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1 Introduction

It is well known that Bernoulli numbers B, for k > 0 may be generated by

00 k

X X
=§B—= 2 271, 1.1
-1 = FK + 2"(2k)v x| < 2m -0

In combinatorics, Stirling numbers of the second kind S(#, k) for n > k > 0 may be
computed by

S, K) = — i(—l)k_f(k)f"
’ k! & e
and may be generated by
(ex _ l)k B 00 xn
T ZkS(n,k)E, ke {0}UN.
In [5, p.536] and [6, p.560], the following simple formula for computing

Bernoulli numbers B, in terms of Stirling numbers of the second kind S(#, k) was
incidentally obtained.
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Theorem 1.1. Forn € {0} U N, we have

B, = i(—u"
k=0

The aim of this paper is to provide four alternative proofs for the explicit for-
mula (1.2).

!

S(n, k). (1.2)

k
k+1

2 Four alternative proofs of the formula (1.2)

Considering S(0,0) = 1, it is clear that the formula (1.2) is valid for n = 0. Further
considering S(n, 0) = 0 for n > 1, it is sufficient to show

B, = Y1)
k=1

First proof. Itis listed in [1, p. 230, 5.1.32] that

!

k
S(n, k), > 1.
k+1 (k). n

In-= = du. 2.1)

0
b J— e _ e—bu
a

u

Takinga = 1 and b = 1 + x in (2.1) yields

00 oo 1

In(1+x) _ J L-e™ g, - J ( j =1 dt)e‘” du. .2)

X xu

0 1/e

Replacing x by ¢* - 1 in (2.2) results in

1
J puetul dt)e_” du. (2.3)
/e

In combinatorics, Bell polynomials of the second kind (also called partial Bell
polynomials) B, ;. (x,, X5, ..., X,_x,,) are defined by

n—k+1

n! x;\b
Bn’k(xl,xz, s x,,_k+1) = z n—k+1 1—1 (1_|)

1<ismteN |y &Y il
Z?:l il;=n
Y o=k

i=1%i

forn > k > 1, see [4, p. 134, Theorem A]. They satisfy

B, (abx,,ab’xy, ..., ab" ' x, 1) = dU"B (e X X1 (2.4)
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and
n—k+1

B, (T1,....T) = S(n, k), (2.5)
see [4, p.135], where a and b are any complex numbers. The well-known Faa di

Bruno formula may be described in terms of Bell polynomials of the second kind

Bn,k(xl’ Xoseees xn—k+1) by

=Y fPgx)B, k(g (), 9" (x),..., d" (%)), (2.6)
k=1

see [4, p. 139, Theorem C].
Applying in (2.6) the function f(y) =+’ and y = g(x) = ue™ — u — 1 gives

n—k+1

d z (Int)*t“'B (ue®, ue”, ..., ue"). 2.7

Making use of the formulas (2.4) and (2.5) in (2.7) reveals

4 tue"
dx"

=1 S(n, k) (In )€ (2.8)
k=1

Differentiating » times on both sides of (2.3) and considering (2.8), we obtain

g( pr ) Z S(n, k)™ Iuk( Jl (In £)kpHe ! dt>e"“ du. (2.9)

1/e

On the other hand, differentiating » times on both sides of (1.1) gives

dn x ©0 xk—n
=YyYB . 2.10
dx”(e"—l) k;l k(k—n)! (2.10)

Equating (2.9) and (2.10) and taking the limit x — 0, we deduce

o

- Sona o

(ln £)k

dt) " duy

= ——

—

— 1S(n, k) | vke™ du

Il
M=
|~
— + | =
=
o_‘g

X CDfK!
=) o Stk

The first proof of Theorem 1.1 is complete. O
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Second proof. In the book [2, p.386] and in the papers [3, p. 615] and [11, p. 885],
it was given that

1
Inb-1Ina 1
= dt,
b-a J(l—t)a+tb
0

where a,b > 0 and a # b. Replacing a by 1 and b by ¢* yields

1

X _J 1 a
-1 J1+@-1Dt
0

Applying the functions f(y) = i and y = g(x) = 1 + (¢* - 1)t in the formula (2.6)
and simplifying by (2.4) and (2.5) give

1
d” x d”’ 1
—_— —— | dt
dx"(e —1) jdx [1+(ex—1)t]
n—k+1

c k! X X X
z( 1 WBnk(te ,te', ..., te )dt

°‘-———\_

k=1
n 1 tk F__E:EiL__‘
EAE =
Z JmBn,k(‘f)e,...,e ) dt
3 ok
5 Z(—l)kk!J kB, (T T)d, x—0
k=1 o

M=

1
(~1)*KIS(n, k) j £* dt
0

k=1
o,k K
_k;( 1) k+15(n,k).

On the other hand, taking the limit x — 0 in (2.10) leads to

d" X
dx”(e"—l) Z k(k— )'_) w X0

The second proof of Theorem 1.1 is thus complete. O
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Third proof. Let CT|[f(x)] be the coefficient of x° in the power series expansion of
f(x). Then

L « k! n! (e -k

Tk+1
1 & (e = 1F
= !CT[— -1 —]
" x" I;( ) k+1
_ n!CT[iln[l + (e -1)] - (e" - 1)]
x" e* -1
= n!CT[i X ]
x"e* -1
=B,
Thus, the formula (1.2) follows. O

Fourth proof. It is clear that the equation (1.1) may be rewritten as
ln[l + (e -1)]
L Z k T (2.11)

Differentiating » times on both sides of (2.11) and taking the limit x — 0 reveal

k—-n
X
B _,lclﬂ?)sz(k—n)!

— lim d" (ln[1+(e —1)])

x—0 dx” -1
n In(1 (k) n—k+1
=)161Lr(1)2[¥] B, (e e",...,e"), u=e"-1
k=1
n u (k) n—k+1
=i z Z( e — ] B, (e" e, ....e")
;vc—>0k=1
B D =t I P Pl
0o b eln (f k 1)le m T
n - 00 n—k+1
I o -1 (£-1)! Z—k—l] . =
_k;llf—» _6;1(—1) e chlir(l)Bn,k(e’e""’e )
n k! n—k+1
= Z(—l)k—B (TT5T)
k=1 k+
n
k!
= -1 S(n, k).
> (D =S k)

k=1

The fourth proof of Theorem 1.1 is thus complete. O
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Remark 2.1. In [9, p. 1128, Corollary], among other things, it was found that

1 1 2(k—i)
By=~-— —2ky 2D
%72 2k+1 gz(k—inl

for k € N, where A,, is defined by

n ) k+1

_ m
Z m = Z A,n.
m=1 m=0

It was listed in [6, p. 559] and recovered in [8, Theorem 2.1] that

k+1

(= >(k)=(—1)kZ(m—l)!S(k+l,m)( L) (2.12)
m=1

e’ -1 e* -1

for k € {0} U N. In [8, Theorem 3.1], by the identity (2.12), it was obtained that

2k-1
By=1+Y S(2k + 1,m + 1)S(2k, 2k — m)

m=1 (3,1:)
2k % S(2k, m)S(2k + 1,2k —m + 1)
2k+ 15 () ’

In [12, Theorem 1.4], among other things, it was presented that

k € N.

(_l)k—lk k-1 k—i—1 e 2k ) et
szzmz Z(—1)+<€)(k—l—€) , keNN.

i=0 £¢=0

Remark 2.2. The identities in (2.12) have been generalized and applied in [7, 13].
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tion to the books [5, 6] and sketching the third proof in an e-mail on October 10,
2013. Thanks to his advice, we could find that the formula (1.2) originated from
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[5, p. 536] and [6, p. 560].
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