ⌊
𝑛 − 1

2
⌋

⌊
𝑛 − 1

2
⌋

)𝑘
𝑛−1−2⌊(𝑛−1)/2⌋

]
]
]
]

]

= (⌊
𝑛 − 1

2
⌋ + 1)(

𝑛 − 1 − 0

0
) 𝑘
𝑛−1

+ ⌊
𝑛 − 1

2
⌋(
𝑛 − 1 − 1

1
) 𝑘
𝑛−3

+ ⋅ ⋅ ⋅ +(

𝑛 − 1 − ⌊
𝑛 − 1

2
⌋

⌊
𝑛 − 1

2
⌋

)𝑘
𝑛−1−2⌊(𝑛−1)/2⌋

=

⌊(𝑛−1)/2⌋

∑

𝑖=0

(⌊
𝑛 − 1

2
⌋ + 1 − 𝑖) (

𝑛 − 1 − 𝑖

𝑖
) 𝑘
𝑛−1−2𝑖

=

⌊(𝑛−1)/2⌋

∑

𝑖=0

(⌊
𝑛 − 1

2
⌋ + 1)(

𝑛 − 1 − 𝑖

𝑖
) 𝑘
𝑛−1−2𝑖

−

⌊(𝑛−1)/2⌋

∑

𝑖=0

𝑖 (
𝑛 − 1 − 𝑖

𝑖
) 𝑘
𝑛−1−2𝑖

= (⌊
𝑛 − 1

2
⌋ + 1)𝐹

𝑘,𝑛
−

⌊(𝑛−1)/2⌋

∑

𝑖=0

𝑖 (
𝑛 − 1 − 𝑖

𝑖
) 𝑘
𝑛−1−2𝑖

.

(25)

From Lemma 6, (24) is obtained.

3. The Incomplete 𝑘-Lucas Numbers

Definition 8. The incomplete 𝑘-Lucas numbers are defined by

𝐿
𝑙

𝑘,𝑛
=

𝑙

∑

𝑖=0

𝑛

𝑛 − 𝑖
(
𝑛 − 𝑖

𝑖
) 𝑘
𝑛−2𝑖

, 0 ≤ 𝑙 ≤ ⌊
𝑛

2
⌋ . (26)

InTable 2, somenumbers of incomplete 𝑘-Lucas numbers
are provided.

We note that

𝐿
⌊𝑛/2⌋

1,𝑛
= 𝐿
𝑛
. (27)

Some special cases of (26) are

𝐿
0

𝑘,𝑛
= 𝑘
𝑛

; (𝑛 ≥ 1) ,

𝐿
1

𝑘,𝑛
= 𝑘
𝑛

+ 𝑛𝑘
𝑛−2

; (𝑛 ≥ 2) ,

𝐿
2

𝑘,𝑛
= 𝑘
𝑛

+ 𝑛𝑘
𝑛−2

+
𝑛 (𝑛 − 3)

2
𝑘
𝑛−4

; (𝑛 ≥ 4) ,

𝐿
⌊𝑛/2⌋

𝑘,𝑛
= 𝐿
𝑘,𝑛
; (𝑛 ≥ 1) ,

𝐿
⌊(𝑛−2)/2⌋

𝑘,𝑛
= {

𝐿
𝑘,𝑛
− 2 (𝑛 even)

𝐿
𝑘,𝑛
− 𝑛𝑘 (𝑛 odd)

(𝑛 ≥ 2) .

(28)
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3.1. Some Recurrence Properties of the Numbers 𝐿𝑙
𝑘,𝑛

Proposition 9. One has

𝐿
𝑙

𝑘,𝑛
= 𝐹
𝑙−1

𝑘,𝑛−1
+ 𝐹
𝑙

𝑘,𝑛+1
, 0 ≤ 𝑙 ≤ ⌊

𝑛

2
⌋ . (29)

Proof. By (8), rewrite the right-hand side of (29) as

𝑙−1

∑

𝑖=0

(
𝑛 − 2 − 𝑖

𝑖
) 𝑘
𝑛−2−2𝑖

+

𝑙

∑

𝑖=0

(
𝑛 − 𝑖

𝑖
) 𝑘
𝑛−2𝑖

=

𝑙

∑

𝑖=1

(
𝑛 − 1 − 𝑖

𝑖 − 1
) 𝑘
𝑛−2𝑖

+

𝑙

∑

𝑖=0

(
𝑛 − 𝑖

𝑖
) 𝑘
𝑛−2𝑖

=

𝑙

∑

𝑖=0

[(
𝑛 − 1 − 𝑖

𝑖 − 1
) + (

𝑛 − 𝑖

𝑖
)] 𝑘
𝑛−2𝑖

− (
𝑛 − 1

−1
)

=

𝑙

∑

𝑖=0

𝑛

𝑛 − 𝑖
(
𝑛 − 𝑖

𝑖
) 𝑘
𝑛−2𝑖

+ 0

= 𝐿
𝑙

𝑘,𝑛
.

(30)

Proposition 10. The recurrence relation of the incomplete 𝑘-
Lucas numbers 𝐿𝑙

𝑘,𝑛
is

𝐿
𝑙+1

𝑘,𝑛+2
= 𝑘𝐿
𝑙+1

𝑘,𝑛+1
+ 𝐿
𝑙

𝑘,𝑛
, 0 ≤ 𝑙 ≤ ⌊

𝑛

2
⌋ . (31)

The relation (31) can be transformed into the nonhomoge-
neous recurrence relation

𝐿
𝑙

𝑘,𝑛+2
= 𝑘𝐿
𝑙

𝑘,𝑛+1
+ 𝐿
𝑙

𝑘,𝑛
−
𝑛

𝑛 − 𝑙
(
𝑛 − 𝑙

𝑙
) 𝑘
𝑛−2𝑙

. (32)

Proof. Using (29) and (11), we write

𝐿
𝑙+1

𝑘,𝑛+2
= 𝐹
𝑙

𝑘,𝑛+1
+ 𝐹
𝑙+1

𝑘,𝑛+3

= 𝑘𝐹
𝑙

𝑘,𝑛
+ 𝐹
𝑙−1

𝑘,𝑛−1
+ 𝑘𝐹
𝑙+1

𝑘,𝑛+2
+ 𝐹
𝑙

𝑘,𝑛+1

= 𝑘 (𝐹
𝑙

𝑘,𝑛
+ 𝐹
𝑙+1

𝑘,𝑛+2
) + 𝐹
𝑙−1

𝑘,𝑛−1
+ 𝐹
𝑙

𝑘,𝑛+1

= 𝑘𝐿
𝑙+1

𝑘,𝑛+1
+ 𝐿
𝑙

𝑘,𝑛
.

(33)

Proposition 11. One has

𝑘𝐿
𝑙

𝑘,𝑛
= 𝐹
𝑙

𝑘,𝑛+2
− 𝐹
𝑙−2

𝑘,𝑛−2
, 0 ≤ 𝑙 ≤ ⌊

𝑛 − 1

2
⌋ . (34)

Proof. By (29),

𝐹
𝑙

𝑘,𝑛+2
= 𝐿
𝑙

𝑘,𝑛+1
− 𝐹
𝑙−1

𝑘,𝑛
, 𝐹

𝑙−2

𝑘,𝑛−2
= 𝐿
𝑙−1

𝑘,𝑛−1
− 𝐹
𝑙−1

𝑘,𝑛
, (35)

whence, from (31),

𝐹
𝑙

𝑘,𝑛+2
− 𝐹
𝑙−2

𝑘,𝑛−2
= 𝐿
𝑙

𝑘,𝑛+1
− 𝐿
𝑙−1

𝑘,𝑛−1
= 𝑘𝐿
𝑙

𝑘,𝑛
. (36)

Proposition 12. One has

𝑠

∑

𝑖=0

(
𝑠

𝑖
) 𝐿
𝑙+𝑖

𝑘,𝑛+𝑖
𝑘
𝑖

= 𝐿
𝑙+𝑠

𝑘,𝑛+2𝑠
, 0 ≤ 𝑙 ≤

𝑛 − 𝑠

2
. (37)

Proof. Using (29) and (14), we write

𝑠

∑

𝑖=0

(
𝑠

𝑖
) 𝐿
𝑙+𝑖

𝑘,𝑛+𝑖
𝑘
𝑖

=

𝑠

∑

𝑖=0

(
𝑠

𝑖
) [𝐹
𝑙+𝑖−1

𝑘,𝑛+𝑖−1
+ 𝐹
𝑙+𝑖

𝑘,𝑛+𝑖+1
] 𝑘
𝑖

=

𝑠

∑

𝑖=0

(
𝑠

𝑖
) 𝐹
𝑙+𝑖−1

𝑘,𝑛+𝑖−1
𝑘
𝑖

+

𝑠

∑

𝑖=0

(
𝑠

𝑖
) 𝐹
𝑙+𝑖

𝑘,𝑛+𝑖+1
𝑘
𝑖

= 𝐹
𝑙−1+𝑠

𝑘,𝑛−1+2𝑠
+ 𝐹
𝑙+𝑠

𝑘,𝑛+1+2𝑠
= 𝐿
𝑙+𝑠

𝑘,𝑛+2𝑠
.

(38)

Proposition 13. For 𝑛 ≥ 2𝑙 + 1,

𝑠−1

∑

𝑖=0

𝐿
𝑙

𝑘,𝑛+𝑖
𝑘
𝑠−1−𝑖

= 𝐿
𝑙+1

𝑘,𝑛+𝑠+1
− 𝑘
𝑠

𝐿
𝑙+1

𝑘,𝑛+1
. (39)

The proof can be done by using (31) and induction on 𝑠.

Lemma 14. One has

⌊𝑛/2⌋

∑

𝑖=0

𝑖
𝑛

𝑛 − 𝑖
(
𝑛 − 𝑖

𝑖
) 𝑘
𝑛−2𝑖

=
𝑛

2
[𝐿
𝑘,𝑛
− 𝑘𝐹
𝑘,𝑛
] . (40)

The proof is similar to Lemma 6.

Proposition 15. One has

⌊𝑛/2⌋

∑

𝑙=0

𝐿
𝑙

𝑘,𝑛
=

{{

{{

{

𝐿
𝑘,𝑛
+
𝑛𝑘

2
𝐹
𝑘,𝑛

(𝑛 even)
1

2
(𝐿
𝑘,𝑛
+ 𝑛𝑘𝐹

𝑘,𝑛
) (𝑛 odd) .

(41)

Proof. An argument analogous to that of the proof of
Proposition 7 yields

⌊𝑛/2⌋

∑

𝑙=0

𝐿
𝑙

𝑘,𝑛
= (⌊

𝑛

2
⌋ + 1) 𝐿

𝑘,𝑛
−

⌊𝑛/2⌋

∑

𝑖=0

𝑖
𝑛

𝑛 − 𝑖
(
𝑛 − 𝑖

𝑖
) 𝑘
𝑛−2𝑖

. (42)

From Lemma 14, (41) is obtained.

4. Generating Functions of the Incomplete
𝑘-Fibonacci and 𝑘-Lucas Number

In this section, we give the generating functions of incomplete
𝑘-Fibonacci and 𝑘-Lucas numbers.

Lemma 16 (see [3, page 592]). Let {𝑠
𝑛
}
∞

𝑛=0
be a complex

sequence satisfying the following nonhomogeneous recurrence
relation:

𝑠
𝑛
= 𝑎𝑠
𝑛−1
+ 𝑏𝑠
𝑛−2
+ 𝑟
𝑛
(𝑛 > 1) , (43)
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where 𝑎 and 𝑏 are complex numbers and {𝑟
𝑛
} is a given complex

sequence. Then, the generating function 𝑈(𝑡) of the sequence
{𝑠
𝑛
} is

𝑈 (𝑡) =
𝐺 (𝑡) + 𝑠

0
− 𝑟
0
+ (𝑠
1
− 𝑠
0
𝑎 − 𝑟
1
) 𝑡

1 − 𝑎𝑡 − 𝑏𝑡2
, (44)

where 𝐺(𝑡) denotes the generating function of {𝑟
𝑛
}.

Theorem 17. The generating function of the incomplete 𝑘-
Fibonacci numbers 𝐹𝑙

𝑘,𝑛
is given by

𝑅
𝑘,𝑙
(𝑥) =

∞

∑

𝑖=0

𝐹
𝑙

𝑘,𝑖
𝑡
𝑖

= 𝑡
2𝑙+1

[𝐹
𝑘,2𝑙+1

+ (𝐹
𝑘,2𝑙+2

− 𝑘𝐹
𝑘,2𝑙+1

) 𝑡 −
𝑡
2

(1 − 𝑘𝑡)
𝑙+1

]

× [1 − 𝑘𝑡 − 𝑡
2

]
−1

.

(45)

Proof. Let 𝑙 be a fixed positive integer. From (8) and (12),
𝐹
𝑙

𝑘,𝑛
= 0 for 0 ≤ 𝑛 < 2𝑙 + 1, 𝐹𝑙

𝑘,2𝑙+1
= 𝐹
𝑘,2𝑙+1

, and 𝐹𝑙
𝑘,2𝑙+2

=

𝐹
𝑘,2𝑙+2

, and

𝐹
𝑙

𝑘,𝑛
= 𝑘𝐹
𝑙

𝑘,𝑛−1
+ 𝐹
𝑙

𝑘,𝑛−2
− (
𝑛 − 3 − 𝑙

𝑙
) 𝑘
𝑛−3−2𝑙

. (46)

Now let

𝑠
0
= 𝐹
𝑙

𝑘,2𝑙+1
, 𝑠

1
= 𝐹
𝑙

𝑘,2𝑙+2
, 𝑠

𝑛
= 𝐹
𝑙

𝑘,𝑛+2𝑙+1
. (47)

Also let

𝑟
0
= 𝑟
1
= 0, 𝑟

𝑛
= (
𝑛 + 𝑙 − 2

𝑛 − 2
) 𝑘
𝑛−2

. (48)

The generating function of the sequence {𝑟
𝑛
} is𝐺(𝑡) = 𝑡2/(1−

𝑘𝑡)
𝑙+1 (see [16, page 355]). Thus, from Lemma 16, we get the

generating function 𝑅
𝑘,𝑙
(𝑥) of sequence {𝑠

𝑛
}.

Theorem 18. The generating function of the incomplete 𝑘-
Lucas numbers 𝐿𝑙

𝑘,𝑛
is given by

𝑆
𝑘,𝑙
(𝑥) =

∞

∑

𝑖=0

𝐿
𝑙

𝑘,𝑖
𝑡
𝑖

= 𝑡
2𝑙

[𝐿
𝑘,2𝑙
+ (𝐿
𝑘,2𝑙+1

− 𝑘𝐿
𝑘,2𝑙
) 𝑡 −

𝑡
2

(2 − 𝑡)

(1 − 𝑘𝑡)
𝑙+1

]

× [1 − 𝑘𝑡 − 𝑡
2

]
−1

.

(49)

Proof. The proof of this theorem is similar to the proof of
Theorem 17. Let 𝑙 be a fixed positive integer. From (26) and
(32),𝐿𝑙

𝑘,𝑛
= 0 for 0 ≤ 𝑛 < 2𝑙,𝐿𝑙

𝑘,2𝑙
= 𝐿
𝑘,2𝑙

, and𝐿𝑙
𝑘,2𝑙+1

= 𝐿
𝑘,2𝑙+1

,
and

𝐿
𝑙

𝑘,𝑛
= 𝑘𝐿
𝑙

𝑘,𝑛−1
+ 𝐿
𝑙

𝑘,𝑛−2
−
𝑛 − 2

𝑛 − 2 − 𝑙
(
𝑛 − 2 − 𝑙

𝑛 − 2 − 2𝑙
) 𝑘
𝑛−2−2𝑙

.

(50)

Now let

𝑠
0
= 𝐿
𝑙

𝑘,2𝑙
, 𝑠

1
= 𝐿
𝑙

𝑘,2𝑙+1
, 𝑠

𝑛
= 𝐿
𝑙

𝑘,𝑛+2𝑙
. (51)

Also let

𝑟
0
= 𝑟
1
= 0, 𝑟

𝑛
= (
𝑛 + 2𝑙 − 2

𝑛 + 𝑙 − 2
) 𝑘
𝑛+2𝑙−2

. (52)

The generating function of the sequence {𝑟
𝑛
} is 𝐺(𝑡) = 𝑡2(2 −

𝑡)/(1 − 𝑘𝑡)
𝑙+1 (see [16, page 355]). Thus, from Lemma 16, we

get the generating function 𝑆
𝑘,𝑙
(𝑥) of sequence {𝑠

𝑛
}.

5. Conclusion

In this paper, we introduce incomplete 𝑘-Fibonacci and
𝑘-Lucas numbers, and we obtain new identities. In [17],
the authors introduced the ℎ(𝑥)-Fibonacci polynomials.
That generalizes Catalan’s Fibonacci polynomials and the
𝑘-Fibonacci numbers. Let ℎ(𝑥) be a polynomial with real
coefficients.The ℎ(𝑥)-Fibonacci polynomials {𝐹

ℎ,𝑛
(𝑥)}
𝑛∈N are

defined by the recurrence relation

𝐹
ℎ,0
(𝑥) = 0, 𝐹

ℎ,1
(𝑥) = 1,

𝐹
ℎ,𝑛+1

(𝑥) = ℎ (𝑥) 𝐹
ℎ,𝑛
(𝑥) + 𝐹

ℎ,𝑛−1
(𝑥) , 𝑛 ⩾ 1.

(53)

It would be interesting to study a definition of incomplete
ℎ(𝑥)-Fibonacci polynomials and research their properties.
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