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Abstract: In the paper, the authors provide four alternative proofs of an explicit
formula for computing Bernoulli numbers in terms of Stirling numbers of the sec-
ond kind.
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1 Introduction
It is well known that Bernoulli numbers Bk for k ≥ 0may be generated by

x
ex − 1
=

∞

∑
k=0

Bk
xk

k!
= 1 −

x
2
+

∞

∑
k=1

B2k
x2k

(2k)!
, |x| < 2ð. (1.1)

In combinatorics, Stirling numbers of the second kind S(n, k) for n ≥ k ≥ 0may be
computed by

S(n, k) =
1
k!

k

∑
ℓ=0

(−1)k−ℓ(
k
ℓ
)ℓn

and may be generated by

(ex − 1)k

k!
=

∞

∑
n=k

S(n, k)
xn

n!
, k ∈ {0} ∪ℕ.

In [5, p. 536] and [6, p. 560], the following simple formula for computing
Bernoulli numbers Bn in terms of Stirling numbers of the second kind S(n, k) was
incidentally obtained.
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Theorem 1.1. For n ∈ {0} ∪ℕ, we have

Bn =
n

∑
k=0

(−1)k
k!

k + 1
S(n, k). (1.2)

The aim of this paper is to provide four alternative proofs for the explicit for-
mula (1.2).

2 Four alternative proofs of the formula (1.2)
Considering S(0, 0) = 1, it is clear that the formula (1.2) is valid for n = 0. Further
considering S(n, 0) = 0 for n ≥ 1, it is su�cient to show

Bn =
n

∑
k=1

(−1)k
k!

k + 1
S(n, k), n ≥ 1.

First proof. It is listed in [1, p. 230, 5.1.32] that

ln
b
a
=

∞

∫
0

e−au − e−bu

u
du. (2.1)

Taking a = 1 and b = 1 + x in (2.1) yields

ln(1 + x)
x
=

∞

∫
0

1 − e−xu

xu
e−u du =

∞

∫
0

(
1

∫
1/e

txu−1 dt)e−u du. (2.2)

Replacing x by ex − 1 in (2.2) results in

x
ex − 1
=

∞

∫
0

(
1

∫
1/e

tue
x−u−1 dt)e−u du. (2.3)

In combinatorics, Bell polynomials of the second kind (also called partial Bell
polynomials) Bn,k(x1, x2, . . . , xn−k+1) are de�ned by

Bn,k(x1, x2, . . . , xn−k+1) = ∑
1≤i≤n,ℓi∈ℕ
∑ni=1 iℓi=n
∑ni=1 ℓi=k

n!
∏n−k+1

i=1 ℓi!

n−k+1

∏
i=1

(
xi

i!
)
ℓi

for n ≥ k ≥ 1, see [4, p. 134, Theorem A]. They satisfy

Bn,k(abx1, ab
2x2, . . . , ab

n−k+1xn−k+1) = a
kbnBn,k(x1, xn, . . . , xn−k+1) (2.4)
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and

Bn,k(
n−k+1⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞1, 1, . . . , 1 ) = S(n, k), (2.5)

see [4, p. 135], where a and b are any complex numbers. The well-known Faà di
Bruno formula may be described in terms of Bell polynomials of the second kind
Bn,k(x1, x2, . . . , xn−k+1) by

dn

dxnf ∘ g(x) =
n

∑
k=1

f(k)(g(x))Bn,k(g
�(x), g��(x), . . . , g(n−k+1)(x)), (2.6)

see [4, p. 139, Theorem C].
Applying in (2.6) the function f(y) = ty and y = g(x) = uex − u − 1 gives

dntue
x
dxn =

n

∑
k=1

(ln t)ktue
x
Bn,k(

n−k+1⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
uex, uex, . . . , uex ). (2.7)

Making use of the formulas (2.4) and (2.5) in (2.7) reveals

dntue
x
dxn = t

uex n

∑
k=1

S(n, k)uk(ln t)kekx. (2.8)

Di�erentiating n times on both sides of (2.3) and considering (2.8), we obtain

dn

dxn (
x

ex − 1
) =

n

∑
k=1

S(n, k)ekx
∞

∫
0

uk(
1

∫
1/e

(ln t)ktue
x−u−1 dt)e−u du. (2.9)

On the other hand, di�erentiating n times on both sides of (1.1) gives

dn

dxn (
x

ex − 1
) =

∞

∑
k=n

Bk
xk−n

(k − n)!
. (2.10)

Equating (2.9) and (2.10) and taking the limit x → 0, we deduce

Bn =
n

∑
k=1

S(n, k)
∞

∫
0

uk(
1

∫
1/e

(ln t)k

t
dt)e−u du

=
n

∑
k=1

(−1)k

k + 1
S(n, k)

∞

∫
0

uke−u du

=
n

∑
k=1

(−1)kk!
k + 1

S(n, k).

The �rst proof of Theorem 1.1 is complete.
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Second proof. In the book [2, p. 386] and in the papers [3, p. 615] and [11, p. 885],
it was given that

ln b − ln a
b − a

=
1

∫
0

1
(1 − t)a + tb

dt,

where a, b > 0 and a ̸= b. Replacing a by 1 and b by ex yields

x
ex − 1
=

1

∫
0

1
1 + (ex − 1)t

dt.

Applying the functions f(y) = 1
y and y = g(x) = 1 + (ex − 1)t in the formula (2.6)

and simplifying by (2.4) and (2.5) give

dn

dxn (
x

ex − 1
) =

1

∫
0

dn

dxn [
1

1 + (ex − 1)t
] dt

=
1

∫
0

n

∑
k=1

(−1)k
k!

[1 + (ex − 1)t]k+1
Bn,k(

n−k+1⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
tex, tex, . . . , tex ) dt

=
n

∑
k=1

(−1)kk!
1

∫
0

tk

[1 + (ex − 1)t]k+1
Bn,k(

n−k+1⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
ex, ex, . . . , ex ) dt

→
n

∑
k=1

(−1)kk!
1

∫
0

tkBn,k(
n−k+1⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞1, 1, . . . , 1 ) dt, x → 0

=
n

∑
k=1

(−1)kk!S(n, k)
1

∫
0

tk dt

=
n

∑
k=1

(−1)k
k!

k + 1
S(n, k).

On the other hand, taking the limit x → 0 in (2.10) leads to

dn

dxn (
x

ex − 1
) =

∞

∑
k=n

Bk
xk−n

(k − n)!
→ Bn, x → 0.

The second proof of Theorem 1.1 is thus complete.
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Third proof. Let CT[f(x)] be the coe�cient of x0 in the power series expansion of
f(x). Then

n

∑
k=1

(−1)k
k!

k + 1
S(n, k) =

n

∑
k=1

(−1)kCT[
n!
xn

(ex − 1)k

k + 1
]

= n!CT[
1
xn

∞

∑
k=1

(−1)k
(ex − 1)k

k + 1
]

= n!CT[
1
xn
ln[1 + (ex − 1)] − (ex − 1)

ex − 1
]

= n!CT[
1
xn

x
ex − 1

]

= Bn.

Thus, the formula (1.2) follows.

Fourth proof. It is clear that the equation (1.1) may be rewritten as

ln[1 + (ex − 1)]
ex − 1

=
∞

∑
k=0

Bk
xk

k!
. (2.11)

Di�erentiating n times on both sides of (2.11) and taking the limit x → 0 reveal

Bn = limx→0

∞

∑
k=n

Bk
xk−n

(k − n)!

= lim
x→0

dn

dxn (
ln[1 + (ex − 1)]

ex − 1
)

= lim
x→0

n

∑
k=1

[
ln(1 + u)

u
]
(k)

Bn,k(
n−k+1⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

ex, ex, . . . , ex ), u = ex − 1

= lim
x→0

n

∑
k=1

[
∞

∑
ℓ=1

(−1)ℓ−1
uℓ−1

ℓ
]
(k)

Bn,k(
n−k+1⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

ex, ex, . . . , ex )

= lim
x→0

n

∑
k=1

[
∞

∑
ℓ=k+1

(−1)ℓ−1
(ℓ − 1)!

(ℓ − k − 1)!ℓ
uℓ−k−1]Bn,k(

n−k+1⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
ex, ex, . . . , ex )

=
n

∑
k=1

lim
u→0

[
∞

∑
ℓ=k+1

(−1)ℓ−1
(ℓ − 1)!

(ℓ − k − 1)!ℓ
uℓ−k−1] lim

x→0
Bn,k(

n−k+1⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
ex, ex, . . . , ex )

=
n

∑
k=1

(−1)k
k!

k + 1
Bn,k(

n−k+1⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞1, 1, . . . , 1 )

=
n

∑
k=1

(−1)k
k!

k + 1
S(n, k).

The fourth proof of Theorem 1.1 is thus complete.
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Remark 2.1. In [9, p. 1128, Corollary], among other things, it was found that

B2k =
1
2
−

1
2k + 1
− 2k

k−1

∑
i=1

A2(k−i)

2(k − i) + 1

for k ∈ ℕ, where Am is de�ned by

n

∑
m=1

mk =
k+1

∑
m=0

Amn
m.

It was listed in [6, p. 559] and recovered in [8, Theorem 2.1] that

(
1

ex − 1
)
(k)

= (−1)k
k+1

∑
m=1

(m − 1)!S(k + 1, m)(
1

ex − 1
)
m

(2.12)

for k ∈ {0} ∪ℕ. In [8, Theorem 3.1], by the identity (2.12), it was obtained that

B2k = 1 +
2k−1

∑
m=1

S(2k + 1, m + 1)S(2k, 2k −m)
(2km)

−
2k

2k + 1

2k

∑
m=1

S(2k, m)S(2k + 1, 2k −m + 1)
( 2k
m−1)

, k ∈ ℕ.

In [12, Theorem 1.4], among other things, it was presented that

B2k =
(−1)k−1k

22(k−1)(22k − 1)

k−1

∑
i=0

k−i−1

∑
ℓ=0

(−1)i+ℓ(
2k
ℓ
)(k − i − ℓ)2k−1, k ∈ ℕ.

Remark 2.2. The identities in (2.12) have been generalized and applied in [7, 13].

Acknowledgement: We thank Professor Doron Zeilberger for drawing our atten-
tion to the books [5, 6] and sketching the third proof in an e-mail on October 10,
2013. Thanks to his advice, we could �nd that the formula (1.2) originated from
[10] and was listed as an incidental consequence of an answer to an exercise in
[5, p. 536] and [6, p. 560].
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