Erratum

Feng Qi and Bai-Ni Guo

Alternative proofs of a formula for Bernoulli numbers in terms of Stirling numbers

This is a corrected version of [Analysis 34 (2014), 187-193]

Abstract

In the paper, the authors provide four alternative proofs of an explicit formula for computing Bernoulli numbers in terms of Stirling numbers of the second kind.

Keywords: Alternative proof, explicit formula, Bernoulli number, Stirling number of the second kind, Faá di Bruno formula, Bell polynomial

MSC 2010: Primary: 11B68, secondary: 11B73

[^0]
1 Introduction

It is well known that Bernoulli numbers B_{k} for $k \geq 0$ may be generated by

$$
\begin{equation*}
\frac{x}{e^{x}-1}=\sum_{k=0}^{\infty} B_{k} \frac{x^{k}}{k!}=1-\frac{x}{2}+\sum_{k=1}^{\infty} B_{2 k} \frac{x^{2 k}}{(2 k)!}, \quad|x|<2 \pi . \tag{1.1}
\end{equation*}
$$

In combinatorics, Stirling numbers of the second kind $S(n, k)$ for $n \geq k \geq 0$ may be computed by

$$
S(n, k)=\frac{1}{k!} \sum_{\ell=0}^{k}(-1)^{k-\ell}\binom{k}{\ell} \ell^{n}
$$

and may be generated by

$$
\frac{\left(e^{x}-1\right)^{k}}{k!}=\sum_{n=k}^{\infty} S(n, k) \frac{x^{n}}{n!}, \quad k \in\{0\} \cup \mathbb{N} .
$$

In [5, p. 536] and [6, p. 560], the following simple formula for computing Bernoulli numbers B_{n} in terms of Stirling numbers of the second kind $S(n, k)$ was incidentally obtained.

Theorem 1.1. For $n \in\{0\} \cup \mathbb{N}$, we have

$$
\begin{equation*}
B_{n}=\sum_{k=0}^{n}(-1)^{k} \frac{k!}{k+1} S(n, k) . \tag{1.2}
\end{equation*}
$$

The aim of this paper is to provide four alternative proofs for the explicit formula (1.2).

2 Four alternative proofs of the formula (1.2)

Considering $S(0,0)=1$, it is clear that the formula (1.2) is valid for $n=0$. Further considering $S(n, 0)=0$ for $n \geq 1$, it is sufficient to show

$$
B_{n}=\sum_{k=1}^{n}(-1)^{k} \frac{k!}{k+1} S(n, k), \quad n \geq 1
$$

First proof. It is listed in [1, p. 230, 5.1.32] that

$$
\begin{equation*}
\ln \frac{b}{a}=\int_{0}^{\infty} \frac{e^{-a u}-e^{-b u}}{u} \mathrm{~d} u . \tag{2.1}
\end{equation*}
$$

Taking $a=1$ and $b=1+x$ in (2.1) yields

$$
\begin{equation*}
\frac{\ln (1+x)}{x}=\int_{0}^{\infty} \frac{1-e^{-x u}}{x u} e^{-u} \mathrm{~d} u=\int_{0}^{\infty}\left(\int_{1 / e}^{1} t^{x u-1} \mathrm{~d} t\right) e^{-u} \mathrm{~d} u . \tag{2.2}
\end{equation*}
$$

Replacing x by $e^{x}-1$ in (2.2) results in

$$
\begin{equation*}
\frac{x}{e^{x}-1}=\int_{0}^{\infty}\left(\int_{1 / e}^{1} t^{u e^{x}-u-1} \mathrm{~d} t\right) e^{-u} \mathrm{~d} u \tag{2.3}
\end{equation*}
$$

In combinatorics, Bell polynomials of the second kind (also called partial Bell polynomials) $\mathrm{B}_{n, k}\left(x_{1}, x_{2}, \ldots, x_{n-k+1}\right)$ are defined by

$$
\mathrm{B}_{n, k}\left(x_{1}, x_{2}, \ldots, x_{n-k+1}\right)=\sum_{\substack{1 \leq i \leq n, e_{i} \in \mathbb{N} \\ \sum_{i=1}^{n} e_{i}=n \\ \sum_{i=1}^{i=1} \ell_{i}=k}} \frac{n!}{\prod_{i=1}^{n-k+1} e_{i}!} \prod_{i=1}^{n-k+1}\left(\frac{x_{i}}{i!}\right)^{\ell_{i}}
$$

for $n \geq k \geq 1$, see [4, p.134, Theorem A]. They satisfy

$$
\begin{equation*}
\mathrm{B}_{n, k}\left(a b x_{1}, a b^{2} x_{2}, \ldots, a b^{n-k+1} x_{n-k+1}\right)=a^{k} b^{n} \mathrm{~B}_{n, k}\left(x_{1}, x_{n}, \ldots, x_{n-k+1}\right) \tag{2.4}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathrm{B}_{n, k}(\overbrace{1,1, \ldots, 1}^{n-k+1})=S(n, k), \tag{2.5}
\end{equation*}
$$

see [4, p.135], where a and b are any complex numbers. The well-known Faà di Bruno formula may be described in terms of Bell polynomials of the second kind $\mathrm{B}_{n, k}\left(x_{1}, x_{2}, \ldots, x_{n-k+1}\right)$ by

$$
\begin{equation*}
\frac{\mathrm{d}^{n}}{\mathrm{~d} x^{n}} f \circ g(x)=\sum_{k=1}^{n} f^{(k)}(g(x)) \mathrm{B}_{n, k}\left(g^{\prime}(x), g^{\prime \prime}(x), \ldots, g^{(n-k+1)}(x)\right), \tag{2.6}
\end{equation*}
$$

see [4, p. 139, Theorem C].
Applying in (2.6) the function $f(y)=t^{y}$ and $y=g(x)=u e^{x}-u-1$ gives

$$
\begin{equation*}
\frac{\mathrm{d}^{n} t^{u e^{x}}}{\mathrm{~d} x^{n}}=\sum_{k=1}^{n}(\ln t)^{k} t^{u e^{x}} \mathrm{~B}_{n, k}\left(\frac{n-k+1}{u e^{x}, u e^{x}, \ldots, u e^{x}}\right) \tag{2.7}
\end{equation*}
$$

Making use of the formulas (2.4) and (2.5) in (2.7) reveals

$$
\begin{equation*}
\frac{\mathrm{d}^{n} t^{u e^{x}}}{\mathrm{~d} x^{n}}=t^{u e^{x}} \sum_{k=1}^{n} S(n, k) u^{k}(\ln t)^{k} e^{k x} \tag{2.8}
\end{equation*}
$$

Differentiating n times on both sides of (2.3) and considering (2.8), we obtain

$$
\begin{equation*}
\frac{\mathrm{d}^{n}}{\mathrm{~d} x^{n}}\left(\frac{x}{e^{x}-1}\right)=\sum_{k=1}^{n} S(n, k) e^{k x} \int_{0}^{\infty} u^{k}\left(\int_{1 / e}^{1}(\ln t)^{k} t^{u e^{x}-u-1} \mathrm{~d} t\right) e^{-u} \mathrm{~d} u \tag{2.9}
\end{equation*}
$$

On the other hand, differentiating n times on both sides of (1.1) gives

$$
\begin{equation*}
\frac{\mathrm{d}^{n}}{\mathrm{~d} x^{n}}\left(\frac{x}{e^{x}-1}\right)=\sum_{k=n}^{\infty} B_{k} \frac{x^{k-n}}{(k-n)!} . \tag{2.10}
\end{equation*}
$$

Equating (2.9) and (2.10) and taking the limit $x \rightarrow 0$, we deduce

$$
\begin{aligned}
B_{n} & =\sum_{k=1}^{n} S(n, k) \int_{0}^{\infty} u^{k}\left(\int_{1 / e}^{1} \frac{(\ln t)^{k}}{t} \mathrm{~d} t\right) e^{-u} \mathrm{~d} u \\
& =\sum_{k=1}^{n} \frac{(-1)^{k}}{k+1} S(n, k) \int_{0}^{\infty} u^{k} e^{-u} \mathrm{~d} u \\
& =\sum_{k=1}^{n} \frac{(-1)^{k} k!}{k+1} S(n, k) .
\end{aligned}
$$

The first proof of Theorem 1.1 is complete.

Second proof. In the book [2, p. 386] and in the papers [3, p. 615] and [11, p. 885], it was given that

$$
\frac{\ln b-\ln a}{b-a}=\int_{0}^{1} \frac{1}{(1-t) a+t b} \mathrm{~d} t
$$

where $a, b>0$ and $a \neq b$. Replacing a by 1 and b by e^{x} yields

$$
\frac{x}{e^{x}-1}=\int_{0}^{1} \frac{1}{1+\left(e^{x}-1\right) t} \mathrm{~d} t
$$

Applying the functions $f(y)=\frac{1}{y}$ and $y=g(x)=1+\left(e^{x}-1\right) t$ in the formula (2.6) and simplifying by (2.4) and (2.5) give

$$
\begin{aligned}
& \frac{\mathrm{d}^{n}}{\mathrm{~d} x^{n}}\left(\frac{x}{e^{x}-1}\right)=\int_{0}^{1} \frac{\mathrm{~d}^{n}}{\mathrm{~d} x^{n}}\left[\frac{1}{1+\left(e^{x}-1\right) t}\right] \mathrm{d} t \\
& =\int_{0}^{1} \sum_{k=1}^{n}(-1)^{k} \frac{k!}{\left[1+\left(e^{x}-1\right) t\right]^{k+1}} \mathrm{~B}_{n, k}\left(\frac{n-k+1}{t^{x}, t e^{x}, \ldots, t e^{x}}\right) \mathrm{d} t \\
& =\sum_{k=1}^{n}(-1)^{k} k!\int_{0}^{1} \frac{t^{k}}{\left[1+\left(e^{x}-1\right) t\right]^{k+1}} \mathrm{~B}_{n, k}(\overbrace{e^{x}, e^{x}, \ldots, e^{x}}^{n-k+1}) \mathrm{d} t \\
& \rightarrow \sum_{k=1}^{n}(-1)^{k} k!\int_{0}^{1} t^{k} \mathrm{~B}_{n, k}(\overbrace{1,1, \ldots, 1}^{n-k+1}) \mathrm{d} t, \quad x \rightarrow 0 \\
& =\sum_{k=1}^{n}(-1)^{k} k!S(n, k) \int_{0}^{1} t^{k} \mathrm{~d} t \\
& =\sum_{k=1}^{n}(-1)^{k} \frac{k!}{k+1} S(n, k) \text {. }
\end{aligned}
$$

On the other hand, taking the limit $x \rightarrow 0$ in (2.10) leads to

$$
\frac{\mathrm{d}^{n}}{\mathrm{~d} x^{n}}\left(\frac{x}{e^{x}-1}\right)=\sum_{k=n}^{\infty} B_{k} \frac{x^{k-n}}{(k-n)!} \rightarrow B_{n}, \quad x \rightarrow 0 .
$$

The second proof of Theorem 1.1 is thus complete.

Third proof. Let $C T[f(x)]$ be the coefficient of x^{0} in the power series expansion of $f(x)$. Then

$$
\begin{aligned}
\sum_{k=1}^{n}(-1)^{k} \frac{k!}{k+1} S(n, k) & =\sum_{k=1}^{n}(-1)^{k} C T\left[\frac{n!}{x^{n}} \frac{\left(e^{x}-1\right)^{k}}{k+1}\right] \\
& =n!C T\left[\frac{1}{x^{n}} \sum_{k=1}^{\infty}(-1)^{k} \frac{\left(e^{x}-1\right)^{k}}{k+1}\right] \\
& =n!C T\left[\frac{1}{x^{n}} \frac{\ln \left[1+\left(e^{x}-1\right)\right]-\left(e^{x}-1\right)}{e^{x}-1}\right] \\
& =n!C T\left[\frac{1}{x^{n}} \frac{x}{e^{x}-1}\right] \\
& =B_{n} .
\end{aligned}
$$

Thus, the formula (1.2) follows.
Fourth proof. It is clear that the equation (1.1) may be rewritten as

$$
\begin{equation*}
\frac{\ln \left[1+\left(e^{x}-1\right)\right]}{e^{x}-1}=\sum_{k=0}^{\infty} B_{k} \frac{x^{k}}{k!} . \tag{2.11}
\end{equation*}
$$

Differentiating n times on both sides of (2.11) and taking the limit $x \rightarrow 0$ reveal

$$
\begin{aligned}
B_{n} & =\lim _{x \rightarrow 0} \sum_{k=n}^{\infty} B_{k} \frac{x^{k-n}}{(k-n)!} \\
& =\lim _{x \rightarrow 0} \frac{\mathrm{~d}^{n}}{\mathrm{~d} x^{n}}\left(\frac{\ln \left[1+\left(e^{x}-1\right)\right]}{e^{x}-1}\right) \\
& =\lim _{x \rightarrow 0} \sum_{k=1}^{n}\left[\frac{\ln (1+u)}{u}\right]^{(k)} \mathrm{B}_{n, k}(\overbrace{e^{x}, e^{x}, \ldots, e^{x}}^{n-k+1}), \quad u=e^{x}-1 \\
& =\lim _{x \rightarrow 0} \sum_{k=1}^{n}\left[\sum_{\ell=1}^{\infty}(-1)^{\ell-1} \frac{u^{\ell-1}}{\ell}\right]^{(k)} \mathrm{B}_{n, k}(\overbrace{e^{x}, e^{x}, \ldots, e^{x}}^{n-k+1}) \\
& =\lim _{x \rightarrow 0} \sum_{k=1}^{n}\left[\sum_{\ell=k+1}^{\infty}(-1)^{\ell-1} \frac{(\ell-1)!}{(\ell-k-1)!\ell} u^{\ell-k-1}\right] \mathrm{B}_{n, k}(\overbrace{e^{x}, e^{x}, \ldots, e^{x}}^{n-k+1}) \\
& =\sum_{k=1}^{n} \lim _{u \rightarrow 0}\left[\sum_{\ell=k+1}^{\infty}(-1)^{\ell-1} \frac{(\ell-1)!}{(\ell-k-1)!\ell} u^{\ell-k-1}\right] \lim _{x \rightarrow 0} \mathrm{~B}_{n, k}(\overbrace{e^{x}, e^{x}, \ldots, e^{x}}^{n-k+1}) \\
& =\sum_{k=1}^{n}(-1)^{k} \frac{k!}{k+1} \mathrm{~B}_{n, k}(\overbrace{1,1, \ldots, 1}^{n-k+1}) \\
& =\sum_{k=1}^{n}(-1)^{k} \frac{k!}{k+1} S(n, k) .
\end{aligned}
$$

The fourth proof of Theorem 1.1 is thus complete.

Remark 2.1. In [9, p. 1128, Corollary], among other things, it was found that

$$
B_{2 k}=\frac{1}{2}-\frac{1}{2 k+1}-2 k \sum_{i=1}^{k-1} \frac{A_{2(k-i)}}{2(k-i)+1}
$$

for $k \in \mathbb{N}$, where A_{m} is defined by

$$
\sum_{m=1}^{n} m^{k}=\sum_{m=0}^{k+1} A_{m} n^{m}
$$

It was listed in [6, p. 559] and recovered in [8, Theorem 2.1] that

$$
\begin{equation*}
\left(\frac{1}{e^{x}-1}\right)^{(k)}=(-1)^{k} \sum_{m=1}^{k+1}(m-1)!S(k+1, m)\left(\frac{1}{e^{x}-1}\right)^{m} \tag{2.12}
\end{equation*}
$$

for $k \in\{0\} \cup \mathbb{N}$. In [8, Theorem 3.1], by the identity (2.12), it was obtained that

$$
\begin{aligned}
B_{2 k}=1 & +\sum_{m=1}^{2 k-1} \frac{S(2 k+1, m+1) S(2 k, 2 k-m)}{\binom{2 k}{m}} \\
& -\frac{2 k}{2 k+1} \sum_{m=1}^{2 k} \frac{S(2 k, m) S(2 k+1,2 k-m+1)}{\binom{2 k}{m-1}}, \quad k \in \mathbb{N} .
\end{aligned}
$$

In [12, Theorem 1.4], among other things, it was presented that

$$
B_{2 k}=\frac{(-1)^{k-1} k}{2^{2(k-1)}\left(2^{2 k}-1\right)} \sum_{i=0}^{k-1} \sum_{\ell=0}^{k-i-1}(-1)^{i+\ell}\binom{2 k}{\ell}(k-i-\ell)^{2 k-1}, \quad k \in \mathbb{N} .
$$

Remark 2.2. The identities in (2.12) have been generalized and applied in [7, 13].

Acknowledgement: We thank Professor Doron Zeilberger for drawing our attention to the books [5, 6] and sketching the third proof in an e-mail on October 10, 2013. Thanks to his advice, we could find that the formula (1.2) originated from [10] and was listed as an incidental consequence of an answer to an exercise in [5, p. 536] and [6, p. 560].

References

[1] M. Abramowitz and I. A. Stegun (eds.), Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing with corrections, Applied Mathematics Series 55, National Bureau of Standards, Washington, 1970.
[2] P. S. Bullen, Handbook of Means and Their Inequalities, Kluwer Academic Publishers, Dordrecht, 2003.
[3] B. Carlson, The logarithmic mean, Am. Math. Mon. 79 (1972), 615-618.
[4] L. Comtet, Advanced Combinatorics: The Art of Finite and Infinite Expansions, D. Reidel, Dordrecht, 1974.
[5] R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. A Foundation for Computer Science, Addison-Wesley, Reading, 1989.
[6] R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. A Foundation for Computer Science, 2nd ed., Addison-Wesley, Amsterdam, 1994.
[7] B.-N. Guo and F. Qi, Explicit formulae for computing Euler polynomials in terms of Stirling numbers of the second kind, J. Comput. Appl. Math. 272 (2014), 251-257.
[8] B.-N. Guo and F. Qi, Some identities and an explicit formula for Bernoulli and Stirling numbers, J. Comput. Appl. Math. 255 (2014), 568-579.
[9] S.-L. Guo and F. Qi, Recursion formulae for $\sum_{m=1}^{n} m^{k}$, Z. Anal. Anwend. 18 (1999), no. 4, 1123-1130.
[10] B. F. Logan, Polynomials related to the Stirling numbers, AT\&T Bell Laboratories Internal Technical Memorandum, August 10, 1987.
[11] E. Neuman, The weighted logarithmic mean, J. Math. Anal. Appl. 188 (1994), no. 3, 885-900.
[12] F. Qi, Explicit formulas for derivatives of tangent and cotangent and for Bernoulli and other numbers, preprint (2012), http://arxiv.org/abs/1202.1205.
[13] A.-M. Xu and Z.-D. Cen, Some identities involving exponential functions and Stirling numbers and applications, J. Comput. Appl. Math. 260 (2014), 201-207.

Received December 10, 2013; accepted January 14, 2014.

[^0]: Feng Qi, Bai-Ni Guo: School of Mathematics and Informatics, Henan Polytechnic University, Jiaozuo City, Henan Province, 454010, P. R. China,
 e-mail: qifeng618@gmail.com, bai.ni.guo@gmail.com

